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 steganalysis as they 
an estimate the payload,or, more pre
isely, the number of embedding 
hanges in the stego image. This paper proposes ageneral method for 
onstru
ting quantitative steganalyzers from features used in blind dete
tors.The method is based on support ve
tor regression, whi
h is used to learn the mapping between afeature ve
tor extra
ted from the image and the relative embedding 
hange rate. The performan
eis evaluated by 
onstru
ting quantitative steganalyzers for eight steganographi
 methods for JPEG�les, using a 275-dimensional feature set. Error distributions of within- and between-image errorsare empiri
ally estimated for Jsteg and nsF5. For Jsteg, the a

ura
y is 
ompared to state-of-the-artquantitative steganalyzers. 1. INTRODUCTIONThe obje
tive of steganalysis is to dete
t steganographi
 
hannels. Te
hni
ally, steganography is
onsidered broken when the mere presen
e of the se
ret message 
an be established. In pra
ti
e,however, the investigation is not likely to stop when the use of steganography is dis
overed. Theanalyst may want to un
over more details about the 
overt 
ommuni
ation, su
h as the number ofmodi�
ations due to steganographi
 embedding. Be
ause the number of embedding 
hanges is ingeneral strongly 
orrelated with the message length, one 
an obtain valuable forensi
 informationabout the type of hidden data or the fa
t that the message is en
rypted (if the message lengthestimates are 
lustered around multiples of some typi
al 
ipher blo
k lengths).Steganalyzers that 
an estimate the relative number of embedding 
hanges (the 
hange rate) are
alled quantitative. They are typi
ally built from heuristi
 prin
iples and always rely on full knowl-edge of the embedding algorithm (see, e.g., Refs. 2, 4{6, 10, 13, 25, 27). Even though it is possibleto identify within these atta
ks some general prin
iples for 
onstru
ting quantitative steganalyzers,their design is still more art than a well-developed methodology. This is 
on�rmed by the fa
tthat the vast majority of 
urrent quantitative atta
ks only 
over LSB embedding. Although thereexist a few quantitative steganalyzers for other embedding operations, su
h as �1 embedding inthe spatial domain23 or the embedding operation of F5,6 quantitative steganalyzers are missing formost steganographi
 algorithms despite the fa
t that essentially all of them 
an be reliably dete
tedby blind steganalyzers.This paper proposes a novel approa
h to quantitative steganalysis that is quite general anddoes not need detailed knowledge of the embedding me
hanism. The basi
 idea is to turn a blind� Jessi
a Fridri
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steganalyzer into an estimator of the 
hange rate by learning the relationship between the position ofstego image features and the 
hange rate. In blind steganalysis, images are modeled using featuresdesigned to be sensitive to steganographi
 embedding. It works when the 
lusters of 
over andstego image features 
an be separated.14, 16, 20, 26 Be
ause the 
lusters' separation is a deterministi
fun
tion of the 
hange rate, one 
ould 
on
eivably train a multi-
lassi�er to dete
t a small numberof di�erent payloads. Pursuing this idea further, it should be possible to build an estimator ofthe 
hange rate using regression by mathemati
ally des
ribing the relationship between the featureve
tor and its position in the feature spa
e. This idea should work for any 
ontinuous-valued featurespa
e within whi
h a given steganographi
 system is dete
table.In our work, we explore ordinary linear least square regression (OLS) and its kernelized version
alled support ve
tor regression (SVR), essentially a data-driven method similar in spirit to asupport ve
tor ma
hine. An important design element of every SVR is the penalization of theregression error: more stable results are typi
ally obtained using non-quadrati
 penalization, su
has the �-insensitive loss or the Huber loss.This approa
h to quantitative steganalysis has a very important advantage over previous art:we 
an design a quantitative steganalyzer without any knowledge of the embedding me
hanism.All that is required is a

ess to a database of images embedded with a range of known payloads.Su
h images 
an be generated if the steganalyst has a

ess to the embedding algorithm but notne
essarily to its inner workings (e.g., if only an exe
utable �le is available). There does haveto exist a feature set and a blind steganalyzer that 
an reliably dete
t the embedding, and thea

