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Abstract

A fundamental question of the steganography problem is to determine the
amount of data which can be hidden undetectably. Its answer is of direct
importance to the embedder, but also aids a forensic investigator in bound-
ing the size of payload which might be communicated. Recent results on
the information theory of steganography suggest that the detectability of
payload in an individual object is proportional to the square of the number
of changes caused by the embedding. Here, we follow up the implications
when a payload is to be spread amongst multiple cover objects, and give
asymptotic results about the maximum secure payload. Two embedding
scenarios are distinguished: embedding in a fixed finite batch of covers, and
continuous embedding in an infinite stream. The steganographic capacity, as
a function of the number of objects, is sublinear and strictly asymptotically
lower in the second case. This work consolidates and extends our previous
results on batch and sequential steganographic capacity.

A version of this paper was an invited article for the inaugural issue of
the journal of Digital Crime and Forensics, which began in 2009. This
document appears here for two reasons. First, the copyright holder does
not permit authors to make the press versions of their articles available on
their personal websites. Second, the author feels that the typesetters did
a very bad job in this case, and mangled the equations. Thus this ver-
sion of the paper, which is derived from a draft of the submitted article.
Due to initial instructions from the publisher (which included a prohibition
on square-root symbols, amongst others) some of the equations appear in
an unusual format but at least they are correct and readable. If you like
the paper, please purchase the article from http://www.igi-global.com/article/
international-journal-digital-crime-forensics/1590.
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We consider the following question: given a set of cover objects, how much data
could be hidden in them? Although there is much literature on embedding and detection of
steganographic payload, it is usual to consider only single cover objects, whereas this paper
is concerned with embedding in a finite or infinite stream of objects, deriving capacity
bounds and optimal methods. We posed the questions about embedding and detection
in a fixed number of covers in Ker (2006), where it was called the batch steganography
problem, and the question is now also extended to infinite streams; we call this sequential
steganography.

A key assumption, here, will be that the detectability of payload in a single object is
(either exactly or locally for small payloads) proportional to the square of the number of
changes caused by the embedding. Results of this nature have recently arisen in a number
of theoretical steganalysis papers (Ker, 2007b, 2007c, 2007d) and the phenomenon has
also been observed experimentally (Ker, Pevný, Kodovský, & Fridrich, 2008). Assuming
that the same holds in general, we examine the implications for an embedder when a
large payload is to be spread amongst multiple cover objects. The choice of how to split
payload between multiple covers is called an embedding strategy and the aim is to find
the optimal strategies implied by the square law. There is some recent related work (Ker,
2006, 2007a) where optimal embedding strategies were found, but only in the context of
highly restricted detection frameworks; in this paper we do not assume knowledge of the
steganalyst’s behaviour.

The structure of this paper is as follows. In the Problem Formulation section we will
present the problems of batch steganography and sequential steganography; we will make
and justify a series of assumptions about how steganalysis evidence accumulates. Evidence
is not generated by payload itself – it is found as changes in the cover object, caused by
the embedding process – so we must also relate embedding changes to payload transmitted
and, with adaptive source coding methods, these are not always proportional (Fridrich &
Soukal, 2006; Bierbrauer & Fridrich, 2008). In the Analysis of the Batch Steganography
Problem section we will apply the theory to the batch steganography problem, deriving
optimal embedding strategies and maximum undetectable payload, and in the Analysis
of the Sequential Steganography Problem section to the sequential steganography problem;
there is no optimal strategy in this case, but bounds can be derived, and strategies exist
which come arbitrarily close to the bounds. It will be shown that the asymptotic payload,
as a function of the number of covers, must be strictly lower in the sequential than the
batch setting. Finally in the concluding Discussion section we will discuss the significance
and limitations of the results.

An early version of some of this work has appeared in conference proceedings without
any mathematical proofs (Ker, 2008b). In this work we have changed focus to concentrate
on the embedding changes – this reduces the algebraic complexity – and are able to widen
the applicability and weaken the assumptions. In particular, the square evidence law need
hold only locally as payloads tend to zero.

Before continuing, we review some asymptotic notation. We write f(n) = O
(
g(n)

)
if

there are constants c and N such that f(n) ≤ cg(n) for all n ≥ N . The analogous strict
bound is f(n) = o

(
g(n)

)
, which means that f(n)/g(n) → 0. We write f(n) = Θ

(
g(n)

)
if

there are positive constants c, d and N such that cg(n) ≤ f(n) ≤ dg(n) for all n ≥ N . The
most precise condition on growth is f(x) ∼ g(x), which means that f(x)/g(x) → 1.
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Problem Formulation

It is rather plausible to suppose that a steganographer has access to multiple covers
among which the payload can be spread, and that a steganalyst is presented with a large
number of objects for steganalysis. We formulated (Ker, 2006) the competing aims of
batch steganography, in which it is assumed that a fixed set of N covers is available to a
steganographer who spreads payload amongst some or all of them, and pooled steganalysis,
in which a steganalyst attempts to pool the evidence of N objects to determine whether
some payload is present (without knowing which or how many do contain payload). Only
the former will concern us here: we want to determine, subject to some assumptions about
accumulation of evidence and a maximum acceptable risk of detection, how much payload
can be embedded. In some cases we will also be able to identify the optimal strategies for
the steganographer.

We also tackle a more difficult problem, dubbed sequential steganography. In the
sequential setting we no longer suppose that the number of covers N is fixed in advance
of embedding (this differs materially from the batch problem, because optimal strategies
require advance knowledge of N). In the sequential setting, we want to establish a strategy
for an infinite stream of communications, with transmission of as much payload as possible
over time. We will see that, although the steganographer is forced to reduce the payload
rate over time, an infinite payload can still be transmitted in an infinite amount of time.
However it will be shown that there is a tension between transmitting information sooner and
transmitting asymptotically faster as N →∞. Further, we shall see that the steganographer
must be asymptotically less efficient in sequential embedding than in the batch setting.

