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ABSTRACT

WAM steganalysis is a feature-based classifier for detecting LSB matching steganography, presented in 2006 by
Goljan et al. and demonstrated to be sensitive even to small payloads. This paper makes three contributions
to the development of the WAM method. First, we benchmark some variants of WAM in a number of sets of
cover images, and we are able to quantify the significance of differences in results between different machine
learning algorithms based on WAM features. It turns out that, like many of its competitors, WAM is not
effective in certain types of cover, and furthermore it is hard to predict which types of cover are suitable for
WAM steganalysis. Second, we demonstrate that only a few the features used in WAM steganalysis do almost
all of the work, so that a simplified WAM steganalyser can be constructed in exchange for a little less detection
power. Finally, we demonstrate how the WAM method can be extended to provide forensic tools to identify the
location (and potentially content) of LSB matching payload, given a number of stego images with payload placed
in the same locations. Although easily evaded, this is a plausible situation if the same stego key is mistakenly
re-used for embedding in multiple images.
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1. INTRODUCTION

Unlike Least Significant Bit (LSB) replacement, for which highly sensitive detectors exist, LSB matching, also
known as ±1 embedding, has proved a difficult steganalysis challenge. Harmsen et al. presented a detector
based on the Histogram Characteristic Function (HCF)1 for which a number of performance enhancements
have been presented,2–4 and a detector based on occurrence of histogram extrema was recently proposed,5 but
none of these detectors’ sensitivity comes near that of the so-called structural6,7 and WS8 detectors for LSB
replacement. Another style of detector, for LSB matching as well as some other embedding methods, was
suggested by Farid:9,10 these steganalysers train a learning machine on a feature set. The feature set is chosen
to measure the predictability of an image; embedded additive noise is not predictable, whereas the cover should
be mostly predictable. This can be seen as the converse of a denoising operation, attempting to remove the cover
content to unmask the stego signal. Steganalysis of LSB matching using Wavelet Absolute Moments (WAM)11

is a detector in this style, with a feature set involving noise residuals in the wavelet domain. Compared with
other LSB matching detectors, it is reported in Ref. 11 that WAM exhibits highly superior performance. Since
then, however, there has been little published work on WAM steganalysis.

This paper studies and extends the WAM method. We begin by considering the classifier, replacing the
original Fisher Linear Discriminator (FLD) by a Support Vector Machine (SVM) and Neural Network (NN).
With some statistical techniques, not widely used in the steganalysis literature, we are able to check whether the
accuracy improvements are statistically significant or not. We also demonstrate that the performance of WAM
steganalysis depends heavily on the type of cover, a difficulty which seems to affect all LSB matching detectors
(Sect. 2). Then we consider the features on which the WAM method is based, and demonstrate that they are
highly correlated: most of the detection power can be preserved if only a small number of features are used,
but again there is large variability according to the cover source (Sect. 3). Finally, we consider the WAM noise
residuals themselves as a tool for forensic analysis. It is possible to identify the location (and potentially content)
of LSB matching payload, given a number of stego images with the payload in the same locations (Sect. 4). There
follows a brief conclusion (Sect. 5).
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1.1 LSB MATCHING AND WAM STEGANALYSIS

LSB replacement is perhaps the simplest digital steganography scheme, which embeds a bitstream payload into
a cover by replacing the least significant bits of cover samples with successive payload bits. Such embedding is
surprisingly insecure because of structure in the parity of the embedding process,6 so LSB matching modifies
the method to remove all such structure: the payload is still carried in the LSBs of the stego object, but when a
cover sample is altered it is incremented or decremented randomly (unless already at the extreme of its range).
For byte-valued samples such as grayscale digital images, or colour channels in colour images, the embedding
operation can be described by the function

xi 7→



















xi − 1, if mi 6= LSB(xi) and xi = 255

xi, if mi = LSB(xi)

xi + 1, if mi 6= LSB(xi) and xi = 0

xi ± 1, otherwise, equiprobably

where xi represents the i-th cover byte, and mi the i-th payload bit. For security, the cover is traversed in a
pseudorandom order generated by a secret key presumed shared between sender and recipient.

The WAM steganalyser in Ref. 11 aims to detect the presence of LSB matching payload in a digital image;
we now give a brief recapitulation. The method involves computing the residuals from a quasi-Wiener filter: for
a two-dimensional signal S,

R[S] =
σ2
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(for vN
i , j is summed over the N × N neighbourhood of pixel i).