ura
y of the resulting quantitative steganalyzer depends on the sensitivity of the feature set tothe atta
ked steganographi
 s
heme.This paper is organized as follows. Se
tion 2 presents the methodology for 
onstru
ting quantita-tive steganalyzers from features. The methodology is evaluated experimentally in Se
tion 3, wherewe report the a

ura
y of quantitative steganalyzers for eight steganographi
 s
hemes. Se
tion 4
ontains detailed analysis of the estimator error for Jsteg and nsF5 by de
omposing it into within-image and between-image 
omponents. For Jsteg, the results are 
ompared with a state-of-the-artquantitative steganalyzer. The paper is 
on
luded in Se
tion 5.2. APPROACHIn this se
tion, we des
ribe the basi
 method for 
onstru
ting 
hange rate estimators by learningthe relationship between features' lo
ation and the 
hange rate, using regression on some trainingset of stego features and their 
orresponding 
hange rates. By 
hange rate we mean the ratiobetween the total number of embedding 
hanges and the number of 
over elements that 
an beused for embedding. We favor estimating the 
hange rate as opposed to the relative messagelength, be
ause the features are sensitive to the number of embedding 
hanges and not to thelength of the message. The relationship between both quantities is sto
hasti
 and 
an be furthershaped by matrix embedding and sour
e 
oding.The pro
ess of extra
ting steganographi
 features from an image is a mapping f : C 7! Rd fromthe spa
e of all 
overs, C, to a d-dimensional feature spa
e. In blind steganalysis, ma
hine learningtools are used to �nd a distinguishing statisti
 S : Rd 7! R, on whi
h a threshold is set to 
lassifyimages to the 
lasses of 
over and stego.15 In 
ontrast, in our 
urrent problem we seek a fun
tion : Rd 7! [0; 1℄ revealing the relationship between the lo
ation of the features and the 
hange rate.



To formalize the problem, let X = � (xi; yi)jxi 2 Rd ; yi 2 [0; 1℄; i 2 f1; : : : ; lg	 denote l samples
onsisting of feature ve
tors xi = f(
i) 
omputed from l images 
i embedded with relative numberof embedding 
hanges yi 2 [0; 1℄. Our goal is to 
onstru
t a quantitative steganalyzer by �nding afun
tion  ̂ : Rd 7! [0; 1℄ that minimizes the error on X, or ̂ = argmin 2F 1l lXi=1 e ( (xi); yi) ; (1)where e : R � R 7! R+0 is an error fun
tion (also 
alled a loss fun
tion) and F is an appropriately
hosen 
lass of fun
tions  : Rd 7! [0; 1℄. For example, in linear ordinary least square (OLS)regression, e(ŷ; y) = (ŷ � y)2 and F = � (x) = w � x� bjw 2 Rd ; b 2 R	 .The error fun
tion e(x; x0) and the 
lass of fun
tions F in
uen
e the a

ura
y of the resultingregressors  ̂: It is possible that the desired a

ura
y is not a
hieved for a given feature set simplybe
ause of a wrong 
ombination of e and F : It will be shown later that the 
omputational 
omplexityof solving the optimization problem (1) also needs to be taken into 
onsideration.In this paper, we solve the regression problem (1) by linear ordinary least-square regression(OLS) and by support ve
tor regression (SVR).22 While the former is very simple, intuitive, andhas a low 
omputational 
omplexity, the latter 
an reveal more 
ompli
ated non-linear dependen
iesat the 
ost of in
reased implementation 
omplexity. Assuming the reader is familiar with OLS, therest of this se
tion des
ribes the main ideas behind SVR. More details 
an be found in a tutorialon SVR.222.1. Support Ve
tor RegressionThe main idea behind SVR is to map the model spa
e Rd through a possibly non-linear data-driven mapping � : Rd 7! H into a high-dimensional ve
tor spa
e H; where a linear regressionis performed. Thus, for the set of fun
tions F over whi
h the optimization is 
arried, we haveF = f (x) = w � �(x) � bjw 2 H; b 2 Rg : The spa
e H and fun
tion � must be 
hosen su
h thatthere exists a positive de�nite fun
tion (
alled the kernel) k : Rd �Rd 7! R satisfying �8x;x0 2 Rd�(k(x;x0) = h�(x); �(x0)iH) ; where h�; �iH is a dot produ
t in H: The fun
tion � and the spa
e Hare in pra
ti
e de�ned impli
itly by the kernel k: The most popular kernels are the Gaussian kernelk(x;x0) = exp ��
kx� x0k2� (2)and the polynomial kernel k(x;x0) = (hx;x0iRd + 1)d :Depending on the ri
hness of the fun
tion 
lass F , the problem (1) 
an be ill-posed. In orderto stabilize it, SVR introdu
es an additional term kwk2H that penalizes 
omplex solutions. Hen
e,the optimization problem solved by SVR attains the following formminw2H;b2Rkwk2H + C 1l lXi=1 e (w � �(xi)� b; yi) ; (3)where C is a parameter des
ribing the trade-o� between 
omplexity of the solution and error onthe training set.



