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ABSTRACT
We extend the square root law of steganographic capacity, for
the simplest case of iid covers, in two ways. First, we show
that the law still holds under a more realistic embedding
assumption, where the payload is of fixed length (instead of,
in the classic result, independent embedding at each loca-
tion). Second, we consider the case of nonuniform embed-
ding paths, which is forced when the stegosystem’s secret
key is of limited size: we show that the secret key must be
of length at least linear in the payload size, if a square root
law is to hold. The latter is parallel to Shannon’s perfect
cryptography bound.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
information hiding ; H.1.1 [Models and Principles]: Sys-
tems and Information Theory—information theory

General Terms
Security, Algorithms

Keywords
Steganographic Capacity, Square Root Law, Steganography,
Steganalysis

1. INTRODUCTION
For a given cover object and steganographic embedding

method, the capacity is the largest payload which does not
exceed a particular risk of detection. There is now a body
of literature proving that, under certain conditions, the ca-
pacity of a cover of size n is proportional to

√
n. These

square root laws were first conjectured for the case of multi-
ple, independent covers [10], and proved to hold under cer-
tain conditions about steganalysis of individual objects [11,
13]. Later, a square root law for individual covers of size n
was proved, under the assumption that the cover source is
a suitably well-behaved Markov chain [6].
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In this paper we consider the simplest type of square root
law for individual objects – the cover source is assumed to
produce independent, identically distributed (iid) elements –
and extend it in two ways concerning the embedding key. Al-
though iid samples are a poor model for the practice of steg-
anography in digital media, this case illustrates the square
root law without the complicated analysis required in [6],
and we expect that these results will eventually be proved
for the Markov chain case too. Here, our aim is to quantify
how the size of the embedding key relates to the security of
the stegosystem.

We next briefly outline our notation (Subsect. 1.1) and
state a useful inequality (Subsect. 1.2). In Sect. 2 we re-state
the classic square root law, then extend it to a more realistic
form of embedding in which the payload size is fixed (Sub-
sect. 2.2), and then prove a theorem about the minimum
size of shared secret key (Subsect. 2.3). Sect. 3 considers
the significance of the new results, and examines ways in
which they could be improved or extended. Finally, Sect. 4
briefly concludes the work.

1.1 Notational Conventions
In this paper we will use uppercase Roman letters for ran-

dom variables, probability measures, and sets; lowercase and
Greek letters are for realisations of random variables, con-
stants, and functions. Expectation of a random variable is
written E[X] (with the probability measure for X implicit).
X ∼ Bi(n, p) indicates that X has the binomial distribu-
tion: a sum of n independent Bernoulli random variables
each with probability p.

Vectors will be written (x1, . . . , xn), or equivalently xn
1 ,

and the subsequence (xi, . . . , xj) will be denoted by xj
i . The

term O(ψ(n)) indicates a function of n bounded asymptoti-
cally by ψ(n): φ(n) = O(ψ(n)) if there is a constant C such
that φ(n) ≤ Cψ(n) for sufficiently large n. All logs are to
natural base.

1.2 Hoeffding’s Inequality
We will need to bound the tail probabilities for various

combinations of binomial distributions, and for reasons of
uniformity will use the same bound – Hoeffding’s inequal-
ity [9] – throughout. In fact, some of our results do not
require an exponential bound (e.g. Chebychev’s inequality
will often suffice, as in [6]) but Hoeffding’s inequality can
still be tidier because it does not require us to compute the
variance of the random variable whose tail probabilities are
to be bounded. We state the inequality in the form we will
use it:



Lemma 1 (Hoeffding’s Inequality). Let X be a sum
of n independent, not necessarily identically distributed, ran-
dom variables each bounded in [0, 1]. For t > 0,

Pr[X ≥ E[X] + nt] ≤ exp(−2nt2), and

Pr[X ≤ E[X] − nt] ≤ exp(−2nt2).