The residuals are computed in the wavelet domain: given an input grayscale image X whose pixel locations
are a set I, calculate a one-level wavelet decomposition using the 8-tap Daubechies filter. Discard the low-
frequency subband, and denote the horizontal, vertical, and diagonal subbands H, V and D. Write R[H]i for
the i-th coefficient of the filtered horizontal residual, respectively R[V ]i and R[D]i. The WAM features are the
absolute central moments of the coefficients in these filtered subbands:
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The first nine moments in each subband, {AH
1 , . . . , AH

9 , AV
1 , . . . , AV

9 , AD
1 , . . . , AD

9 } form the 27-dimensional feature
vectors used in Ref. 11. WAM features can also be computed for colour images, treating each colour component
separately, but we will restrict ourselves to grayscale images in this work.

(We also experimented with some additional WAM-style features, including higher and signed moments, but
they did not give a significant improvement. For more detail see the second author’s MSc thesis.12)

In Ref. 11 a Fisher Linear Discriminator (FLD) is trained on the features of some cover and stego images,
to make a detector for the presence of LSB matching steganography. Extremely sensitive detection is reported,
with accuracy of around 90% when the LSB matching payload is 25% of the maximum (0.25 bits per pixel), and
near-perfect detection with payloads at 50%. These are compared very favourably with the detectors in Refs. 2
and 13. We will benchmark WAM further in the next section.



2. INFLUENCE OF COVER TYPE

Detectors for LSB matching seem to have uneven performance. For example, the improved HCF COM detectors
in Ref. 2 work well on the test images used in that paper, but the first author is now aware that the same per-
formance is not found in many other situations. Similarly, a recent study14 of three LSB matching steganalysers
in three image sets found wide variations in both absolute and relative performance. This raises two questions
regarding WAM steganalysis: how much does its performance vary (in particular, are the results in Ref. 11
typical), and can we identify the properties of covers which predict the reliability of LSB matching detectors? So
our first set of experiments is to benchmark variants of WAM steganalysis in multiple test cover sets, nine in all;
the focus is solely on WAM detectors, and we will postpone comparisons with other LSB matching steganalysers
to future work. We will see that the accuracy of WAM steganalysis does vary, greatly, depending on the type of
cover, and we briefly investigate whether the performance can be predicted by macroscopic cover properties.

We will test three variants of WAM steganalysis, using the same features with three different classification
engines: the original FLD, a Multilayer Perceptron or Neural Network (NN), and a Support Vector Machine
(SVM) employing the kernel trick. Each involves training the machine against a set of known cover and stego
images, and then testing the trained machine against fresh data.

The FLD is a simple classification method which finds an optimal linear projection of the features: given
training data vectors x1, . . . ,xn of cover features and x′

1
, . . . ,x′

n
of stego features∗, it finds the linear projection

y 7→ w · y to maximise the separation between the classes,
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n

∑

i xi is the class mean, and Sw,x =
∑

i(w · xi − w · x̄)2 a measure of projected class scatter,
similarly x̄′ and Sw,x′ . Thus the difference between the projected class means, suitably scaled according to
the total scatter, is as large as possible (and this is optimal for certain multivariate Gaussian classification
problems). Advantages of the FLD method include reasonably fast training (the optimisation problem can be
solved by matrix multiplications), very fast use (a single dot product produces the projected value, on which
a simple threshold is set), and no training parameters to select. We used our own implementation of FLD for
these experiments.

The Multilayer Perceptron, commonly called Neural Network (NN), can find nonlinear classification bound-
aries. It consists of a number of layers of nodes with nonlinear activation functions, connected by a weighted
graph. The weights in the graph can be trained by backpropagation,15 an iterative algorithm too complex to
explain here, which adjusts the weights to reduce the classification errors. Backpropagation has a number of
training parameters, which affect the speed of adjustment: a learning rate η and momentum α; we used the
WEKA16 implementation of the Multilayer Perceptron for our experiments, which constructs the perceptron
network automatically. The iterative training process can be very time-consuming, but the application of a
trained NN to classify a new object is quite fast.

A Support Vector Machine (SVM), in its simple linear form (LVSM), can only find linear class boundaries:
it works in a similar way to linear discriminators, but the two classes are defined by two parallel hyperplanes,
{x | w · x > 1} and {x | w · x < −1}. The hyperplanes are chosen to minimize w · w + Cs, where s is the sum
of the shortest distance of incorrectly-classified points to their correct class region (as a quadratic programming
(QP) problem, this can be done with high efficiency). Minimizing the first term is equivalent to maximizing
the distance between the classification regions and C is a parameter which adjusts the weight between the
two goals of maximum margin and minimum classification errors. An advantage of SVMs is that they can be
adapted, very simply, to find nonlinear classification boundaries using the kernel trick,17 whereby the standard
dot product is replaced by a nonlinear function. After some experimentation, we opted to use the polynomial
kernel k(x,x′) = (x · x′ + 1)e, where e is a constant. For more on SVMs, see Ref. 18. We used the WEKA16

implementation of soft-margin SVMs for our experiments. Even with efficient QP algorithms it can take hours
to perform the optimisation, but it then becomes fast to classify new objects, requiring only the evaluation of a

∗More generally, the two training sets need not be the same size, though in our experiments they will always be so.



few kernel functions (how many such evaluations depends on the number of so-called support vectors, which in
turn is affected by the parameter C).