We will not, in this work, ask how the intended recipient of the payload is to recombine
the payload segments extracted from the transmitted objects: we assume that knowledge
of the size and order of the payload segments is determined by a secret key already shared
between the communicating parties.

Distortion Bound

To determine the secure capacity of a set of covers we must choose a definition of
secure, and the key is to measure the evidence available to the steganalyst. As in previous
work (Ker, 2006, 2007a), we will suppose that the steganalyst is applying some detector
to individual objects in the batch or stream of those transmitted by the steganographer,
and pooling their evidence in some way. This is plausible because, at present, steganalysis
methods only work on individual objects. The steganalyst wants to decide whether any
payload is present: a hypothesis testing scenario.

Let us model the (finite or infinite) sequence of cover objects by a sequence of random
variables X = (X1, X2, . . .). These can represent entire cover objects or, more practically,
a steganalyst’s observation resulting from steganalysis of each object individually. Let us
suppose that a sequence of stego objects, modelled by a sequence Y = (Y1, Y2, . . .), is created
with an embedding strategy causing c = (c1, c2, . . .) embedding changes in the covers. (The
distribution of Yi depends, therefore, on ci.) It is necessary that payload is measured by the
number of embedding changes induced: although payload size might seem to be the more
natural measure, it is only the changes which can be detected by a steganalyser. Later, we
will relate payload size to number of changes.
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Any detector – binary classifier for the presence or absence of payload in the sequence
as a whole – must decide whether a sequence of objects is a realisation of X or Y . By
the information processing theorem (Cachin, 2004), any detector must have false positive
probability α and false negative probability β satisfying

α log α
1−β + (1− α) log 1−α

β ≤ DKL(X ‖Y ),

where DKL represents the Kullback-Leibler (KL) divergence. In this sense, the worst-case
risk to the steganographer is bounded by DKL(X ‖Y ) and we can say that evidence is, at
least in this context of binary hypothesis testing, measured by this KL divergence. This is
a standard idea, first applied to steganography by Cachin (2004) and now widely adopted.

Then the definition of a secure embedding strategy is one which does not exceed a
certain risk (from the point of view of the embedder) or evidence level. Thus we make the
assumption:

(A0) The steganographer’s distortion bound is in terms of KL divergence,
DKL(X ‖Y ) ≤ D for some positive D.

(Assumptions are numbered so that we may refer to the ones we require, later.) KL diver-
gence has few attractive algebraic properties, but one is useful here. If we assume that the
observations of Yi are independent, then we can decompose the total evidence in N objects
into a sum (Kullback, 1968, p. 23):

(A1) Evidence is additive: DKL(X ‖Y ) =
∑N

i=1DKL(Xi ‖Yi).

As long as the stream of cover objects come from a sensible source (a random selection
from an image library, not consecutive frames from a video camera, say) it is plausible to
assume such independence. Even if there is dependence between the cover objects it is not
necessarily reflected in the steganalyst’s observations, or is likely to be insignificant if the
embedding process was chosen carefully.

Locally Square Distortion

Now we must relate the number of embedding changes ci to the evidence found in
object i, DKL(Xi ‖Yi). We cannot expect to know the exact relationship (even if we knew
everything about the cover source and the embedding method, it is likely to be intractable
to compute the KL divergence exactly) but we can make some sensible approximations.

This paper is predicated on an assumption of square distortion:

(A2a) Evidence is a square law: for each i there is a positive constant Qi such
that DKL(Xi ‖Yi) = Qic

2
i .

The constants of proportionality Qi are called the Q-factors (Ker, 2007d): note that
the different cover objects are allowed different Q-factors reflecting different cover charac-
teristics. (A2a) is a strong assumption, but it is true at least if Xi and Yi have (possibly
multivariate) normal distributions with mean shifted by a linear function of ci.

For other distributions we argue that this still holds approximately. We appeal to a
theorem of Kullback (1968, p. 26), which says that, under some regularity conditions, KL
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divergence of a one-parameter family is locally square in perturbations of the parameter.
We will not repeat this argument, but refer the reader to prior work (Ker, 2007d). Under
these conditions, as ci → 0, DKL(Xi ‖Yi) ∼ Qic

2
i for a constant Qi. We will later see

that ci → 0 is forced, as the number of covers grows, if we are to meet a fixed evidence
bound (this was also argued in Ker (2007d) on the grounds that embedding at a rate which
does not diminish is a surefire way for the steganographer to get caught). Hence, at least
eventually, the KL divergence evidence provided by cover i is proportional to c2i , although
the constant of proportionality depends on the nature of cover i.

We codify this with the following assumption, weaker than (A2a).

(A2b) Evidence is locally a square law: for each i there is a positive constant
Qi such that DKL(Xi ‖Yi) = φi(ci), with φi(0) = 0, φi strictly increasing
without bound, and φ′′i (x) → 2Qi, uniformly in i, as x→ 0+.

The condition in terms of φ′′i is slightly stronger than φi(x) ∼ Qix
2, and it also

guarantees a region of zero in which all the φi are convex. It can be proved by slightly
stricter regularity conditions than in Kullback’s theorem. The uniformity of the convergence
is justifiable if we believe that the cover source is stationary.

Of course, correctness of assumption (A2b) still depends on regularity conditions,
but they are satisfied by very many distributions if the parameterization is suitable: the
parameter should have an asymptotically linear effect on the distribution it determines.
This seems a reasonable property for the effect of embedding changes on a distribution of
covers.