The inequality applies immediately to random variables
with the binomial distribution, which are independent sums
of Bernoulli variables. It also applies to sums of independent
binomially distributed random variables.

2. SQUARE ROOT LAWS FOR IID COVERS
Square root laws relate a maximum secure payload size

(bounded by an acceptable risk of detection) to the size of
the cover. Generally they are asymptotic, and the square
root laws of [6, 11] are of the following form: if the payload
size increases asymptotically faster than the square root of
the cover size then probability of detection tends to one;
if the payload size increases asymptotically slower than the
square root of the cover size then probability of detection
tends to zero.

It is easy to find embedding which violates the law, for
example padding the payload to match the cover size, or
to construct cover sources where the law does not hold, for
example those producing a single sample repeated endlessly.
In this work, our assumption about embedding will be natu-
ral, but we make the strong (and, for practical purposes, not
realistic) assumption that the covers consist of independent
samples which we will call “pixels”, though they could be an-
other representation of the cover such as transform domain
coefficients. For us, an n pixel cover (X1, . . . , Xn) is a reali-
sation of n independent and identically distributed random
variables each with mass function p(x). We tacitly assume
that the alphabet – the set of possible values for the pixels
– is finite.

On embedding, some of the pixels are altered. It will not
matter, for our purposes, exactly what embedding function
is used, as long as the change at each embedding location
is independent of the others. This applies to common em-
bedding such as bit replacement or additive noise. We will
denote the mass function of payload pixels q(x) and we will
need some weak assumptions about p and q.

Throughout this section, we refer to the null hypothesis,
H0, for the situation when there is no embedding, and the
alternative hypothesis, H1, for the case when a particular
length payload is embedded. A false positive detection is a
type-I error, whose probability is conventionally denoted α,
and a false negative result is a type-II error with probability
denoted β.

2.1 Classic Result
Historically, the first square root law was proved under

an independence assumption [11] but in the context of batch
steganography (multiple cover objects), in which case inde-
pendence is quite plausible. A more sophisticated square
root law, aimed at individual covers from a Markov chain
source, was developed in [6]. To our knowledge, the simplest
square root law is for single covers whose pixels are iid, and
this classic result has certainly been known to researchers
for a year or two, but it seems to have been “skipped” in the
literature so we reproduce it here. In any case, it is useful
to compare with the novel results which follow.

Theorem 1. Suppose that the cover consists of n pixels
(X1, . . . , Xn), independent and identically distributed each
with mass function p(x). Suppose that a payload of size m
causes each pixel to be replaced, independently of each other
and the cover, with probability λ = m/n, and that replaced
pixels are independent each with mass function q(x). Fi-
nally, suppose that for all x, p(x) 6= 0 and q(x) 6= 0, and
there exists y such that p(y) 6= q(y).

(i) If m/
√
n → ∞ then, for sufficiently large n, covers and

stego objects can be distinguished with arbitrarily low er-
ror rate.

(ii) If m/
√
n→ 0 then, for sufficiently large n, any detector

must have arbitrarily high error rate.

Proof. For (i), we construct a detector with arbitrarily
low false positive rate, and for which the false negative rate
tends to zero as n→ ∞.

We write p = p(y) and q = q(y) for convenience; without
loss of generality, we may assume that p < q. Our detector
simply counts how many pixels take the value y – define
Y = |{ i | Xi = y}| – and rejects the null hypothesis H0 if
Y > y∗, where y∗ is the critical threshold

y∗ = np+ c
√
n

(c is a positive constant to be determined later).
We compute the probability of a false positive detection:

under H0, Y ∼ Bi(n, p), so

α = Pr[Y > y∗]

= Pr[Y − E[Y ] > c
√
n]

≤ exp(−2c2),

using Hoeffding’s inequality. This can be made arbitrarily
small by suitable choice of c.