We will test WAM features, classified by FLD, NN, and SVM, in each of nine image sets, chosen to represent
a variety of types. These sets are not entirely independent because some of them come from the same sources
but have been subject to different preprocessing. Where necessary the images have been cropped to 400 × 300
from larger sizes (the crop regions chosen randomly); this removes cover size as a factor in the results. Each set
(except one) contains 2000 grayscale images. When the parent set was smaller than 2000, more than one region
was cropped out of each image to make the total up to 2000. The sets are labelled A to I:

Set A: RAW images taken with a Minolta DiMAGE A1 camera, originally 5Mpixels in size; converted to
grayscale, but not denoised, using the Minolta software, and subsequently denoised using Photoshop.
This avoids any colour filter array interpolation.

Set B: Identical images to set A, but converted from RAW to colour images, and also denoised, using the
Minolta software with default options. Subsequently converted to grayscale.

Set C: Images from a mixture of digital cameras supplied by the researchers at Binghamton University, a subset
of those used in Ref. 11. The images were 1.5Mpixels in size, from 16 different camera models. They
have never been compressed, and were converted from colour to grayscale.

Set D: Images from a photo library CD, all stored as colour JPEGs with quality factor 50 and sized 540Kpixels.
Decompressed and converted to grayscale.

Set E: Scanned images downloaded from the NRCS website,19 originally around 3Mpixels but downsampled to
around 300Kpixels to reduce scanner noise, then converted to grayscale.

Set F: High-quality JPEG images taken with a Fuji Finepix 6900 camera, originally around 6Mpixels; down-
sampled to 400 × 300 and converted to grayscale. There are only 1225 images in this set.

Set G: The same images as set F, but cropped down to 400 × 300 instead of being downsampled.

Set H: A mixed set of JPEG files downloaded from a variety of photo sharing websites. The images were a
mixture of sizes, uploaded by many different users, and the preprocessing is completely unknown.

Set I: Images downloaded from the McGill Calibrated Colour Image Database.20 They have been downsam-
pled, and there is some preprocessing related to colour calibration.

The FLD has no training parameters, but the SVM has two (the polynomial kernel exponent e and the
misclassification weight C) and the NN has two (learning rate η and momentum α). A grid search was employed
to find parameters that yielded best accuracy for both algorithms: to make a fair comparison, the same amount of
computational effort was used in tuning SVM and NN. In the grid search, we tried five values for each parameter:
C ∈ {0.01, 0.1, 1, 10, 100}, e ∈ {1, 2, 3, 4, 5}, η ∈ {0.03, 0.1, 0.3, 0.6, 1}, α ∈ {0.02, 0.2, 0.4, 0.8, 1}. Each algorithm
was benchmarked by its ten-fold cross-validation minimum error probability : we generated ROC curves for each
of the ten cross-validation folds for each machine and found the point on the curve to maximize the accuracy

value 1 − PE = 1 − 1
2

min(PFP + PFN ), where PFP and PFN are the observed false positive and negative error
proportions. Fixing on a payload of 0.5 bits per pixel, 50% of maximum, the results for each classifier and each
image set are displayed in Tab. 1. We also chart the distribution of some macroscopic properties of these image
sets: a measure of noisiness (local variance), unpredictability of pixels in the spatial domain (residuals under the
WS steganalysis method8), the noisiness in the high-frequency wavelet subbands (mean absolute coefficient in
R[D]), one of the key WAM features AD

2 , and the proportion of saturated (0 or 255) pixels. These properties
are displayed as density estimates and no scales are included, but the scales are constant in each column of the
table: this is sufficient to allow comparison.

These results demonstrate that WAM steganalysis is hugely variable in its detection power. This variation is
equally observable for each of the three WAM classifiers in question: depending on the source of cover image, the
performance changes from being almost perfect (set A) to barely better than random guessing (set I). Moreover,
inaccuracy is not simply (as one might expect) due to noisy or unpredictable images, because the images in
set C are not as noisy as those in set D yet show lower accuracy, and images in set H are less predictable



Table 1. Performance of WAM steganalysers (measured via ten-fold cross-validation) in nine sets of images. Training and testing was performed with 50%
payload (0.5bpp). All images are the same size. Violin plots (density estimates) of five macroscopic image properties are displayed for each set.