Cover Characteristics

For asymptotic results about capacity we also require some assumptions about the
size and nature of the cover objects. The size of object i will be denoted ni and measured
by the number of possible embedding locations; we require only a very weak condition on
the sequence of sizes. But it is well-established (Böhme, 2005; Böhme & Ker, 2006) that
even similarly-sized covers can vary greatly in their capacity for secure payload: in images,
factors including local variance, saturation and JPEG compression levels can have very
significant impact on the rate at which cover changes produce evidence. These differences
are reflected in the Q-factors of the covers, so for example we might expect that noisier
covers have a lower value for Qi. We need at least a weak assumption about the Q-factors
too:

(A3a) The cover characteristics are bounded: there exist n and n such that 0 <
n ≤ ni ≤ n for all i, and there exist Q and Q such that 0 < Q ≤ Qi ≤ Q
for all i.

This assumption precludes the possibility of larger-and-larger, or ever-diminishing,
cover objects, or unboundedly easier or more difficult covers to embed in. Such a situation
would, of course, alter the asymptotic capacity. It is justified at least if we believe that the
covers are from a stationary source.

It is also interesting to consider a more restricted case when it is only the cover size
which varies. This would be plausible if, for example, cover objects are taken from the same
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source and the embedding method cannot exploit any other differences between the covers.
It is arguable that the Q factor should, all other things being equal, be inversely proportional
to the cover size. This can be justified exactly if the cover consists of independent regions,
and it is the subject of future work to prove that it holds even when there is (limited)
dependence between different parts of the cover. Without justifying it further, we will allow
this stronger assumption as an alternative to (A3a):

(A3b) The cover sizes are bounded: there exist n and n such that 0 < n ≤ ni ≤ n
for all i. Furthermore, the covers are of uniform character: there is a
constant Q such that Qi = Q/ni.

Bounds on Embedding Efficiency

We have related the distortion bound to the number of embedding changes in each
object, but both steganographers and forensic steganalysts are interested in payload size.
The final component for our analysis is to relate these quantities. Recall that ci is the
number of embedding changes in object i, and let us write mi for number of the payload
bits that can always be conveyed by this many changes.

Under a simple embedding scheme there is a direct relationship between these, for
example in simple least significant bit (LSB) replacement we have mi = ci (note that we
are using ci as an upper bound on the number of changes: in LSB replacement on average
only 1

2 cover samples must be altered for the embedding of each payload bit, but in the
worst case every payload bit requires one change). In similar cases, with fixed encodings,
we may assume:

(A4a) The embedding code is fixed: for some positive constant E, mi = Eci.

(We repeat that we are bounding the maximum possible number of changes, whereas some
literature (Fridrich & Soukal, 2006; Fridrich, Lisonek, & Soukal, 2006) deals in the expected
number of changes. Since our security model is about risk, it makes sense to take the
pessimistic view and bound the maximal number of changes.)

But, when there is excess capacity, we can do better using a source coding method
called matrix embedding (also known as syndrome coding), adapting the code to maximize
the payload transmitted for a given number of locations and permitted changes. This tech-
nique was suggested by Crandall in an unpublished manuscript (Bierbrauer, 1998), and two
works have been published surveying aspects of source coding for steganography (Fridrich
& Soukal, 2006; Bierbrauer & Fridrich, 2008).

Following the literature, we will assume that the cover objects consist of a number of
locations, each of which can carry an unconstrained q-ary symbol as payload: the embedding
process may overwrite some or all of these symbols and each one overwritten is an embedding
change. For example, under LSB embedding q = 2 and each pixel is a potential location:
the symbol is just the LSB of each pixel value. Under ternary embedding q = 3, which
allows a greater number of payload bits to be embedded in total, without changing the
number of locations. We assume that q is fixed by the choice of embedding algorithm. For
simplicity, we will also assume that q is a prime power, but in fact it would not affect any
of the asymptotic conclusions were this not so.
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Most literature focuses on relative embedding rates (payload bits per location) and
embedding efficiency (payload bits per embedding change) but it is more convenient for us to
consider absolute quantities. Let us define µq(n, c) to be the largest guaranteed payload size
(measured in bits) which can be embedded in n locations using no more than c embedding
changes. The complete function µq is not known, but we can bound it:

Lemma 1 For any q, n, and c,

c log2

(
n
c (q − 1)

)
− c log2 q ≤ µq(n, c) ≤ c log2

(
n
c (q − 1)

)
+ (n− c) log2

(
n

n−c

)
.

Proof Both inequalities can be translated from Bierbrauer and Fridrich (2008), with
extensions to q-ary alphabets as in Fridrich et al. (2006). The lower limit comes from using
c repetitions of the

[ qp−1
q−1 ,

qp−1
q−1 −p, 3

]
q-ary Hamming code, where p = blogq

(
n
c (q−1)+1

)
c:

each repetition embeds p q-ary symbols in qp−1
q−1 locations making at most one embedding

change, and p is chosen to maximize the number of symbols. The upper limit derives from
a sphere-packing bound from the theory of covering codes (e.g., Cohen, 1983). �

Since, as c/n → 0, the second term of both lower and upper bounds are dominated
by the first, what is left is a concave function and we may make the simplification (valid
for sufficiently large covers):

(A4b) Optimal adaptive source coding is used and mi = χi(ci), where χi is a
strictly concave increasing function satisfying χi(x) ∼ x log2

(
ni(q−1)/x

)
,

uniformly in i, as x→ 0+.

