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From Blind to Quantitative Steganalysis
Tomáš Pevný, Jessica Fridrich, Member, IEEE, and Andrew D. Ker, Member, IEEE

Abstract—A quantitative steganalyzer is an estimator of the
number of embedding changes introduced by a specific embedding
operation. Since for most algorithms the number of embedding
changes correlates with the message length, quantitative stegana-
lyzers are important forensic tools. In this paper, a general method
for constructing quantitative steganalyzers from features used in
blind detectors is proposed. The core of the method is a support
vector regression, which is used to learn the mapping between
a feature vector extracted from the investigated object and the
embedding change rate. To demonstrate the generality of the pro-
posed approach, quantitative steganalyzers are constructed for
a variety of steganographic algorithms in both JPEG transform
and spatial domains. The estimation accuracy is investigated in
detail and compares favorably with state-of-the-art quantitative
steganalyzers.

Index Terms—Blind steganalysis, message length estimation,
quantitative steganalysis, regression.

I. INTRODUCTION

W HILE the objective of steganalysis is to detect the mere
presence of hidden messages in a communication, in

practice the steganalyst will clearly want to achieve more. For
example, an estimate of the number of modifications introduced
by steganography provides information about the length of the
embedded secret message. Steganalyzers designed to estimate
the relative number of embedding changes (the change rate)
are called quantitative. Their design typically requires full
knowledge of the embedding algorithm. The steganalyzer is
built using clever tricks and heuristic principles combined with
experience and intuition. Because of the lack of a general ap-
proach, the vast majority of current quantitative steganalyzers
attack only least significant bit (LSB) embedding schemes
(see, e.g., [1]–[8]). Although there exist a few quantitative
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steganalyzers for other embedding operations, such as LSB
matching (also called embedding) in the spatial domain
[9], the embedding operation of F5 [1], and the model-based
steganography [10], quantitative steganalyzers are missing for
most steganographic algorithms. This is rather surprising as
essentially all of these algorithms can be reliably detected using
blind steganalyzers by representing images in an appropriate
feature space [11]–[17].
This paper presents a general methodology for designing

quantitative steganalyzers that does not depend on a detailed
knowledge of the embedding algorithm. Instead, all that is
required is a set of stego objects embedded with a range of
relative payloads and a set of steganographic features changing
predictably with the payload. If the latter requirement is
fulfilled, the separation boundary between cover and stego
images is a deterministic function of the change rate, and we
build a change-rate estimator by mathematically describing the
relationship between the feature vector and its position in the
feature space. Regression tools are used to learn the relationship
between the features’ location and the number of embedding
changes. In this work, we explore ordinary linear least square
regression and a kernelized variation called support vector
regression, essentially a data-driven method similar in spirit to
a support vector machine.
The most important advantage of this approach to quantita-

tive steganalysis over previous art is that it may be possible to
design a quantitative steganalyzer even without any knowledge
of the embedding mechanism. In fact, all that is required is the
access to a database of images embedded with a range of known
payloads. These images could be generated if the steganalyst has
an access to the embedding algorithm but not necessarily to its
inner workings (e.g., if only an executable file is available). A
second requirement is that there must exist a feature set sensi-
tive to the embedding, an assumption that is satisfied for almost
all currently known steganographic schemes for digital images.
The accuracy of the resulting quantitative steganalyzer depends
on the sensitivity of the features to the embedding changes.
Our previous conference contribution on this topic [18] dealt

with a small set of steganographic algorithms for JPEG im-
ages. In this paper, we present a more comprehensive evalua-
tion of the presented methodology by constructing quantitative
steganalyzers for algorithms hiding in both JPEG and spatial do-
mains and for different feature sets [14], [15]. We also investi-
gate for both domains the errors due to image content and mes-
sage placement within the image (the so-called between- and
within-image errors).
The paper is organized as follows. Section II presents the gen-

eral methodology for constructing quantitative steganalyzers
from features. The methodology is evaluated experimentally
in Sections III and IV, where we report the accuracy of mes-
sage-length estimators for eight steganographic schemes for
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JPEG images and for LSB steganography in the spatial domain.
Section V contains detailed analysis of the estimator error
for Jsteg, nsF5, and LSB matching, decomposing it into the
within-image and between-image components. In Section VI,
the estimation accuracy is compared with state-of-the-art
quantitative steganalyzers for Jsteg, LSB matching, and LSB
replacement. The paper is concluded in Section VII.