Set Source Local Variance
Mean Absolute

A
D

2

Mean Absolute Saturated WAM Accuracy
WS Residual D-Residual Pixels FLD NN SVM

A
digital camera

100% 100% 100%RAW never-compressed,
pre-processed as grayscale

B
digital camera

69.7% 73.4% 75.8%RAW never-compressed,
pre-processed as colour

C
digital cameras

80.6% 89.2% 90.4%RAW never-compressed,
unknown pre-processing

D
photo library

95.5% 97.7% 97.5%decompressed JPEGs,
quality factor 50

E
scanner

60.9% 64.3% 64.7%TIFF never-compressed,
downsampled

F
digital camera

74.2% 77.2% 77.1%high quality JPEGs,
downsampled

G
digital camera

69.6% 71.7% 71.4%high quality JPEGs,
cropped

H
internet

97.3% 98.0% 98.1%mixed JPEGs,
downsampled & cropped

I
image database

53.2% 56.1% 55.1%unknown pre-processing,
includes colour calibration



than those in set C yet show better accuracy. Rather it seems to be because some sets of covers have very
consistent predictability or noise. The proportion of saturated pixels does not appear to predict accuracy, either.
Unfortunately, this means that it is difficult to know whether WAM steganalysis is appropriate for a given image.
We have been unable to find any macroscopic properties of images which predict whether WAM steganalysis will
be near-perfect (as for sets A and H) or near-worthless (as for sets E and I), and this limits its applicability. It
is particularly surprising that set H gave such good results, given the eclectic nature of its source, but perhaps
this is related to JPEG compression.

When WAM was introduced in Ref. 11, it was noted that additional information about the cover source can
increase detection accuracy, but none of the image sets tested in Ref. 11 exposes the weakness in performance.
What is most curious is the discrepancy between our image sets A and B. They contain the same photographs,
i.e. derived from the same set of RAW digital camera images. But while image set A was produced by converting
the RAW images to grayscale TIFF files then applying a mild denoising filter, image set B was produced by
converting the RAW images to colour TIFFs (which involves a different denoising filter, and demosaicing of the
camera’s colour filter array) and then converting to grayscale. Clearly the precise parameters of the denoising
and/or grayscale conversion processes can make a huge difference to the reliability of WAM steganalysis. Further
research is needed to explain this.

We also performed some similar experiments for other payloads, with consistent results.

The figures in Tab. 1 suggest that WAM’s detection accuracy varies when it is tested on the same image
set using a different classifier. To establish whether these discrepancies are meaningful (and ultimately, which
classifier is better for this problem), we find the statistical significance of differences using Student’s t-test. The
data for the test come from the performance of the classifiers in the ten individual folds of the ten-fold benchmark,
but note that these figures cannot be independent because they involve substantially overlapping training data.
Therefore we employ the corrected resampled Student’s t-test ,16 a variation that was designed to take account of
the dependency between the samples and is ideal for cross-validation data. In the case of k-fold cross-validation,
the adjusted t-statistic is given by

t =
x̄ − ȳ

√

(

1
k

+ 1
k−1

)(σ2
x

k
+ σ2

y

)

, (1)

where x̄ and ȳ are the mean reliability scores across the k folds for algorithms A and B, and σ2
x and σ2

y the
sample variances within the k folds. (When the reliability scores are close to 100% it may be wiser to convert
them to log odds, but there seems no need to do so for our data.) When the null hypothesis—that algorithms
A and B give rise to the same reliability—holds then the t-statistic follows a t-distribution with k − 1 degrees of
freedom, and thereby significance tests can be constructed.

Table 2. Results of adjusted t-tests for comparison of detector performance, in each image set. Data from ten-fold cross
validation. For two-sided tests, |t| > 2.26 indicates significance at the 5% level, |t| > 3.25 at the 1% level, and |t| > 4.78
at the 0.1% level.

Image Set
WAM accuracy adjusted t scores for

FLD NN SVM NN > FLD SVM > NN

A 100% 100% 100% – –

B 69.7% 73.4% 75.8% 3.57 3.94

C 80.6% 89.2% 90.4% 22.7 1.56

D 95.5% 97.7% 97.5% 13.3 -0.58

E 60.9% 64.3% 64.7% 9.70 0.62

F 74.2% 77.2% 77.1% 5.85 -0.12

G 69.6% 71.7% 71.4% 6.33 -0.49

H 97.3% 98.0% 98.1% 3.79 0.14

I 53.2% 56.1% 55.1% 3.65 -0.77



The t scores arising from our experiments, comparing the performance of FLD and NN, and then NN and
SVM, are displayed in Tab. 2. Because there is no a priori reason to suppose that one machine learning method
is better than another, the critical values correspond to two-sided hypothesis tests. It is clear that the FLD
(as originally used in Ref. 11) is significantly inferior to the other two machines, but the difference between
NN and SVM is only significant in the case of set B (when it favours the SVM classifier). More generally, this
table indicates that authors should be most cautious about interpreting performance improvements of, say, 1%
in classification accuracy: depending on the context, it is entirely possible for such a difference to be due to
statistical noise instead of a genuine improvement. If cross-validation has already been performed, the corrected
resampled t-test is a cheap way to check the significance of any difference.