Ideally, the error fun
tion e should be determined from the statisti
al properties of the noise infeatures. In our 
ase, however, the noise properties are hard to estimate due to the high dimension-ality and be
ause the noise is a 
omplex superposition of 
over work irregularities and the randomsele
tion of 
over elements used for embedding. In order to make the optimization problem (3)
omputationally tra
table, the error fun
tion e should be 
onvex. The most popular error fun
tionsin SVR are the �-insensitive losse�(ŷ; y) = (jŷ � yj � � if jŷ � yj > �0 otherwise, (4)and the Huber loss (Ref. 22 lists other examples). We tested both error fun
tions and eventuallyde
ided to use the �-insensitive loss be
ause it gave very similar results as the Huber loss. Notethat the free parameter � determines the width of the tube where errors are not penalized (i.e.,the estimates within this tube are treated as estimated perfe
tly). In theory, � should be set tothe varian
e of noise in features.21 However, as already explained above be
ause the statisti
alproperties of the noise are unknown in our 
ase, the parameter �, together with the kernel parameterswere determined using exhaustive sear
h.A support ve
tor regressor with the Gaussian kernel (2) and �-insensitive loss (4) has three hyper-parameters that need to be set prior to training (solving (3)). They are: the penalization parameterC; the width of the Gaussian kernel 
; and �. The 
hoi
e of the hyper-parameters has a signi�
antin
uen
e on the ability of the regressor to generalize (to a

urately estimate the 
hange rate onsamples not in the training set). Sin
e there is no optimal method to set them, in our experimentswe used a sear
h on a prede�ned set of triplets (C; 
; �), on whi
h the generalization was estimatedby 
ross-validation. The implementation details of the sear
h are des
ribed in Subse
tion 3.2.3. EXPERIMENTS ON EIGHT JPEG STEGOSYSTEMSThis se
tion presents a pra
ti
al evaluation of the proposed method by testing quantitative stegan-alyzers for eight steganographi
 algorithms with diverse embedding me
hanisms: JP Hide&Seek,12Jsteg,24 Model Based Steganography without deblo
king (MBS1),19 MMx,11 F5 with shrinkageremoved by wet paper 
odes with matrix embedding turned o� (nsF5),8 OutGuess,17 PerturbedQuantization,7 and Steghide.9 The estimators' a

ura
y is evaluated on images with relative pay-loads uniformly distributed on [0; 1℄, meaning that the length of the message was 
hosen randomlybetween zero and the maximum embedding 
apa
ity for ea
h algorithm and ea
h image.All experiments were performed on single-
ompressed grays
ale JPEG images with quality fa
tor80 
reated from a database of 9163 raw images taken by digital 
ameras spanning 23 di�erent models.Prior to any pro
essing, the images were divided into two sets of equal size (� 4600 images per set).One set was used ex
lusively for training the regressor, while the other set was used ex
lusively fortesting its performan
e.3.1. Regressor trainingAs a feature set f ; we used the 274 \
alibrated Merged features" from Ref. 16, augmented withthe number of non-zero DCT 
oeÆ
ients, n0, as an additional 275th feature. All 275 featureswere normalized to have zero mean and unit varian
e. The normalization 
oeÆ
ients were always
al
ulated on the training set.