For the probability of a false negative observe that, under
H1, Y ∼ Bi(n, (1 − λ)p+ λq), so

β = Pr[Y ≤ y∗]

= Pr[Y − E[Y ] ≤ c
√
n− (q − p)m]

≤ exp
`

−2(q − p)2m2/n+O(m/
√
n)

´

→ 0

as n → ∞, again using Hoeffding’s inequality, so β will be
arbitrarily small for sufficiently large n.

Moving to (ii), consider the distributions of entire cover
objects and stego objects; let us write P and Q for the re-
spective probability measures. By independence, P (Xn

1 =
xn

1 ) =
Q

p(xi) and Q(Xn
1 = xn

1 ) =
Q

(1 − λ)p(xi) + λq(xi).
We bound the performance of any detector by computing
the Kullback-Leibler (KL) divergence from P to Q1:

DKL(P ‖ Q) = −
n

X

i=1

Z

p(xi) log
“

(1−λ)p(xi)+λq(xi)
p(xi)

”

dxi

= −n
Z

p(x) log
“

1 + λ
` q(x)−p(x)

p(x)

´

”

dx.

1We use the familiar integral symbol in the definition of KL
divergence, though under our assumptions the alphabet is
finite. The integration is properly over a discrete measure.



Now recall that log(1 + z) ≥ z − z2 for (at least) z > − 1
2
,

and by assumption q(x)−p(x)
p(x)

is bounded, so for sufficiently

large n we will have λ small enough that

DKL(P ‖ Q) ≤ nλ

Z

p(x) − q(x) dx+ nλ2

Z

(q(x)−p(x))2

p(x)
dx;

the first term is zero since both p and q must integrate to
unity, and the second term is a constant multiple of m2/n
(note that (q(x)− p(x))2/p(x) is bounded and nonnegative,
by the assumptions on p and q), and therefore tends to zero.
Now, by the well-known corollary to the data processing
theorem [1], we have lower bounds on the false positive and
negative probabilities α and β:

α log
α

1 − β
+ (1 − α) log

1 − α

β
≤ DKL(P ‖ Q)

and DKL(P ‖ Q) → 0 forces α→ 1− β, i.e. detector perfor-
mance tends to random, as n→ ∞.

The proof of a square root law for Markov covers, in [6], is
similar in concept, but the analysis is much more involved.

One may immediately ask: what if
√
m/n → r, where r

is a positive constant known as the root rate? For the pur-
poses of this paper we will ignore this case, but it can be
addressed by means similar to (ii), as demonstrated in [6].
The outcome is to bound DKL(P ‖ Q) (and hence put lower
bounds on α and/or β) by a multiple of r2; the constant
of multiplicity is related to Fisher information, and estima-
tion of Fisher information for real-world cover sources is the
subject of current research [5, 14].

We should clarify that the square root law applies to the
number of embedding changes, not necessarily to the pay-
load size itself. In some cases, these quantities need not be
proportional. If the stego system includes an asymptotically
optimal adaptive choice of source coding, for example ma-
trix embedding using Hamming codes [8], then c changes in
a cover of size n can convey payload of order c log(n/c) (this
is an upper bound) and so capacity in terms of payload size
becomes of order

√
n log n. Nonetheless, we prefer to sep-

arate the source coding from the embedding function, and
continue to identify payload size with (something propor-
tional to) the number of embedding changes.

Note our conditions on p and q, which seem unavoidable.
If the mass functions p(x) and q(x) are identical, then so are
cover and stego objects: perfect steganography is achievable
simply by overwriting the entire cover, and a linear law ap-
plies to capacity. (Indeed, a number of naive embedding
schemes manage to preserve first-order statistics of covers,
but the practice of steganalysis is rather different to the iid
theory considered here, and inevitably such embedding is de-
tected using higher-order statistics. We believe that perfect
steganography is not realisable in practical circumstances.)