3. WAM FEATURE REDUCTION

The WAM features are far from independent: a high value of AH
1 ensures a high value of AH

i , for all i, for
example. One way to quantify the dependency is to perform Principal Component Analysis (PCA) on the
feature data. We observed that between 1 and 3 eigenvectors (depending on the set) were sufficient to account
for 90% of the total eigenvalues, and between 3 and 5 eigenvectors for 99%; this is true for cover and stego
images. We interpret these numbers as indicating that the true dimensionality of the features is effectively only
in low single figures. Hence we suspect that the WAM feature set can be reduced, without removing too much
information. PCA can, of course, provide a feature reduction, but (apart from the fact that it only finds linear
dependencies) it transforms the entire feature set into another with lower dimensionality and this does not reduce
the computational complexity of extracting the features in the first place, so we take another approach.

Greedy forward and backward search are feature selection methods that consider the fitness of a subset of
features using the underlying classifier. Forward search begins with zero features, then iteratively scans through
the feature set adding each new feature that gives the best accuracy. Backward search starts with the full set
and iteratively eliminates the weakest feature. Both strategies are greedy and consider only local changes in
performance through the addition or elimination of competing features to or from the current best feature set:
this is a weakness, because it is possible that two features in combination provide good class separation, but
neither separately does so. Both methods require O(N2) train-and-test iterations, where N is the number of
features. The optimal feature selection method, of course, is to try every possible subset, but this requires O(2N )
iterations and is infeasible even for our modest feature set with N = 27.

A further complication with feature selection is the tuning of training parameters: potentially, different
parameters might be needed for each different combination of features. The means that some sort of parameter
optimization must be carried out for each step of the feature reduction process, and this may require too much
computation to be feasible. Some experiments with WAM feature reduction in SVMs and NNs can be found in
Ref. 12, but we will avoid the tuning problem by using the FLD classifier for feature selection: it requires no
learning parameters. It is also conveniently fast both to train and to test.

Keeping to a payload of 0.5 bpp, ten-fold cross-validation, and the minimum error probability metric, we ran
forward and backward selection algorithms on the WAM features in each of the nine image sets. We report the
results of the forward selection, for sets A to D, in Fig. 1 (backward selection results were rather similar, and the
other image sets all showed similar shape to one of those displayed). In all cases, except set B, the performance
reaches nearly that of the full 27 features within about four or five features: unfortunately, it is a different set of
features which are selected for each cover set, so this does not suggest a universally-useful reduced feature set.

It is just about feasible, using the FLD, to test all
(

27

4

)

combinations of four features: we tested them against
all image sets and ranked the selections by aggregate performance. The result of this experiment was that the
attractively-symmetrical set {AH

1 , AV
1 , AD

1 , AD
6 } gave the best overall performance, so we tried more experiments

with the individual cover sets, benchmarking FLD and tuned SVM (NN was omitted) steganalysers based on
these four features. The results are displayed in Tab. 3. They are somewhat disappointing: although a simplified
WAM steganalyser can be constructed (and it is computationally less complex, because there is no need to
compute so many moments) it does lose a significant amount of detection power. Once again the variability of
WAM, with different cover sources, weakens the value of this detector.
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Figure 1. Classification accuracy (ten-fold cross-validation) in four sets of cover and stego objects (set A, top left, set B,
top right, set C, bottom left, set D, bottom right), as the first 9 features are added by greedy forward selection. The
features added at each stage are marked on the charts.

Table 3. Accuracy of classifiers (measured via ten-fold cross validation) for FLD and SVM engines, comparing the full
27-dimensional feature set with a 4-dimensional subset.

Image Set
27 features 4 features

FLD SVM FLD SVM

A 100% 100% 100% 100%

B 69.7% 75.8% 62.7% 67.6%

C 80.6% 90.4% 76.2% 83.2%

D 95.5% 97.5% 92.1% 94.3%

E 60.9% 64.7% 55.5% 57.1%

F 74.2% 77.1% 67.5% 68.9%

G 69.6% 71.4% 65.4% 65.5%

H 97.3% 98.1% 91.0% 93.5%

I 53.2% 55.1% 53.6% 54.1%



4. LOCATING PAYLOAD

In recent work21 we used the residuals of a pixel predictor to perform forensic analysis on stego images. The
scenario is as follows: we assume that the steganalyst has a number of stego images; the payloads in each image
are different, but placed in the same locations every time. Of course this assumption is quite strong, and requires
the steganographer to have made a mistake in their embedding process, but it is not implausible. If either the
embedding software neglects to randomise the payload locations, or the embedder re-uses the same embedding
key for multiple cover images, then this situation arises.