We highlight one further (implicit) assumption in this paper. When we come to
optimization problems, we will not constrain ci and mi to be integers. In practice, of
course, one cannot embed a fractional bit of payload nor make a fractional number of
changes. However, because typical covers are very large, allowing the quantities to vary
continuously is a reasonable approximation. Moreover, the problems of finding optimal
batch and sequential steganography schemes would be much more difficult if restricted to
integer domains. We will return, briefly, to this assumption – the only one which is strictly
false – in the concluding section.

Analysis of the Batch Steganography Problem

We can formulate batch steganography, from the embedders point of view, as an
optimization problem. Our aim is to derive the best embedding strategy and, hence, the
maximal possible payload. Depending on which of the assumptions we select, our results
will have to be asymptotic rather than exact.

This lemma, in which the conditions are stronger than necessary but fit well with our
scenario, will be useful in what follows.

Lemma 2 Suppose that, for i = 1, . . . , n, φi : [0,∞) → [0,∞) is continuous, convex, and
strictly increasing without bound, χi : [0,∞) → [0,∞) is continuous and strictly concave
increasing, and φi(0) = χi(0) = 0. Then
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(1) for D > 0 the maximization problem

Maximize
∑

χi(xi) s.t.
∑

φi(xi) ≤ D

has a unique solution determined by
∑
φi(xi) = D and χ′i(xi)/φ′i(xi) constant, and

(2) if the objective maximum above is M then the dual optimization problem

Minimize
∑

φi(xi) s.t.
∑

χi(xi) = M

has the same solution, with objective minimum D.

Proof (1) By convexity of φi and −χi, the problem is a one of convex optimization (Boyd
& Vandenberghe, 2004). The feasible region is nonempty (φi(0) = χi(0) = 0, and D > 0,
imply that x = 0 is feasible) and compact (φi unboundedly increasing forces xi to be
bounded above). The objective function is strictly concave, so there exists a unique global
minimum, at which the constraint is tight, and which may be determined by the method of
Lagrange multipliers.

Writing Λ =
∑
χi(xi) − λ

(∑
φi(xi) −D

)
, we have ∂Λ

∂xi
= χ′i(xi) − λφ′i(xi), so at the

stationary point χ′i(xi)/φ′i(xi) = λ, a constant.
(2) This is just the standard duality theorem for strictly convex optimization. �

The first part of the lemma will be used to solve the batch steganography optimization
problem: maximize the payload transmitted M =

∑
mi, subject to the distortion bound

DKL(X ‖Y ) ≤ D. The second part of the lemma ensures that the solutions are the same
as the alternative formulation: for a given payload size, minimize the KL divergence. The
hypotheses of the lemma are covered by our assumptions about distortion and source coding.

There now follow a sequence of three theorems, applying Lemma 2 to versions of
the batch steganography problem with different assumptions. We begin with the strongest
assumptions and successively weaken them.

Theorem 3 Suppose an exact square evidence law and fixed source coding, making assump-
tions (A0), (A1), (A2a), (A3a), and (A4a). Abbreviate Q̃ =

∑N
i=1Q

−1
i . Then

(1) The optimal embedding strategy is ci = D1/2Q̃−1/2Q−1
i and the total secure payload

is M = ED1/2Q̃1/2. Asymptotically, M = Θ(N1/2).

(2) Under stronger assumption (A3b) (covers with uniform characteristics) the optimal
strategy has mi = rni for a constant r, i.e. payload is embedded proportionally to
cover size.

Proof (A0), (A1), (A2a), and (A4a) combine to give the following optimization problem:

Maximize
∑

Eci s.t.
∑

Qic
2
i ≤ D.

This can be solved using a variation of the Cauchy-Schwartz inequality, but it is just as
simple to apply Lemma 2: the unique solution is given by

E/(2ciQi) = k
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where k is some constant, and substituting into
∑
Qic

2
i = D gives k = 1

2ED
−1/2Q̃1/2.

Hence ci = D1/2Q̃−1/2Q−1
i and the formula for M =

∑
mi = E

∑
ci follows immediately.

By (A3a), NQ−1 ≤ Q̃ ≤ NQ−1, i.e. Q̃ = Θ(N). This implies M = Θ(N1/2).
The second part is simple: observe that mi ∝ ci, ci ∝ Q−1

i and, under (A3b), Qi ∝
n−1

i . Overall, mi ∝ ni. �

Other results showing, under various different assumptions, that total steganographic
capacity follows a square root law (in the overall size of the available cover) have arisen in
the literature; we will consider them briefly in the Discussion section.

Now we weaken assumption (A2a) to (A2b), assuming only that the square evidence
law holds locally to zero. We must be careful about the analytical details.

Theorem 4 Suppose a local square evidence law and fixed source coding, making assump-
tions (A0), (A1), (A2b), (A3a), and (A4a). Again write Q̃ =

∑N
i=1Q

−1
i . Then

(1) The optimal embedding strategy satisfies ci ∼ D1/2Q̃−1/2Q−1
i and the secure total

payload is M ∼ ED1/2Q̃1/2, as N →∞ if the KL distortion bound D is fixed.

(2) Under stronger assumption (A3b) (covers with uniform characteristics) the optimal
strategy has mi ∼ rni for a constant r, i.e. payload asymptotically proportional to
cover size.

Proof As above, (A0), (A1), (A2b), and (A4a) together give optimization problem:

Maximize
∑

Eci s.t.
∑

φi(ci) ≤ D, (1)

but we cannot apply Lemma 2 immediately because the φi are not guaranteed to be convex
everywhere.