If there exists x such that p(x) = 0 but q(x) 6= 0 then the
symbol x is a certain indicator that payload is present: a
detector with zero false positives can be constructed based
solely on x. As n → ∞, the probability that x is observed
in a stego object tends to 1. Similarly, if there exists x
with q(x) = 0 but p(x) 6= 0 then the symbol x is a cer-
tain indicator that payload is not present, and a similarly
asymptotically perfect detector can be constructed.

2.2 Fixed-Length Payload
Although the main weakness of the model in the previ-

ous result is the simplicity of the covers, one can also crit-
icize the assumption about payload: when steganography
is performed, there is usually a fixed-length payload to be
embedded. It is not the case that each pixel is affected in-
dependently because changes cease after enough have been
made to carry the payload. In practice, we would expect
that the sender and recipient share a secret key which deter-
mines exactly m locations (or, in the case of source coding,
some number of locations proportional to m) to be used. Ef-
fectively, exactly m locations, chosen uniformly at random
from all n, will be overwritten by symbols with the alterna-
tive distribution q(x).

We now show that the square root law still holds in such
a case.

Theorem 2. Suppose that the cover consists of n pixels
(X1, . . . , Xn), independent and identically distributed each
with mass function p(x). Suppose that a payload of size m
causes exactly m pixels to be replaced with mass function
q(x), and that this pixel selection is made uniformly from all
`

n
m

´

possibilities. Finally, suppose that for all x, p(x) 6= 0
and q(x) 6= 0, and there exists y such that p(y) 6= q(y).

(i) If m/
√
n → ∞ then, for sufficiently large n, covers and

stego objects can be distinguished with arbitrarily low er-
ror rate.

(ii) If m/
√
n→ 0 then, for sufficiently large n, any detector

must have arbitrarily high error rate.

Proof. The structure is similar to Theorem 1 and (i) is
not much altered, but we have to work particularly hard for
(ii) because the stego pixels are no longer independent.

For (i), we use exactly the same detector as in the proof of
Theorem 1: reject the null hypothesis H0 if Y = |{ i | Xi =
y}| > y∗, where

y∗ = np+ c
√
n.

The null hypothesis is exactly as before, and so the false
positive probability α still meets the bound α ≤ exp(−2c2)
and can be made arbitrarily small.

This time, under H1, we know that exactly m pixels have
distribution q(x) and n have distribution p(x), so

Y ∼ Bi(m, q) + Bi(n−m, p),

where the sum is of independent distributions. This ran-
dom variable has the same mean as its counterpart in The-
orem 1, so exactly the same application of Hoeffding’s in-
equality gives β ≤ exp

`

−2(q − p)2m2/n + O(m/
√
n)

´

→ 0.
Again, β will be arbitrarily small for sufficiently large n.

For (ii), we again show thatDKL(P ‖ Q) → 0. We expand
the KL divergence using the chain rule [3, §2.5]:

DKL(P (Xn
1 ) ‖ Q(Xn

1 )) =
n

X

k=1

Dk

where Dk is the conditional divergence defined by

Dk = DKL(P (Xk | Xk−1
1 ) ‖ Q(Xk | Xk−1

1 ))

= EP

»

−
Z

P (Xk = x | Xk−1
1 ) log

“

Q(Xk=x|Xk−1

1
)

P (Xk=x|Xk−1

1
)

”

dx

–

= EP

»

−
Z

P (Xk = x) log
“

Q(Xk=x|Xk−1

1
)

P (Xk=x)

”

dx

–

.



At the last step, we used the independence of Xn
1 under

P , but the same is not true under Q. The expectation is
taken over the random variables Xk−1

1 , with the probability
measure P .

Let us write Ek for the event that location Xk is used for
embedding, Ek for the complement, and denote the condi-
tional probability

ek = Q(Ek | Xk−1
1 ).

Lemma 2 in Appendix A establishes a key property of ek:
for sufficiently large n and all k it is bounded by a multiple
of the unconditional probability Q(Ek) = m/n.