The technique in Ref. 21 was to average the residuals across all stego images, for each pixel individually. It uses
so-called WS residuals, which derive from WS steganalysis8,22 and are specific to LSB replacement embedding:
because of the parity structure in LSB replacement, LSB flipped pixels tend to have a higher WS residual than
those not flipped. LSB matching has no such structure, but we can adapt the WAM residuals for the same
purpose.

If the WAM filter succeeds in removing the cover content, we would expect to see larger absolute values for
residuals corresponding to payload locations, than for residuals corresponding to unaltered cover locations: this
is because the stego noise is unmasked. However the residuals whose moments are computed as WAM features,
R[H], R[V ], and R[D], do not correspond to individual pixel locations because they are in the wavelet domain.
Indeed, some simple experiments do show an association between residual magnitude and payload location, but
convolved by the wavelet filter. In order to locate payload, we must convert the WAM residuals back into the
spatial domain: this suggests inverting the wavelet filter, while suppressing as much of the predictable cover
content as possible.

So for each input grayscale image X we propose the following procedure: calculate the one-level wavelet
decomposition to produce low-frequency, horizontal, vertical, and diagonal subbands L, H, V , and D; zero
out the low-frequency component, and apply the WAM filter to the other subbands; obtain the spatial domain
residuals X′ as the inverse wavelet transform of 0,R[H ],R[V ],R[D].

Now we estimate the size of the residuals in cover images, compared with stego noise. Figure 2 shows a
histogram of residuals across all cover images in sets A and B (these were chosen as examples of images where
WAM steganalysis is particularly easy, and difficult, respectively). We can estimate how much of the stego noise
survives the filter by embedding payload in flat gray images: because the noise interacts the precise response
depends on the payload size, but we see a good estimate on the right of Fig. 2 which is the result of embedding
random payloads of 50%. Observe that the stego noise is not sufficiently high, compared with residual cover
noise, for us to identify exactly which pixels contain payload in a single image. But in the scenario when multiple
stego images locate payload in the same place, following Ref. 21, we can compute the average absolute residual
|X′|, across the set of stego images, for each pixel location. Given enough images, we expect the cover noise to
wash out, and to see detectably higher values for pixels subject to LSB matching embedding, than for those not
used for embedding.

−1 0 1 −1 0 1 −1 0 1

Figure 2. Histograms of WAM residuals for cover images in sets A, left, and B, center, as well as an estimate of the
distribution of filtered stego noise, right.



Figure 3. Left, histogram of spatial domain absolute residuals averaged across 100 images containing random payloads
at a fixed set of 10% of locations. Right, a 25 × 25 region of the average absolute residuals (light pixels indicate larger
absolute residuals) with the payload-carrying locations marked by a white dot.

(It is strange that the cover residual noise in set B is lower than in set A—and this is confirmed by the
data in Tab. 1—yet set B gives so much worse steganalysis performance. Indeed, from Fig. 2 one might expect
almost-perfect detection and location of payload, but this does not happen. It is possibly a consequence of heavy
tails in the residual noise in set B, so that averaging across many images does not reduce noise as one would
expect: more research is needed to investigate the anomalous results from set B.)

To validate the concept, we started with experiments using the most well-behaved cover set A. We took 100
cover images and selected 10% of locations to receive payload, with a different random payload embedded in each
image. The spatial domain residual images were computed and their absolute values averaged. A histogram of
the resulting values is displayed in Fig. 3: it is visible that there are 10% of locations with higher residuals, and
the second part of Fig. 3 confirms that these locations are those where the payload was placed.

Using the mean absolute WAM residuals as a forensic tool is a bit more complicated than for the WS residuals
in Ref. 21; in the latter case there was a canonical threshold, above which a pixel can be considered as payload-
carrying, and below which as unused. For WAM residuals, the threshold is image-dependent. For the purposes of
testing we will assume that the steganalyst already knows the size of the payload p, and therefore estimates that
it is carried in the p pixels with the highest mean absolute residual. In that case, the number of false positive and
false negative pixel classifications will be equal. We must admit that when the payload size is unknown it must
first be estimated by a quantitative steganalyser,23 and this will cause errors of both types to be more frequent.