The hyper-parameters (C; 
; �) were determined by n-fold 
ross-validation using the followingtwo-phase algorithm to de
rease the 
omputational 
omplexity. In the �rst phase, the parameterswere estimated by 5-fold 
ross-validation on the following grid(C; 
; �) 2 S1 = ��10i; 2j ; 0:005 � k� j i 2 f�3; : : :4g;j 2 f�11; : : : ;�5g; k 2 f1; 2; 3; 4gg :The triplet (C1; 
1; �1) with the least estimated generalization error on S1 was used to seed thesear
h in the se
ond phase. The sear
h in the se
ond phase was performed on the gridS2 = ��10i; 2j ; 0:005 � k� j i; j 2 Z; k 2 N	 :In ea
h iteration, the point with least generalization error (again estimated by 5-fold 
ross-validation) was 
he
ked to see whether it lay on the grid boundary. If so, the error was estimatedon the neighboring points from the set S2 and the 
he
k was repeated. If not, the sear
h wasstopped and the triplet (C; 
; �) with the least estimated generalization error was used for training.The idea behind the two-phase sear
h is to ensure that the point with least estimated gen-eralization error is not the boundary point of the explored set. Under the assumption that thegeneralization error surfa
e is 
onvex, whi
h is very reasonable, this algorithm keeps the number ofexplored points relatively low, while returning a suitable set of hyper-parameters.3.2. General resultsWe prepared two quantitative steganalyzers for ea
h algorithm. One used plain OLS regression,while the other used SVR as outlined above. Be
ause the error distribution of quantitative stegan-alyzers has typi
ally heavy tails3 (we will see in Subse
tion 4.2 that this is so for our steganalyzertoo), we evaluate the performan
e of the regressors using robust statisti
s rather than the varian
e.Figure 1 shows a s
atter plot of the estimated 
hange rates against the true values. Table 1 displaysthe sample Median Absolute Error (MAE) and bias 
omputed from all estimates. We 
an see thatall quantitative steganalyzers ex
ept steganalyzer for PQ have the MAE of the estimation of relative
hange-rate of the order of 10�3, with an order of magnitude lower bias. The OLS regressor has aslightly higher MAE but exhibits a lower bias for several embedding algorithms. The fa
t that themedian absolute error of the OLS regression is of the same order as the error of SVR suggests thatthe features 
hange almost linearly with the number of embedding 
hanges. Despite the slightlyhigher MAE of the OLS regression, it o�ers an attra
tive 
hoi
e be
ause of its low 
omputational
omplexity: the sear
h for hyper-parameters and subsequent training of the SVR took about 1 dayon a 64bit AMD Opteron 2.4GHz, while the time to train the OLS regression on the same ma
hineand training set was less than 1 minute.4. DETAILED RESULTS FOR JSTEG AND NSF5This se
tion presents analysis of the error distributions of quantitative steganalyzers for nsF5 andJsteg. We 
hose these two algorithms as representatives of the least and most dete
table stegoalgorithms for JPEG, respe
tively, and be
ause their simple embedding me
hanism allows thepre
ise 
ontrol of the 
hange rate required for our experiments.We �rst 
onsider how the estimation error is in
uen
ed by payload size. Then we de
ompose theerror into two fa
tors: that due to the 
over, and that due to lo
ation of the payload. This allows
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(d) nsF5
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(f) SteghideFigure 1. S
atter plot showing the 
hange rate estimated by SV regressors with respe
t to the true 
hangerate for JP Hide&Seek, Model Based Steganography without deblo
king (MBS1), MMx, no-shrinkage F5(nsF5), OutGuess and Steghide; Jsteg and Perturbed Quantization were omitted for spa
e reasons. Allestimates were made on images from the testing set. The dashed line 
orresponds to perfe
t estimation.