Using the uniform convergence in (A2b), for any ε > 0, there exists δ > 0 and L > 0
such that:

all φi(x) convex on [0, δ) (2)
all φi(x) > L on [δ,∞) (3)

all φi(x) ∈
(
(1− ε)Qix

2, (1 + ε)Qix
2
)

on [0, δ) (4)
all φ′i(x) ∈

(
(1− ε)2Qix, (1 + ε)2Qix

)
on [0, δ) (5)

First, consider the optimization problem restricted to all ci ∈ [0, δ). By Lemma 2 and (2)
it has a unique solution with E/φ′i(ci) = k, some constant. Using (5) and rearranging,

1
2Ek

−1Q−1
i (1 + ε)−1 < ci <

1
2Ek

−1Q−1
i (1− ε)−1. (6)

Substituting into the tight constraint
∑
φi(ci) = D, and using (4), we have

1
4E

2k−2Q̃(1− ε)(1 + ε)−2 < D < 1
4E

2k−2Q̃(1 + ε)(1− ε)−2.

hence

1
2ED

−1/2Q̃1/2(1− ε)1/2(1 + ε)−1 < k < 1
2ED

−1/2Q̃1/2(1 + ε)1/2(1− ε)−1.
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and, using (6) again,

D1/2Q̃−1/2Q−1
i (1 + ε)−3/2(1− ε) < ci < D1/2Q̃−1/2Q−1

i (1− ε)−3/2(1 + ε).

which demonstrates
ci ∼ D1/2Q̃−1/2Q−1

i (7)

and therefore M ∼ ED1/2Q̃1/2.
We must now verify that (1) cannot have an optimum outside the region of guaranteed

convexity [0, δ)N . By (3), no more than N/L of the ci can be outside this region, without
breaking the distortion constraint. Suppose that some do so: the effect is to reduce the
constraint, and force the rest of the ci into the guaranteed convex region. But finitely many
of the ci can only contribute finitely much to the objective function, and we have shown
that, as N →∞, an unbounded contribution can be achieved by having all ci inside region
of guaranteed convexity. For any ε > 0, therefore, there is a sufficiently large N such that
all ci are in [0, δ) at the optimum.

For part (2), if Qi = Q/ni then (7) gives mi ∼ ED1/2Q−1/2ni

[∑
ni

]−1, payload
asymptotically proportional to cover size. �

Finally, we may allow adaptive source coding at the embedder. In this case, the total
payload size is superlinear in the number of embedding changes; this alters the objective
function.

Theorem 5 Suppose a local square evidence law and adaptive source coding, making as-
sumptions (A0), (A1), (A2b), (A3a), and (A4b). Then

(1) The optimal embedding strategy satisfies

ni
ci

log2

(
ni
ci

q−1
e

)
= kQini (8)

where k is a constant. This implies that the secure total payload is M =
Θ(N1/2 logN) as N →∞ with D fixed.

(2) Under stronger assumption (A3b) (covers with uniform characteristics) the optimal
strategy has mi ∼ rni for a constant r, i.e. payload asymptotically proportional to
cover size.

Proof This time the optimization problem is

Maximize
∑

χi(ci) s.t.
∑

φi(ci) ≤ D.

Most of the analysis is similar to that in the previous theorem, and we only sketch the
differences. For the same reasons as before, for large enough N all ci are forced into a region
[0, δ) in which all φi are convex and χi concave, with the former arbitrarily close to Qic

2
i and

the latter to ci log2

(
ni
ci

(q − 1)
)
. Then Lemma 2 applies, with the optimum asymptotically

where χ′i(ci)/φ
′
i(ci) is constant. This simplifies to (8). This equation is difficult to solve

analytically (although, of course, the solution can be found numerically if specific values
of D, all ni, and all Qi are given). However we may still draw a conclusion about the
asymptotic growth of the total payload size M , as follows. Recall that ni and Qi are
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uniformly bounded above, and below away from zero. Write (8) in the form f
(

ni
ci

)
= kQini,

where f(x) = x log2

(
x q−1

e

)
; this positive continuous function has strictly positive derivative

for x ≥ 1 so the value of ni/ci is bounded above and below away from zero. We may
conclude that, for any i and j,

0 < a < ci/cj < b (9)

for some constants a and b independent of N . Now consider the tight distortion bound∑
φi(ci) = D. By prior reasoning, φi(ci) is arbitrarily close to Qic

2
i and together with (9)

this forces ci = Θ(N−1/2). Finally, using mi = χi(ci) ∼ ci log2

(
ni
ci

(q − 1)
)
, we deduce that

mi = Θ(N−1/2 logN) and hence M = Θ(N1/2 logN).
The problem is simplified if Qi = Q/ni, for then (8) becomes f

(
ni
ci

)
= kQ, a constant,

hence ni
ci

= l, a constant. Therefore mi = χi(ci) ∼ ci log2

(
ni
ci

(q − 1)
)

= nil
−1 log2

(
l(q − 1)

)
.

Even though the number of embedding changes is no longer proportional to the size of the
cover, the optimization problem ensures that the payload embedded in each object remains
proportional to cover size. �

Adaptive source coding has increased the growth of asymptotic capacity by a factor
of logN . However, capacity remains substantially sublinear in N . This remains in contrast
to capacity results for noisy channels, where information transmitted is always linear in the
number of symbols sent.

Analysis of the Sequential Steganography Problem

In the preceding section it was vital that the number of covers N was fixed in advance:
subject to a fixed total acceptable risk D, the optimal strategies all involve N . Therefore
these results are not applicable to an endless stream of covers. Although most of our results
have phrased capacity asymptotically as N → ∞, in the batch steganography scenario N
is fixed.