Conditional on Ek, Xk is independent of Xk−1
1 under Q:

if Ek then Xk has distribution q, and if Ek then Xk has
distribution p, so

Dk = EP

»

−
Z

P (Xk = x) ·

log
“

ekQ(Xk=x|Ek,Xk−1

1
)+(1−ek)Q(Xk|Ek,Xk−1

1
)

P (Xk=x)

”

dx

–

= EP

»

−
Z

p(x) log
“

ekq(x)+(1−ek)p(x)
p(x)

”

dx

–

= EP

»

−
Z

p(x) log
“

1 + ek

` q(x)−p(x)
p(x)

´

”

dx

–

.

Now we can continue as in Theorem 1: because ek ≤
Cm

n
→ 0 the inequality log(1 + z) ≥ z − z2 can be used for

large enough n, so

DKL(P (Xn
1 ) ‖ Q(Xn

1 )) =
n

X

k=1

Dk

≤
n

X

k=1

ek

Z

p(x) − q(x) dx+ e2k

Z

(q(x)−p(x))2

p(x)
dx

≤
n

X

k=1

C′m
2

n2
,

for a constant C′. This tends to zero, so as before we deduce
that any detector must have performance tending to purely
random as n→ ∞.

2.3 On Minimum Key Size
In practice, the hypothesis that the payload location is

chosen uniformly from all
`

n
m

´

possibilities is unlikely to be
realised. Supposing that the embedding function hides one
bit per used location (e.g. LSB embedding), the sender and
recipient would have to agree on the location of each payload
bit, requiring them to share log2 n!/(n−m+ 1)! bits of se-
cret information for their covert communication to succeed.
If m = O(

√
n), this means of order m logm bits of infor-

mation: the sender and recipient must share a secret key
longer than their covert payload! (They would not do bet-
ter to re-use the same key for many communications, either,
because we know that this is unsound, see e.g. [12] or [15]).
Note that we use the word key, here, to indicate the shared
secret information by which the sender and recipient agree
the location of the payload. This need not be related to
any encryption key and knowledge of this embedding key
would not necessarily be sufficient for their enemy to decode
the hidden message, though we would certainly expect it to
improve the efficiency of detectors.

What typically occurs, then, is that the sender and recipi-
ent agree on a shorter secret key, which generates the embed-

ding path pseudorandomly. But recall Kerckhoffs’ Principle:
prudent security analysis assumes that the enemy knows the
entire system, and only the secret key itself is unknown. The
detector should be granted knowledge of the connection be-
tween secret keys and embedding paths, and they may be
able to exploit this knowledge (see e.g. [7]). So now we ex-
amine what happens to the square root law if the number of
embedding keys is not large enough. It turns out that the
secret key size cannot be sublinear in the payload size, else
asymptotically perfect detection can be achieved:

Theorem 3. Suppose that the cover consists of n pixels
(X1, . . . , Xn), independent and identically distributed each
with mass function p(x). Suppose a payload of size m which
will cause exactly m pixels to be replaced with mass function
q(x). Suppose that the sender, recipient, and attacker share
knowledge of a set K of secret keys, each of which generates a
path of length m determining the payload locations, but only
the sender and recipient know which key is used. Finally,
suppose that there exists y such that p(y) 6= q(y).

If (log |K|)/m → 0, as m → ∞, and m → ∞ as n → ∞,
then, for sufficiently large n, covers and stego objects can be
distinguished with arbitrarily low error rate.

Proof. As before, write p = p(y) and q = q(y) and as-
sume that p < q. For each k ∈ K, write Lk for the set of
locations selected by key k, and write k∗ for the true key
used for embedding.