An investigation of how the accuracy of payload location depends on the number of stego images and the
cover image set (for sets A to D only) is displayed in Tab. 4. 50% of pixels were used for embedding, i.e. a payload
size of 60000 bits, and the accuracy with which these locations are identified is displayed in the second column,
as the number of stego objects N increases. As expected because of its consistent WAM residuals, cover set A
shows the best performance: 90% accuracy of payload location is achieved with fewer than 20 stego images, 99%
accuracy within a hundred images, and with a few hundred the detector is near-perfect. On the other extreme,
set B gives very poor performance even with thousands of stego images. Sets C and D are intermediate, with a
few hundred stego images required for about 99% accuracy.

It is notable that, even with an excess of images, there are still some stubborn errors in the diagnosis. Further
examination showed these to be exclusively near the edges of the images, with residuals within 8 pixels of the
edge exhibiting more noise than the rest: this should not be surprising, when one considers that pixels near the
edge are more difficult to predict than those near the middle because they have fewer near neighbours, and the
size of the wavelet filter. We display the same benchmarks, but excluding all pixels within 8 of the image edges,
in the third column of Tab. 4; with the exception of the very difficult set B, the error rate drops faster and all
the way to zero with enough evidence. However, it may be unsatisfactory to exclude edge areas and we searched
for ways to expand the successful detection zone nearer to the edges. After some trial-and-error, we found that
most of the accuracy can be maintained by reflecting at least 8 pixels of the image into its borders (the edge row
must not be duplicated) and then discarding the extra regions. This makes up for some of the unpredictability



Table 4. Incorrectly classified pixels, using the average absolute spatial domain residual to locate payload, as a function
of the number of stego images N .

N full image
excluding with reflected borders

8-pixel edge regions excluding 1-pixel edges

Set A (60000 payload locations) (54588 payload locations) (59322 payload locations)

1 23202 (38.67%) 20997 (38.55%) 23064 (38.91%)

10 9656 (16.09%) 8548 (15.69%) 9289 (15.67%)

20 5295 (8.82%) 4531 (8.32%) 5053 (8.52%)

50 1345 (2.24%) 938 (1.72%) 1035 (1.75%)

100 362 (0.60%) 102 (0.19%) 142 (0.24%)

200 146 (0.24%) 3 (0.01%) 6 (0.01%)

500 52 (0.09%) 0 (0.00%) 0 (0.00%)

1000 48 (0.08%) 0 (0.00%) 0 (0.00%)

2000 43 (0.07%) 0 (0.00%) 0 (0.00%)

Set B (60000 payload locations) (54500 payload locations) (59298 payload locations)

1 29795 (49.66%) 27041 (49.57%) 29337 (49.47%)

10 28014 (46.69%) 25407 (46.57%) 27520 (46.40%)

20 26775 (44.63%) 24241 (44.43%) 26408 (44.53%)

50 25243 (42.07%) 22787 (41.77%) 24898 (41.98%)

100 21244 (35.41%) 18947 (34.73%) 20890 (35.22%)

200 18595 (30.99%) 16302 (29.88%) 18170 (30.64%)

500 13701 (22.84%) 11442 (20.97%) 13037 (21.98%)

1000 11235 (18.73%) 9018 (16.53%) 10361 (17.47%)

2000 8628 (14.38%) 6350 (11.64%) 7817 (13.18%)

Set C (60000 payload locations) (54491 payload locations) (59263 payload locations)

1 25686 (42.81%) 23288 (42.68%) 25563 (43.08%)

10 15436 (25.73%) 13897 (25.47%) 15024 (25.32%)

20 10306 (17.18%) 9165 (16.80%) 9919 (16.72%)

50 4835 (8.06%) 4043 (7.41%) 4493 (7.57%)

100 1799 (3.00%) 1253 (2.30%) 1408 (2.37%)

200 637 (1.06%) 207 (0.38%) 238 (0.40%)

500 511 (0.85%) 13 (0.02%) 24 (0.04%)

1000 749 (1.25%) 2 (0.00%) 12 (0.02%)

2000 695 (1.16%) 0 (0.00%) 1 (0.00%)

Set D (60000 payload locations) (54559 payload locations) (59302 payload locations)

1 27802 (46.34%) 25257 (46.35%) 27431 (46.26%)

10 21264 (35.44%) 19301 (35.42%) 20893 (35.23%)

20 16636 (27.73%) 14874 (27.29%) 16093 (27.14%)

50 11432 (19.05%) 9857 (18.09%) 10800 (18.21%)

100 5343 (8.90%) 4095 (7.51%) 4491 (7.57%)

200 2198 (3.66%) 1176 (2.16%) 1308 (2.21%)

500 595 (0.99%) 22 (0.04%) 18 (0.03%)

1000 579 (0.96%) 2 (0.00%) 4 (0.01%)

2000 618 (1.03%) 1 (0.00%) 1 (0.00%)



of the image near the edge, but it still leaves the outermost rows and columns poorly predicted and this single
line of pixels must still be excluded from the analysis. (Steganalysis at the very edge of an image appears to be
difficult.) These results appear in the final column of Tab. 4.