Now we consider a different problem, when the steganographer wants to establish a
communication channel with their recipient. We suppose that there is an infinite stream
of covers, in which payload can be embedded, and the steganographer aims to embed as
much as possible subject to a bound on the risk. This time the distortion bound is subtly
different: (A0) must mean

DKL

(
(X1, . . . , XN ) ‖ (Y1, . . . , YN )

)
≤ D

for all N , where X is the stream of covers and Y , which depends on the sizes of the
embedded data m, the stream of stego objects. Since KL divergence is nonnegative, this is
equivalent to replacing assumptions (A0) and (A1) with

(A0’) The steganographer’s distortion bound for the sequential steganalysis
problem is

∑∞
i=1DKL(Xi ‖Yi) ≤ D.

It is important to understand where this bound comes from: the steganographer’s opponent
is a steganalyst who makes a single hypothesis test for the presence or absence of payload,
based on the objects transmitted up that point, but the steganographer does not know when
that hypothesis test is going to take place. If this seems overly restrictive on the steganalyst,
note that it would be suboptimal to make two (or more) hypothesis tests because this would
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simply compound the probability of false positives: at the point of the second (or last) test,
all the information available to earlier test(s) is still present, so nothing could have been
gained by performing the earlier test(s).

We continue to write M =
∑N

1 mi, but now M is a variable which grows with N ,
and it makes sense to discuss the asymptotic behaviour of M in terms of N . The first aim
is to make sure that M grows without bound, so that the steganographic channel does not
completely dry up, and the second is to have M grow asymptotically as fast as possible. We
will illustrate the sequential steganography problem under the most restrictive assumption
options (A2a) and (A4a) – an exact square evidence law and no adaptive source coding –
and make a relatively easy generalization later. (A3a) will be assumed throughout.

Under (A2a), the distortion bound simplifies to

∞∑
i=1

Qic
2
i ≤ D (10)

and under (A4a), M = E
∑
ci. Immediately we can see a tension between transmitting pay-

load early and transmitting a larger payload: if the steganographer sends the most-possible
information in the first object, m1 = ED1/2Q

−1/2
1 , they have used up all their distortion

budget and cannot send any more information at all. On the other hand, if they spread all
the distortion over the first N objects, the total transmitted is M = ED1/2

[∑N
j=1Q

−1
j

]1/2,
exactly as in Theorem 3. By varying N , arbitrarily large payload can be sent, but this does
not establish a true covert channel because after a certain point the transmission must stop.

In an effort to use all of the infinite stream of covers, the steganographer might
attempt geometric embedding :

mi = ED1/2Q
−1/2
i 2−i/2.

This uses half of the distortion budget in the first cover, one quarter in the second, and
so on. Unfortunately, the total payload transmitted M < ED1/2Q−1/2 ∑∞

i=1 2−i/2 =
ED1/2Q−1/2(

√
2 − 1)−1 is finite, so all this has achieved is to take an infinite amount

of time to send a finite amount of information.
However, it is possible to transmit an infinite total payload. The simplest scheme is

harmonic embedding :
mi = ED1/261/2π−1Q

−1/2
i i−1,

meets (10) while
∑
mi = ∞. As a function of N , the total payload transmitted M grows

without bound, but only asymptotically as fast as logN .

Now the problem becomes clearer. The steganographer must find a sequence (ai)
such that

∑
Qia

2
i converges, so the distortion bound can be met by ci = kai for a suitable

choice of k, but
∑
ai diverges as fast as possible so that the total payload M = E

∑
ci

grows as fast as possible. When source coding is permitted, this last quantity changes to
M =

∑
χi(ci). But for

∑
Qia

2
i to converge, the ai terms must diminish sufficiently fast, and

this places a limit on M ’s growth. It is possible to prove a result which holds under either
an exact or a local square law for evidence, and holds in slightly different forms depending
on whether adaptive source coding is used.
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Theorem 6 (Embedding bound) Assume (A0’) and (A3a).

(1) Under either (A2a) or (A2b), and fixed source coding (A4a), M = o(N1/2).

(2) Under either (A2a) or (A2b), and with adaptive source coding satisfying (A4b),
M = o(N1/2 logN).

Proof
Whether (A2a) or (A2b) holds, the distortion bound is

∑∞
i=1 φi(ci) ≤ D with φi

increasing and φi(x) ∼ Qix
2 uniformly in i. This certainly forces φi(ci) → 0 as i → ∞,

whereby ci → 0. So there exists j, independent of N , such that φi(ci) ≥ 1
2Qc

2
i for all i > j.

Furthermore,
∑∞

i=j+1 c
2
i < D′ = 2DQ.

Write C =
∑N

i=1 ci. Take any ε > 0. Pick k such that
∑∞

i=k+1 φi(ci) < ε2/9. This is
independent of N and we may also assume that j < k < N .

Write

C1 =
j∑

i=1

ci, C2 =
k∑

i=j+1

ci, C3 =
N∑

i=k+1

ci.

Recall Cauchy’s inequality, that
∑n

i=1 ai ≤ (
∑n

i=1 a
2
i )

1/2n1/2. This gives

C2 ≤ (k − j)1/2

[
k∑

i=j+1

c2i

]1/2

< k1/2D′1/2 (11)

and

C3 ≤ (N − k)1/2

[
N∑

i=k+1

c2i

]1/2

< N1/2ε/3. (12)

Combining (11) and (12) we have

CN−1/2 = (C1 + C2 + C3)N−1/2 < C1N
−1/2 + k1/2D′1/2N−1/2 + ε/3 < ε,

the final inequality at least if N > 9C2
1ε
−2 and N > 9kD′ε−2. We have proved that for any

ε > 0, C < εN1/2 for sufficiently large N .
So for part (1), observe that M = EC. We have proved that C = o(N1/2) so

M = o(N1/2).
For part (2), by (A4b) and (A3a) there exists δ > 0 such that χi(x) ≤ ψ(x) =

2x log2

(
n(q − 1)/x

)
for all i and x ∈ [0, δ). For large enough i, ci < δ is guaranteed. Since

ψ(x) is concave we have

M =
N∑

i=1

χi(ci) ≤
N∑

i=1

ψ(ci) ≤ Nψ
(
C/N

)
= 2C log2

(
Nn(q − 1)/C

)
.