SVR OLSAlgorithm MAE Bias MAE BiasJP Hide&Seek 5:24�10�03 2:41�10�04 7:91�10�03 �1:70�10�04Jsteg 1:90�10�03 2:50�10�04 8:38�10�03 �5:29�10�04MB1 6:63�10�03 �1:63�10�04 9:07�10�03 3:86�10�05MMx 2:70�10�03 1:08�10�04 3:25�10�03 1:58�10�04nsF5 4:82�10�03 �2:51�10�04 8:39�10�03 �5:29�10�04OutGuess 2:48�10�03 3:67�10�04 2:53�10�03 1:51�10�04PQ 4:83�10�02 �3:78�10�02 5:69�10�02 �2:89�10�03Steghide 2:04�10�03 1:80�10�04 3:23�10�03 2:60�10�04Table 1. Median absolute error (MAE) and bias for OLS regressor and SVR with Gaussian kernel and�-insensitive loss, on eight steganographi
 algorithms. The a

ura
y is measured on the testing set.us to 
ompare the nature of our estimation error against quantitative estimators for spatial-domainLSB repla
ement. Finally, we 
ompare the a

ura
y of our quantitative estimator for Jsteg withprior art.254.1. Compound errorThe a

ura
y of steganalyzers presented in Subse
tion 3.2 was estimated on images from the trainingset embedded with messages of random length. To �nd out how the errors depend on the numberof embedding 
hanges, nsF5 and Jsteg were for
ed to produ
e a prede�ned set of 21 
hange rates� 2 B , f0; 0:025; 0:05; : : : ; 0:475; 0:5g: To be absolutely pre
ise, � = 
n0 ; where 
 is the number of
hanged DCT 
oeÆ
ients and n0 is the total number of all non-zero DCT 
oeÆ
ients in the 
over.
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tto 
hange rate. The graph for nsF5 is shown only up to 
hange rate � = 0:45; be
ause at higher rates thealgorithm frequently fails to embed the message.



Figure 2 shows the a

ura
y of the steganalyzers from Subse
tion 3.2 for ea
h 
hange rate fromB. From 2(a) we 
an see that the MAE of the quantitative steganalyzer for nsF5 in
reases with thepayload, but remains in the same order of 10�3. Figure 2(b) reveals that the in
rease in MAE is dueto in
reased bias of the estimator on images with higher payload. The a

ura
y of the estimatorfor Jsteg remains stable with respe
t to the image payload.It is interesting to observe that the a

ura
y of estimators on 
over images does not deviate,even though 
over images were not in
luded in the training set (the probability that the embeddingrate will be exa
tly zero is almost zero).4.2. Within- and between-image errorIn general, payload size estimation error 
an be de
omposed into three parts, as �rst des
ribed inRef. 3 and extended in Ref. 1. When a payload is embedded, the number of embedding 
hangesdepends on random 
orrelations with the 
over, and so this does not indi
ate exa
tly the size ofpayload (in our experiments we have eliminated this deviation by measuring embedding 
hangesdire
tly, but it o

urs when the estimator is applied to genuine stego images). Then the remainingerror 
an be partly attributed to random pla
ement of the payload in the 
over, 
alled within-imageerror, and the rest to the 
over itself, 
alled between-image error. In Ref. 1 a payload-size estimatorp̂ is explained in terms of the true payload size p and three error termsp̂ = p+ Z
ov + Zpos + Z
ipwhere Z
ov is the between-image error, Zpos the within-image error due to payload position, andZ
ip the un
ertainty in the embedding 
hange rate. These errors are not truly independent, but
an be approximately separated and 
ompared by repeatedly embedding di�erent payloads in ea
h
over.We pi
ked six embedding 
hange rates, � 2 f0; 0:025; 0:05; 0:125; 0:25; 0:375g, and embedded200 random payloads into ea
h of the 4567 images in the training set, using both Jsteg and nsF5.We term ea
h 
ombination of embedding algorithm, 
hange rate, and 
over image, a 
ell, so thatea
h 
ell 
ontains estimates of 200 equally-sized but di�erently-lo
ated payloads (ex
ept for 
ellswith no payload, for whi
h there is only one possible obje
t per 
over). The total experimentalbase 
omprises 9.1M atta
ks.First, we measure the shape of the within- and between-image errors, without regard to theirmagnitude. A good way to examine the tails of a distribution is with a log-log empiri
al 
df plot:pi
king a single 
ell for ea
h of Jsteg and nsF5, we display su
h plots for the 200 estimates, in theupper part of Fig. 3 (the data for all su
h plots has the mean subtra
ted, to 
enter the distribution,and the Gaussian �t is sele
ted to mat
h the sample varian
e). There appears to be an ex
ellent �twith the Gaussian distribution, and we see similar results a
ross all images and all embedding rates.A summary of these �ts is found in two 
olumns of Tab. 2: we 
omputed Shapiro-Wilk tests18 fornormality in every 
ell, and display the proportion of 
ells with p values above 0:1. If the 
ells aretruly Gaussian, we would expe
t that 90% of 
ells would pass this test, and the displayed data arein a