The detector will look exhaustively at each possible em-
bedding path and see whether the proportion of y symbols
is high enough, in any one of them, to indicate a payload.
Define

Yk = |{ i ∈ Lk | Xi = y}|
and reject H0 if maxk Yk ≥ y∗, where the critical threshold
this time is

y∗ = qm− c
√
m,

with c a positive constant to be determined later. We show
that the detector has, for sufficiently large n and with a
suitably chosen c, arbitrarily small probability of error.

The false negative rate can easily be bounded because,
under H1, Yk∗ ∼ Bi(m, q), so

β = Pr[all Yk < y∗]

≤ Pr[Yk∗ < y∗]

= Pr[Yk∗ − E[Yk∗ ] < −c√m]

≤ exp(−2c2),

using Hoeffding’s inequality. By choosing c sufficiently large,
any nonzero bound on β can be met.

For the false positive rate α, note that Yk ∼ Bi(m, p)
for all keys k, but Yk are not independent because some
embedding paths will cross. However, let us enumerate the
keys K = {k1, . . . , k|K|}, then

1 − α = Pr[all Yk < y∗]

=

|K|
Y

i=1

Pr[Yki
< y∗ | Yk1

< y∗ ∧ · · · ∧ Yki−1
< y∗]

≥ Pr[Y1 < y∗]|K|



= Pr[Y1 − E[Y1] < m(q − p) − c
√
m]|K|

≥
`

1 − exp(−2m(q − p)2 +O(
√
m))

´|K|

≥ exp
`

−2 exp(log |K| − 2m(q − p)2 +O(
√
m))

´

→ 1

The first inequality is because, conditional on some Yk’s
being less than y∗, the probability that any other Yk is less
than y∗ is only increased (or at least equal) because of pos-
sible overlaps. This can be proved rigorously, but is so in-
tuitively obvious that we will omit to do so. The second
inequality is Hoeffding’s. The final inequality follows from
1−exp(x) ≥ exp(−2 exp(x)) (for x sufficiently small). Given
that (log |K|)/m→ 0 as n→ ∞, the second exponent must
tend to −∞, hence the result.

3. DISCUSSION
Theorem 2 presents a simple change to the independent

embedding model typically used in square root laws. We
have argued that it is more natural to consider a fixed num-
ber of affected locations because it corresponds to the prac-
tice of steganographic embedding by bit replacement, (mod
k)-matching, and most JPEG embedding operations. The
proof of the theorem is mostly very similar to that of Theo-
rem 1, but it requires a substantial additional component
(Lemma 2). The key is that the conditional probability
Q(Ek | Xk−1

1 ) behaves asymptotically like the unconditional
probability Q(Ek), i.e. that the condition accounts for at
worst a constant factor. The author thinks it likely that a
simpler proof of Lemma 2 exists.

Theorem 3 is of different character. log2 |K| is the number
of bits of information needed for the sender and recipient to
agree on the embedding path, so if the number of secret
key bits is asymptotically less than linear in the payload
size, we do not have a square root law of capacity. Indeed,
Theorem 3 shows thatm cannot even tend to infinity with n,
so capacity reduces to a constant. This makes sense when we
consider the detector constructed in the proof, which does
not involve n.

Another result relating minimum key size to information
hiding is described in [2], where it is shown that a linear
key is necessary for a certain kind of watermarking security,
essentially equivalent to perfect steganography, to be pos-
sible. That result is different to ours, and inherits simply
from classical information theory. Perfect steganography is
completely unlike the cases we considered here, since the
square root law does not apply to it; we would argue that it
represents an unachievable singularity.