Then C = o(N1/2) implies M = o(N1/2 logN). �

Compare with Theorems 3-5: in the sequential setting, the asymptotic order of growth
of M must be strictly lower than in the batch setting. Nonetheless, it is possible to come
arbitrarily close using the following class of embedding strategies.
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Theorem 7 (Zeta embedding) Suppose (A0’), either (A2a) or (A2b), (A3a), and either
(A4a) or (A4b). Let ci = ki−ν for constants k > 0 and ν.

(1) If ν ≤ 1
2 then

∑∞
i=1 φi(ci) diverges whenever k > 0, so no distortion bound of the

form (A0’) can be met.

(2) If 1
2 < ν < 1 then there exists a k > 0 such that

∑∞
i=1 φi(ci) ≤ D. Then with

no adaptive source coding (A4a), M = Θ(N1−ν), and with adaptive source coding
satisfying (A4b), M = Θ(N1−ν logN).

(3) If ν = 1 then there exists a k > 0 such that
∑∞

i=1 φi(ci) ≤ D. Then with no adaptive
source coding (A4a), M = Θ(logN), and with adaptive source coding satisfying
(A4b), M = Θ

(
(logN)2

)
.

(4) If ν > 1 then
∑∞

1 mi converges, whether or not adaptive source coding is used, so
only a finite amount of information is ever transferred and no secret “channel” has
been established.

Proof We use the following elementary facts about infinite series (e.g., Ferrar, 1938):∑∞
i=1 i

−p converges if and only if p > 1; in the case of divergence the partial sums
sn =

∑n
i=1 i

−p satisfy sn ∼ n1−p/(1 − p) for p < 1 and sn ∼ logN for p = 1. Sim-
ilarly,

∑∞
i=1 i

−p log i converges if and only if p > 1; this time the partial sums satisfy
sn ∼ n1−p log n/(1 − p) for p < 1 and sn ∼ 1

2(log n)2 for p = 1. Also note that when
sequences an and bn satisfy an ∼ bn then

∑∞
i=1 ai is convergent if and only if

∑∞
i=1 bi is,

and when they are divergent the partial sums satisfy
∑n

i=1 ai ∼
∑n

i=1 bi.
(1) If ν ≤ 0 then φi(ci) 6→ 0, so

∑
φi(ci) certainly diverges. If 0 < ν < 1

2 then
φi(ci) ∼ Qic

2
i ≥ Qk2i−2ν ; by the comparison test φi(ci) diverges.

(2) Since ci → 0, for sufficiently large i we have φi(ci) ≤ 2Qic
2
i ≤ 2Qc2i = 2Qk2i−2ν .

By the comparison test, and because 2ν > 1,
∑
φi(ci) = k2S < ∞. For k = D1/2S−1/2,

(A0’) is met. Under (A4a), M = E
∑N

i=1 ki
−ν = Θ(N1−ν), and under (A4b), M =∑N

i=1 χi(ci), which has the same asymptotic order as
∑N

i=1 i
−ν log i = Θ(N1−ν logN).

(3) As above, φi(ci) ≤ 2Qk2
∑
i−2; the sum is convergent so there exists sufficiently

small k to meet (A0’). But in this case, under (A4a) M = E
∑N

i=1 ki
−1 = Θ(logN), and

under (A4b) M =
∑N

i=1 χi(ci), which has the same asymptotic order as
∑N

i=1 i
−1 log i =

Θ
(
(logN)2

)
.

(4) M =
∑∞

i=1mi = E
∑∞

i=1 ci or
∑∞

i=1 χi(ci), according to whether (A4a) or (A4b)
is assumed; therefore M has the same asymptotic order as either

∑∞
i=1 i

−ν or
∑∞

i=1 i
−ν log i,

both of which are convergent for ν > 1. Therefore even an infinite number of covers conveys
only a finite payload. �

Harmonic embedding, which we saw earlier, corresponds to ν = 1 and is the worst of
the infinite zeta embedding strategies because it does not even achieve polynomial capacity
in N : indeed, it is one of the most basic results of the theory of infinite series that

∑
i−1

only just diverges. By taking ν arbitrarily close to 1/2, we may allow M to grow with rate
arbitrarily close to the limits in Theorem 6.

However, there is a penalty for embedding at a rate close to the bound. For simplicity,
make the strong assumptions (A2a) and (A4a) and further assume that all Qi are equal to
the constant Q. Then case (2), above, can be refined to:
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Theorem 8 Suppose (A0’), (A2a), Qi = Q, and (A4a). Let ci = i−νD1/2Q−1/2ζ(2ν)−1/2

for 1
2 < ν < 1, where ζ is the Riemann zeta function (Abramowitz & Stegun, 1964, Ch. 23).

Then (A0’) is tight and M ∼ ED1/2Q−1/2N1−ν(1− ν)−1ζ(2ν)−1/2.

Proof Same as for Theorem 7, but keep track of multiplicative constants. Note that
ζ(s) =

∑∞
i=1 i

−s, for Re(s) > 1, is the definition of the zeta function. �

By picking ν = 1
2 + ε we allow M to grow asymptotically as K

(
1
2 − ε

)−1
ζ(1 +

2ε)−1/2N1/2−ε for a constant K not depending on ε. We have a dilemma: the larger the
polynomial degree, the smaller the constant multiplier (because ζ(1+x) ∼ x−1, as x→ 0+,
the multiplicative constant approximates K(8ε)1/2). Thus the tension which we saw at the
beginning of this section, between transmitting more payload in any finite amount of time
and maintaining the largest asymptotic capacity, exists for these infinite strategies too.