II. APPROACH

Before explaining the general approach to the construction
of quantitative steganalyzers, we would like to stress that it is
only changes to the cover which can ever be detected, and so
any quantitative steganalyzer necessarily estimates the number
of embedding changes rather than the message length. To obtain
an estimate of the message length, one may have to take into
account the effect of matrix embedding [19], [20] and source
coding (data compression applied to the message prior to em-
bedding) incorporated in the embedding algorithm. Although
we explain the methodology on the example of digital images,
it can be readily applied to other digital media objects, such as
audio or video files.
The process of building a quantitative steganalyzer starts with

extracting steganographic features from an image. Formally,
this is captured with a mapping from the space
of all images to a -dimensional Euclidean feature space. The
map is usually scalable so that it can be applied to images
of arbitrary size. Everywhere in this paper, we will work with
being the set of all gray-scale images in either the raster or

JPEG format. Our quantitative steganalyzer will be in the form
of a function revealing the relationship between
the features’ location and the change rate. By change rate, we
denote the number of embedding modifications divided by the
number of cover elements. Depending on the type of the cover,
its elements could be pixels (in a gray-scale raster image) or
nonzero quantized DCT coefficients (in a JPEG file).
To formalize the problem, let

denote samples con-
sisting of feature vectors computed from
images embedded with relative number of embedding

changes . Our goal is to construct a quantitative
steganalyzer by finding a function that
minimizes the error on , or

(1)

where is an error function (also called a loss
function) and is an appropriately chosen class of functions

.
The error function and the class of functions influ-

ence the accuracy of the resulting estimator . It is possible that
a desired accuracy is not achieved for a given feature set simply
because of a wrong combination of and . In this work, we
consider two ways to solve the regression problem (1): ordinary
linear least-square regression (OLLSR) and support vector re-
gression (SVR) with a Gaussian kernel.

A. Linear Least-Squares Regression

In linear regression, the class consists of linear functionals
for and , and it typically

uses the square loss function . The regression
problem (1) can then be solved directly using linear operations.
This OLLSR is very simple, intuitive, and has a low compu-
tational complexity, but it cannot find nonlinear dependencies
between the features and the target variable. We assume that the
reader is already familiar with OLLSR.

B. Support Vector Regression

Support vector regression solves the regression problem by a
technique analogous to the support vector machine (SVM) [21]
approach to classification. In the simplest version, the class
still consists of linear functionals , but the
loss function combines an -insensitive error with the norm of

if
otherwise.

The first term is a measure of complexity, with less complex
functionals given preference to prevent overfitting. The second
is a measure of loss which ignores the error of near-correct esti-
mates. The latter causes the optimization problem (1) to become
sparse and only a few of the training instances become the sup-
port vectors which influence the outcome: the result is better
generalization and faster estimation. Furthermore, we will see
in Section V that estimation is subject to a few extreme outliers;
replacing a square loss function with one which is linear (above
the threshold ) may help counterbalance this. The parameter
controls how the two terms are balanced.
In this work we will combine the SVR technique with the

“kernel trick” [22] which replaces the usual scalar product
with, in our case, the Gaussian kernel

. Kernelized SVR can reveal more complicated nonlinear
dependencies at the cost of increased computational complexity.
For more details we refer to the tutorial [21].
There are three hyper-parameters that need to be set prior to

training [solving(1)]: the penalization parameter , the width of
the Gaussian kernel , and the insensitivity of the loss function
. The choice of the hyper-parameters has a significant influence
on the ability of the estimator to generalize (to accurately esti-
mate the change rate on samples not in the training set). Since
there is no optimal method to set them, in experiments presented
in Sections III and IV, we used a search on a predefined set of
triplets , on which the generalization was estimated by
five-fold cross-validation over the training set. To decrease the
computational complexity, the search used two phases.
In the first phase, the generalization was measured on the fol-

lowing grid:

The triplet with the least error on was used to
seed the search in the second phase, which was performed on
the grid
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In each iteration, the point with the least generalization error
was checked to see whether it lay on the grid boundary. If so, the
error was estimated on the neighboring points from the set
and the check was repeated. If not, the search was stopped and
the triplet with the least estimated generalization
error was used for training.
The two-phase search is used to ensure that the point with the

least estimated generalization error is not the boundary point of
the explored set. Under the assumption that the generalization
error surface is convex, which generally holds for the vast ma-
jority of practical problems, this algorithm keeps the number of
explored points relatively low, while returning a suitable set of
hyper-parameters.