Our theorem asks more questions than it answers, and
we believe it should be a springboard for further research.
Most importantly, it lacks a second clause parallel to (ii)
of Theorems 1 and 2: we have not yet shown that a lin-
ear key is sufficient for the square root law to reappear.
Proving such a result ought to be analogous to the other
theorems, and the challenge will be to show an analogue of
Lemma 2 bounding the conditional embedding probabilities.
However, this appears to be difficult. It certainly requires
some constraints on the set K: if, for example, the |K| em-
bedding paths almost or entirely overlap then there will not
be enough uncertainty to get the required result. And it
is difficult to formalise such constraints, depending as they
do on n. One possibility is to demand that the set K be
chosen uniformly at random from all embedding paths, but

then we must be careful about the interpretation of error
“probabilities”: they would apply over all possible sets K,
but for some specific sets K the bounds might be broken.
Alternatively, we could perhaps set a bound on the amount
of overlap between the paths in K. Either way, it appears
unlikely that the calculations of Appendix A can be brought
to bear on the limited-key problem.

That key size must be (at least) linear in payload size
parallels Shannon’s classic perfect cryptography bound [16]:
for perfect cryptography to be possible, the communicating
parties must share a secret key at least linear in the size of
the plaintext. In that case, the minimum constant of pro-
portionality is the entropy rate of the source. In the case of
steganography, we may be able to determine the constant
if an asymptotically optimal detector is constructed. Cer-
tainly the detector used in the proof of Theorem 3 is far
from optimal, making use of the frequency of only a single
symbol. Performance can be improved by using a chi-square
test, and perhaps this will turn out to be optimal because of
the connection between chi-square and likelihood ratio tests.
Likewise, our use of Hoeffding’s inequality is profligate, and
perhaps the Chernoff bound would be tighter (there is also
a potential connection with KL divergence).

The value of the constant is crucial. If greater than one
(and if the result remains in the presence of adaptive source
coding), it would imply that steganography is asymptoti-
cally pointless because the sender and recipient must agree
a longer secret than their payload. If less than one, more
and more secret information can be bootstrapped from short
keys.

Apart from extending the results in the iid case, further
research is needed to transfer them to the Markov chain
cover case in [6]. Some new insights may be needed to make
the analysis tractable.

Finally, we should note that the idea of exhaustively test-
ing all possible embedding keys, which is used in the proof of
Theorem 3, was proposed in [7]. It is not clear whether such
a search is really practicable because it requires effort pro-
portional to |K|, analogous to breaking a password by brute
force. Restricted key lengths reduce the theoretical secure
capacity of stego systems, but perhaps the practical secure
capacity remains high given computational constraints on
the detector. There has been relatively little work on such
complexity aspects of steganalysis.

4. CONCLUSIONS
Until now, square root laws have worked under the inde-

pendent embedding assumption, that each pixel (sample) is
affected independently. Some important properties of inde-
pendent embedding can be found in [4], but we have argued
that it is slightly unrealistic: in practice, a fixed-size pay-
load is embedded and only as many embedding changes as
necessary will be made, thus breaking the independence as-
sumption. In this work, concentrating only on the iid cover
model, we have investigated what happens to the square
root law under a fixed-length payload assumption.

We have shown that the square root law is unaltered given
a uniform choice of embedding path, but agreement on such
a path requires too large a secret stego key. If the secret
key is not at least linear in the payload size then capacity is
not even potentially infinite, let alone of square root order.
Important questions remain unanswered, including whether



a linear key is even sufficient, and the constant of linearity
if so.

We believe that these questions are of vital importance to
both theory and practice of steganography. The relationship
between cover size, payload size, and key size would be the
foundation of a theory of hidden information.
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APPENDIX

A. EMBEDDING PROBABILITY LEMMA
We establish the key property of conditional embedding

probabilities, needed for Theorem 2.

Lemma 2. Let ek be defined as in Theorem 2 and con-
tinue to assume that m/

√
n→ 0 as n→ ∞. Then there ex-

ists a constant C such that, for sufficiently large n, ek ≤ Cm
n

for all k

Proof. First, e1 = m/n, by uniformity of the embedding
path selection. For k ≥ 2,

ek = Q(Ek | Xk−1
1 )

=
Q(Ek)Q(Xk−1

1 | Ek)

Q(Xk−1
1 )

=
m

n

Q(Xk−1
1 | Ek)

Q(Xk−1
1 )

(noting that, unconditionally, Q(Ek) = m
n

, again by unifor-
mity of the embedding paths).