ordan
e with this predi
tion. More pre
isely, we 
an say that any deviation from normalityis small enough to be undete
table with 200 samples per 
ell.On
e we know that the estimates within ea
h 
ell are Gaussian, we 
an safely average them to(almost entirely) remove the within-image error. Then the 
ell means des
ribe the between-imageerror, and we plot log-log empiri
al 
dfs for one parti
ular embedding rate in the lower part of
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(d) Between-image error, nsF5Figure 3. Log-log tail plots of empiri
al distributions of within- (above) and between- (below) image errors,for Jsteg (left) and nsF5 (right) embedding. Gaussian and Student t �ts are shown.Fig. 3. These data are 
learly not Gaussian, but there is a good �t with the Student t-distribution.The number of degrees of freedom in the t-distribution is estimated around 3 (this is the 
ase forall embedding rates), but we see in the tail plots that the distribution tails seem slightly heavierand in fa
t they �t better with around 2 df. This a

ords 
losely with what was observed for LSBrepla
ement estimators in Refs. 1 and 3. It is somewhat surprising that quantitative steganalysis ofJPEG embedding via SVR displays the same 
hara
teristi
s as quantitative steganalysis of spatial-domain embedding via stru
tural steganalysis, parti
ularly sin
e their modes of operation are sodi�erent: there was no parti
ular reason to believe that their tails should de
ay at the same rate,but this does appear to happen. In
identally, the heavy between-image tails mean that it wouldhave been unsound to measure sample variation or standard deviation (or mean square error) forour estimators: the population varian
e may well be in�nite, but even if �nite the sample varian
ewill 
onverge only very slowly to the true value.



Jsteg nsF5Shapiro- Between Within Flips Shapiro- Between Within Flips� Wilk IQR IQR IQR Wilk IQR IQR IQRp > 0:1 �Q(Z
ov) �Q(Zpos) �Q(Z
ip) p > 0:1 �Q(Z
ov) �Q(Zpos) �Q(Z
ip)0 � 3.63 0.00 0.00 � 7.74 0.00 0.000.025 90.2% 3.23 1.52 0.28 93.9% 6.99 2.81 0.290.05 89.9% 3.02 1.91 0.39 93.9% 6.79 3.52 0.410.125 90.2% 2.79 2.57 0.59 93.7% 6.93 4.78 0.620.25 89.8% 2.87 3.25 0.78 94.2% 8.31 6.77 0.810.375 90.3% 3.69 3.56 0.87 94.2% 10.63 8.47 0.91�10�3 �10�3 �10�3 �10�3 �10�3 �10�3Table 2. Comparison of magnitudes of between- and within-image errors, and embedding 
hange un
er-tainty, measured by inter-quartile range (IQR) for six embedding 
hange rates. Also shown is the numberof 
ells passing the Shapiro-Wilk test for normality of within-image error, at 10% signi�
an
e.Finally, we 
ompare the magnitudes of the within- and between-image errors, also in
ludingthe theoreti
al predi
tions for embedding 
hange rate variation (if there are n lo
ations and 2�lo
ations are used for payload, without matrix or sour
e 
oding, under mild assumptions aboutrandom embedding the number of embedding 
hanges will follow a Bi(n; �) distribution; n is notequal for Jsteg and nsF5 be
ause Jsteg does not use 
oeÆ
ients equal to 1 and F5 does not use DC
oeÆ
ients). Bias is assigned to between-image error and, for this analysis, dis
ounted. Be
auseof the heavy tails in the between-image error, we use inter-quartile range (IQR) as a measure ofspread. For 6 embedding 
hange rates, the IQRs of these three error fa
tors are displayed in Tab. 2.Be
ause the errors Z
ip and Zpos depend (somewhat) on the 
overs, the table displays the averagevalues for these IQRs.Similarly to the results for LSB repla
ement estimators in Refs. 1 and 3, the magnitude of Z
ipis generally negligible. Here, the IQRs of within-image error Zpos are not negligible, even for fairlysmall embedding rates: this is in 
ontrast to the spatial-domain estimators. Also, the between-image error Z
ov remains stable or in
reases at larger embedding rates, whereas the opposite wasobserved to hold for spatial-domain estimators.4.3. Comparison with prior art | JstegIn this experimental se
tion, we 
ompare the a