Discussion

Three other papers deal with the batch steganography problem (Ker, 2006, 2007b,
2007a) and draw conclusions, of different strength, about steganographic capacity. They all
agree that, in the absence of adaptive source coding, the capacity of a batch of N objects is
of order

√
N ; Theorems 3 and 4 concur with this conclusion. Note that this paper’s results

are distinct from the other three: Ker (2006) applies to particular steganalysis methods,
Ker (2007b) assumes a linear relationship between payload and steganalysis output (but
goes further in providing an asymptotically optimal detection strategy), and Ker (2007a)
is only for a particular type of evidence pooling behaviour by the steganalyst. We have
gone much further, allowing source coding, nonuniform covers, and covering the analytical
details so that the growth of the detector’s evidence need only be locally square in a suitable
sense. It is notable that steganographic capacity, with or without adaptive source coding,
remains sublinear. Indeed, source coding only grants an extra logarithmic factor.

Although the batch problem is convincing from the steganalyst’s point of view – at the
time of steganalysis, they have a certain number of objects whose evidence they wish to pool
– it is perhaps less so for the steganographer. The latter is unlikely to know when the ste-
ganalyst will seize or monitor their communications, so must proceed under the assumption
that communications might be examined at any time. Then the sequential steganography
problem applies, and we have shown here that sequential steganographic capacity has some
similarities to, but is not the same as, batch capacity. In particular, capacity is asymptoti-
cally strictly lower in the sequential setting and there is no optimal strategy. However, the
zeta embedding class of strategies can provide rates of capacity growth arbitrarily close to
the bound, albeit with ever less favourable multiplicative constants.

We should consider carefully the assumptions on which these results rest. Some are
unquestionable, for example (A3a). Assumptions such as (A0) and (A1) are essential if we
want to measure steganographic security using KL divergence, and there seems to be little
alternative. Note that the use of KL divergence assumes that the steganalyst knows exactly
the distribution of the source objects, or at least the response of a steganalysis method to
them. More seriously, it is also implicit that the steganalyst knows the potential allocation
of payload amongst the cover objects. This is probably not truly realistic, but some initial
work (Ker, 2008a) shows that complexity of the problem is greatly increased when we grant



LOCALLY SQUARE DISTORTION AND BATCH STEGANOGRAPHIC CAPACITY 16

the steganalyst less information. And it is much more difficult to reason about detection
performance when the detector does not know the exact distributions they are observing,
for example if there are unknown parameters. Perhaps future research will shed light on
these difficult questions.

The exactly- or locally-square distortion assumptions (A2a) and (A2b) are the cor-
nerstone of this work; some experiments reported in Ker (2007d) seem to confirm that KL
divergence is locally square in the number of embedding changes for some real steganalysis
methods, but this is not a guarantee that the same applies universally. It would certainly
be of significance if a steganalysis method could be found which produces KL divergence
growing at a rate faster than the square of the number of embedding changes. The assump-
tion about source coding is also not strictly proven: although we know that the upper and
lower bounds to capacity (as a function of maximum permitted changes) are concave, there
is no guarantee that the function itself is concave. But, in practice, there are codes whose
performance approaches the upper bound (Fridrich & Filler, 2007) so any deviation from
concavity will be very small.

There are two further assumptions, implicit here, which could be questioned. We
measured embedding changes by the maximum number possible (over all payloads): this
may seem overly pessimistic, since in practice a cover location need not be altered if it
coincidentally already contained the correct symbol. However it is reasonable to adopt a
pessimistic attitude when measuring the steganographer’s risk. Furthermore, it would not
materially affect our conclusions if we switched focus to the average number of embedding
changes. We also assumed, throughout, that embedding changes and payload sizes can
take non-integral values: of course, this is simply untrue and it means that our sequential
strategies, in which the payload placed in each object is ever-diminishing, cannot be imple-
mented exactly. In the limit as N → ∞, a fixed total distortion in fact implies that the
total number of embedding changes must be finite! However it seems that, in practice, such
limits are not reached: some numerical computations in earlier work (Ker, 2008b) showed
that, for realistic Q-factors and cover sizes, forcing integral embedding changes makes a
barely detectable difference to steganographic capacity.

Another implicit assumption is that all embedding changes are equally detectable.
This is probably not the case in practice, but experience has shown that adaptive embedding
methods can defeat their own aims by making the embedding locations more predictable.

Some analysis of the abstract sequential steganography problem still remains, as we
did not optimize the zeta embedding strategies to account for nonuniformity in the covers.
Because sequential steganography deals with rates of capacity growth, it is not obvious how
an optimization problem can even be constructed. This is a subject for future work.

Acknowledgements

At the time of writing, the author was a Royal Society University Research Fellow.
Theorem 6 was proved with the kind assistance of Michael Collins and Roger Heath-Brown.

References

Abramowitz, M., & Stegun, I. (1964). Handbook of mathematical functions with formulas, graphs,
and mathematical tables (ninth Dover printing ed.). New York: Dover.



LOCALLY SQUARE DISTORTION AND BATCH STEGANOGRAPHIC CAPACITY 17

Bierbrauer, J. (1998). On Crandall’s problem. (Unpublished communication available from
http://www.ws.binghamton.edu/fridrich/covcodes.pdf)

Bierbrauer, J., & Fridrich, J. (2008). Constructing good covering codes for applications in steganog-
raphy. Berlin: Springer. (To appear in LNCS Transactions on Data Hiding and Multimedia
Security)
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