Let us consider first Q(Xk−1
1 ). We can write it as the sum

Q(Xk−1
1 = xk−1

1 ) =
m

X

i=0

πiri(x
k−1
1 )

where πi is the probability that exactly i of the first k − 1
locations are used for embedding (given that a total of m
out of n are) and ri(x

k−1
1 ) is the probability of observing

the sequence xk−1
1 , given that exactly i of the first k − 1

locations are used for embedding. We have

πi = m(m−1)···(m−i+1)(n−m)(n−m−1)···(n−m−k+i+2)
n(n−1)···(n−k+2)

=
m!(n−m)!(n− k + 1)!

(m− i)!(n−m− k + i+ 1)!n!

for max(0, k + m − n − 1) ≤ i ≤ min(k − 1,m), otherwise
πi = 0. Also,

ri(x
k−1
1 ) =

X

S⊆{1,...,k−1},
|S|=i

Y

i/∈S

p(xi)
Y

i∈S

q(xi).

Now turn to Q(Xk−1
1 | Ek); this is exactly the same, ex-

cept that one embedding location is fixed at k and so there
remain m − 1 payload locations to spread amongst n − 1
cover locations;

Q(Xk−1
1 = xk−1

1 | Ek) =

m−1
X

i=0

π′
iri(x

k−1
1 )

where

π′
i =

(m− 1)!(n−m)!(n− k)!

(m− i− 1)!(n−m− k + i+ 1)!(n− 1)!



for max(0, k+m−n−1) ≤ i ≤ min(k−1,m−1), otherwise
πi = 0.

We find some bounds on ratios between πi and π′
i terms,

and also between ri(−) terms. First, cancelling factorials we
compute

π′
i

πi
=

(m− i)n

m(n− k + 1)

and

π′
i

πi+1
=

(n−m− k + i+ 2)n

m(n− k + 1)
.

Next, recall that p(x) and q(x) are both nonzero so there
exists a positive constant c such that, for all x, p(x) ≤ cq(x).
Then consider

ri+1(x
k
1) =

X

S⊆{1,...,k},
|S|=i+1

Y

i/∈S

p(xi)
Y

i∈S

q(xi)

=
X

S′⊆{1,...,k},

|S′|=i

Y

i/∈S′

p(xi)
Y

i∈S′

q(xi)
X

j /∈S′

q(xj)/p(xj)

≥ k − i

c
ri(x

k
1).

Now we can bound ek. First, we may assume that n is
large enough that 1 ≤ m ≤ n/4. We split into two cases,
when k ≤ 3n/4 or k > 3n/4.

If k ≤ 3n/4 then k+m ≤ n so we can be sure that π0 6= 0
and π′

0 6= 0. We use

ek =
m

n

Pm−1
i=0 π′

iri(x
k−1
1 )

Pm
i=0 πiri(x

k−1
1 )

≤ m

n
max

i

π′
i

πi

=
m

n
max

i

(m− i)n

m(n− k + 1)

=
m

n− k + 1

≤ 4
m

n

If k > 3n/4 then certainly k > m so we can be sure that
πm 6= 0 and π′

m−1 6= 0. We use

ek =
m

n

Pm−1
i=0 π′

iri(x
k−1
1 )

Pm
i=0 πiri(x

k−1
1 )

≤ m

n
max

i

π′
i

πi+1
max

i

ri(x
k−1
1 )

ri+1(x
k−1
1 )

≤ m

n
max

i

(n−m− k + i+ 2)n

m(n− k + 1)
max

i

c

k − i

≤ m

n

n

m

c

k −m

≤ 2c
m

n

We have determined a constant C = max(4, 2c) such that,
at least for n ≥ 4m, ek ≤ Cm

n
for all k.