III. STEGANALYSIS IN TRANSFORM DOMAIN

In this section, the proposed method is evaluated by con-
structing quantitative steganalyzers for eight steganographic
algorithms for JPEG images: JP Hide&Seek (JPHS) [23], Jsteg
[24], Model Based Steganography without deblocking (MBS1)
[25], MMx [26], F5 with shrinkage removed by wet paper
codes with matrix embedding turned off (nsF5) [27], OutGuess
[28], Perturbed Quantization [29] (PQ), and Steghide [30]. The
chosen steganographic algorithms employ a variety of different
embedding mechanisms. PQ and MMx use side information in
the form of the uncompressed image during embedding.

A. Setup of Experiments

The image sets for experiments reported here, and in the
next section, were all derived from a mother database called
the CAMERA database. This database contains approximately
9200 images taken by 23 different digital cameras in their native
resolution in raw format (no in-camera JPEG compression).
The size of the images ranges from one to six megapixels.
For the purpose of steganalyzing JPEG images in this sec-

tion, all CAMERA images were first converted to gray-scale
and then single-compressed with JPEG quality factor 80 (the
MMx algorithm requires the uncompressed gray-scale image).
The only exception were images used in the experiments with
Perturbed Quantization [29] (PQ) where the cover images
were double-compressed with primary quality factor 85 and
secondary quality factor 70.1 These two quality factors were
chosen in order to maximize the capacity of PQ.
All images were divided into two sets of equal size (approx-

imately 4600 images per set). One set was used exclusively for
training the estimator, while the other set was used for evalu-
ating its accuracy. The stego images were created by embed-
ding a random message of (uniform) random length between 0
and , where is the maximum embeddable payload
for each combination of the embedding algorithm and the cover
image.
As a feature set , we used the 274-PEV feature set from

[14]. Since the features are sensitive not only to the payload, but
also to the image size (i.e., they are not properly normalized),
we have augmented the features with the number of nonzero
DCT coefficients . The additional 275th feature improves the

1PQ embeds messages while recompressing the cover JPEG image with a
different quality factor.

accuracy of the steganalyzer, helping it to adjust to different
values of features on images of different size.
All 275-PEV features were normalized to have zero mean

and unit variance. The normalization coefficients were always
calculated on the training set of cover images.

B. Experimental Results

Two quantitative steganalyzers trained on the same training
set were created for each steganographic algorithm: one created
using OLLSR, the other one was constructed using kernelized
SVR as outlined earlier.
Fig. 1 shows a scatter plot of the change rates estimated by

SVR steganalyzers versus the true values. Because the error dis-
tribution of quantitative steganalyzers often exhibits heavy tails
[31] (and Section V confirms this observation for our stegana-
lyzers as well), the performance is evaluated using robust sta-
tistics. Table I displays the estimator bias, defined as the mean
observed error, and two measures of estimator dispersion: in-
terquartile range of observed error (denoted IQR) and mean
absolute observed error (denoted AE). The most robust mea-
sure is IQR, which is completely insensitive to outlier estimates;
AE retains some sensitivity to outliers but does not suffer from
the same leverage as, for example, sample variance.
We can see most quantitative steganalyzers for transform do-

main steganography have good performance, with IQR of the
estimation of relative change-rate of the order of and an
order of magnitude lower bias (recall that the quantity estimated
is the change rate, which is on a scale from 0 to 1). All estima-
tors show a few outlier values. Despite the fact that the attacked
steganographic schemes employ very different embedding oper-
ations and strategies, the steganalyzers provide rather accurate
estimates. However, the estimator for the PQ algorithm is ac-
curate only for small payloads (less than 0.2 bpac). For larger
payloads, the estimator basically fails despite the fact that a bi-
nary classifier for the presence or absence of stego data, based
on the same feature set, works quite well for all payloads [27].
We carefully investigated this phenomenon: it arises because

the cluster of stego-image feature vectors seriously deforms
with increasing payload rather than being moved rigidly in
one direction by a vector whose length depends on the change
rate. This phenomenon makes it difficult for the estimator to
learn the relationship between cover and stego features as a
function of the change rate. We confirmed this by measuring
the average distance between the clusters of cover and stego
images as well as the distances between the cover image and
its corresponding stego image in the feature space. While each
image appears to have been shifted by a vector whose length
monotonically increases with the change rate, the difference
between the means of cover and stego features stops increasing
at around 0.2 bpac.
The OLLSR estimator has a slightly higher dispersion, but

exhibits a lower bias for several embedding algorithms, than
the SVR estimator. The fact that the OLLSR accuracy is of the
same order as the corresponding SVR estimator suggests that
the features shift almost linearly with the number of embedding
changes. Despite the slightly higher dispersion, the OLLSR re-
gression offers an attractive choice, because of its low computa-
tional complexity: training the SVR, which includes the search
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Fig. 1. Scatter plot showing the estimated change rate with respect to the true change rate for eight JPEG domain embedding algorithms, and one spatial domain
embedding algorithm. All estimates were made on images from the testing set, using SVR with Gaussian kernel. The dashed line corresponds to perfect estimation.
(a) JPHS. (b) Jsteg. (c) MBS1. (d) MMx. (e) nsF5. (f) Outguess. (g) PQ. (h) Steghide. (i) LSB matching.