ura
y of our quantitative steganalyzer for Jstegwith the most a

urate steganalyzers known today. We 
hose Jsteg be
ause it is 
urrently thebest studied JPEG steganography algorithm with many known a

urate quantitative steganalyzers.As shown in Ref. 25, it is possible to 
onstru
t quantitative steganalyzers for Jsteg by adaptingsteganalysis methods developed for LSB steganography in the spatial domain.Among the multitude of methods des
ribed in Ref. 25, we sele
ted Jpairs and Weighted Non-steganographi
 Borders Atta
k (WB) and 
ompared their performan
e to the quantitative ste-ganalyzer developed in Subse
tion 3.2. A

ording to Ref. 25, the Jpairs quantitative stegana-lyzer was one of the most a

urate quantitative steganalyzers for Jsteg. The algorithms were
ompared on the 4567 images in the testing set, at 21 embedding 
hange rates from the set



� 2 B , f0; 0:025; 0:05; : : : ; 0:475; 0:5g (the images were the same images used in the previoustwo subse
tions.)Figure 4 shows that the quantitative steganalyzer with SVR has almost always better perfor-man
e than both Jpairs and WB atta
ks. Moreover, its performan
e is more stable with respe
t tothe 
hange rate. Contrary to the 
on
lusion rea
hed in Ref. 25, we found that the WB atta
k wasmore pre
ise than Jpairs atta
k; this dis
repan
y 
ould be 
aused by us using a di�erent databaseof images. Note, though, that Fig. 4 over-states the a

ura
y of JPairs, be
ause the JPairs methodsometimes fails to produ
e an estimate at all. This happens most often for large embedding rates:for � = 0:375, as many as one third of estimates fail. The SVR and WB methods never fail toprodu
e an estimate. 5. CONCLUSIONUp until now, quantitative steganalysis was a 
olle
tion of 
lever tri
ks developed for a rathersmall set of spe
i�
 embedding methods. Moreover, there existed an alarming absen
e of a solidfoundation that would enable easy 
onstru
tion of quantitative atta
ks for arbitrary steganographi
systems. In this paper, we proposed a new approa
h to quantitative steganalysis that is generaland widely-appli
able to essentially any embedding method, without ne
essarily knowing the exa
tdetails of the embedding algorithm. The idea is to use the features from blind steganalysis and modelthe relationship between the features' lo
ation and the 
hange rate (relative number of embedding
hanges) using regression. Indeed, it is quite feasible to expe
t that when a steganographi
 methodis dete
table using blind steganalysis, we should be able to extra
t some quantitative informationfrom the feature ve
tor rather than just the binary membership of the set of 
over or stego images.On the example of eight steganographi
 algorithms in the JPEG domain, we have demonstratedthe power of the proposed approa
h and showed that quantitative steganalyzers 
an be 
onstru
tedfor stegosystems for whi
h no quantitative atta
ks were 
onstru
ted so far. Moreover, the a

ura
yappears to be at least as good as the a

ura
y of known quantitative steganalyzers (this was shown
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only for Jsteg). We also showed that the within-image error was signi�
ant in magnitude, andthe between-image error has heavy tails so that authors must take 
are to use robust measures ofa

ura
y: varian
e and mean square error are unsound in su
h a 
ir
umstan
e.We believe that in this paper we have only s
rat
hed the surfa
e of possibilities that we viewas quite enormous. An intriguing possibility is to 
ombine quantitative LSB estimators, su
h astriples, 
ouples, SPA, and WS estimators and use them in the proposed framework to 
onstru
t anew quantitative steganalyzer from them. Another dire
tion possibly worth exploring is improvingthe 
ontrol of the false positive rate in targeted blind steganalysis (blind steganalyzer trained astargeted) due to the fa
t that the estimated 
hange rate is a s
alar quantity. We also plan toinvestigate this approa
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