5. CONCLUSIONS

WAM steganalysis is a powerful detector which can also be adapted to forensic ends. But our investigations have
revealed discrepancies in its performance on images from different sources: in some types of image its accuracy
is very low. The phenomenon seems to depend heavily on the image processing operations which had been
applied to the cover image, but we have not yet identified macroscopic properties which can predict whether
WAM is appropriate for a given image. This is an important avenue for future research, since LSB matching is
a high-capacity and simple embedding method, and no detectors have yet proven universally reliable. We stress
that this variability is not a flaw particular to WAM: other LSB matching detectors (particularly those based
on the HCF) have similarly uneven performance. The results in Sect. 2 sound a cautionary note to authors, as
it would be possible to misunderstand the performance of a detector if only tested on one set of covers. To have
credibility, any further work on detection of LSB matching must test on multiple sets of images.

Because a small number of WAM features contain almost all of the information about the presence of hidden
payload, the feature set can be reduced. But, again, the best reduced feature set is heavily cover-dependent.
Although we found a set of four features preserving most of the detection power (and which can be computed
more quickly than the full set of 27), there is a performance penalty associated with this feature reduction.

We have also demonstrated that, by extending the WAM method to transform residuals back to the spatial
domain, it is possible to determine the location of hidden payload when enough stego images have payload
embedded in the same pixels: depending on the character of the covers, this might require tens or hundreds of
images. This is a valuable forensic tool, the next step towards decoding the hidden message or at least to gaining
information about the embedding algorithm. Of course the detector is defeated if different embedding locations
are used every time, and the moral is that steganographers, like cryptographers and watermarkers, must not
re-use their embedding keys, a conclusion particularly applicable to batch steganography.24 Some of the results
in this forensic work, in particular Fig. 2, suggest that that the WAM filter is not optimal for separating stego
noise from cover content, and it might be valuable to revisit this question. This work has also demonstrated that
it can be more difficult to steganalyse pixels near the edge of an image, because those pixels are more difficult
to predict. Perhaps there is another lesson for steganographers here, and an interesting tradeoff to explore: if
the steganalyst knows that payload is more likely to be located in the edges, does this outweigh their difficulty
in predicting edge regions?

ACKNOWLEDGMENTS

The first author is a Royal Society University Research Fellow.

REFERENCES

[1] Harmsen, J. and Pearlman, W., “Higher-order statistical steganalysis of palette images,” in [Security and

Watermarking of Multimedia Contents V ], Proc. SPIE 5020, 131–142 (2003).

[2] Ker, A., “Steganalysis of LSB matching in grayscale images,” IEEE Signal Processing Letters 12(6), 441–444
(2005).

[3] Xuan, G., Shi, Y., Gao, J., Zou, D., Yang, C., Zhang, Z., Chai, P., Chen, C., and Chen, W., “Steganalysis
based on multiple features formed by statistical moments of wavelet characteristic functions,” in [Proc. 7th

Information Hiding Workshop ], Springer LNCS 3727, 262–277 (2005).

[4] Li, X., Zeng, T., and Yang, B., “A further study on steganalysis of LSB matching by calibration,” in [Proc.

IEEE International Conference on Image Processing ], 2072–2075 (2008).
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[8] Ker, A. and Böhme, R., “Revisiting WS steganalysis,” in [Security, Forensics, Steganography and Water-

marking of Multimedia Contents X ], Proc. SPIE 6819, 0401–0417 (2008).

[9] Farid, H. and Lyu, S., “Detecting hidden messages using higher-order statistics and support vector ma-
chines,” in [Proc. 5th Information Hiding Workshop ], Springer LNCS 2578, 340–354 (2002).

[10] Lyu, S. and Farid, H., “Steganalysis using color wavelet statistics and one-class support vector machines,” in
[Security, Steganography, and Watermarking of Multimedia Contents VI ], Proc. SPIE 5306, 35–45 (2004).

[11] Goljan, M., Fridrich, J., and Holotyak, T., “New blind steganalysis and its implications,” in [Security,

Steganography and Watermarking of Multimedia Contents VIII ], Proc. SPIE 6072, 0101–0113 (2006).

[12] Lubenko, I., “Spatial domain steganalysis using statistical learning techniques,” (2008). MSc thesis, Oxford
University.

[13] Holotyak, T., Fridrich, J., and Voloshynovskiy, S., “Blind statistical steganalysis of additive steganogra-
phy using wavelet higher order statistics,” in [9th IFIP TC-6 TC-11 Conference on Communications and

Multimedia Security ], Springer LNCS 3677, 273–274 (2005).
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