TABLE I
INTERQUARTILE RANGE (IQR), MEAN ABSOLUTE ERROR ( AE), AND BIAS, FOR THE OLLS ESTIMATOR AND SVR WITH

GAUSSIAN KERNEL, ON EIGHT JPEG DOMAIN AND TWO SPATIAL DOMAIN STEGANOGRAPHIC ALGORITHMS

for the hyper-parameters, takes about one day on a 64-bit AMD
Opteron 2.4-GHz computer, but OLLSR regression on the same
machine takes less than 1 min.
Using this “cookie-cutter” approach, we were able to con-

struct quantitative steganalyzers for algorithms such as JPHS
and MMx, where none previously existed in the literature.2

Moreover, as will be explored in more detail in Section VI in
the case of Jsteg, where previous quantitative steganalyzers

2A quantitative steganalyzer for MBS1 has been constructed in [10]. The con-
struction was essentially the same as the one used in this paper. The only differ-
ence is in the used regression algorithm.

do exist, the estimator built from the 275-PEV feature set
comfortably outperforms them.

IV. STEGANALYSIS IN SPATIAL DOMAIN

In Section III, the newly proposed methodology for con-
structing quantitative steganalyzers was demonstrated on
algorithms that embed in JPEG images. To further prove its
utility, in this section we apply the same approach to algorithms
that embed in the spatial domain. We will concentrate on LSB
matching (LSBM, also called embedding), the stegano-
graphic method that hides message bits in LSBs of pixels by
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randomly modifying their values by . Despite its simplicity,
LSB matching has proved to be difficult to reliably detect even
at relatively large payloads of 0.1 bits per pixel (bpp). Although
there exist some feature-based steganalyzers detecting LSB
matching [15], [17], [32], [33], to the best of our knowledge
there is only one quantitative steganalyzer, reported in [9], and
it has a rather poor accuracy.
As before, we construct the quantitative steganalyzer by

means of the SVR following the method described in Section II.
As a feature set , we used the “second-order SPAM features”
[15], which have dimension 686, augmented by the number of
pixels in the image as an additional 687th feature. We chose
this feature set due to its popularity and ability to detect LSB
matching.
The images for our experiments were taken from the

CAMERA database and converted to gray-sale by the con-
vert program from ImageMagick package [34]. Using LSB
matching, a random message of random length between 0
and ( is the number of pixels in the image) was
embedded in each image. Half of the images were used to train
the estimator, with the other half used to evaluate its accuracy.
Fig. 1(i) shows the estimated change rates against true change

rates, and the estimator bias and dispersion appear in Table I.
The estimator is less accurate than those for embedding in JPEG
images. This is most likely due to the fact that the embedding
changes in the spatial domain are well masked by noise al-
ready present in digital images. Because the noise component
is largely suppressed in JPEG coefficients due to quantization,
it is also easier to detect the pseudorandom changes made to
the quantized coefficients. Previously published studies confirm
the difficulty of detecting LSB matching in the spatial domain
over JPEG steganography [15], [27]. Table I shows that the er-
rors of steganalyzers in spatial domain are approximately one
magnitude larger than of steganalyzers for DCT domain. Table I
also shows the performance of the same estimator trained and
tested on LSB replacement (LSBR) embedding, which has been
shown to be substantially weaker than LSB matching [4], [5],
[35]; these results show that the SPAM features are not able to
makemuch use of the additional weaknesses in the LSB replace-
ment embedding.

V. DETAILED ERROR ANALYSIS

Motivated by the presence of outlier estimates visible in
Fig. 1, this section presents a breakdown of the errors in the
quantitative steganalyzers for nsF5 and Jsteg (using 275-PEV
features), and LSB matching (using SPAM features). We chose
those two JPEG algorithms because their simple embedding
mechanism allows precise control of the number of embedding
changes. We are interested in the extent of the outliers and
how variation in cover, payload, and their random correlations,
contribute to estimation error.
In general, the payload size estimation error can be decom-

posed into three parts, as first described in [31] and extended
in [36]. When a payload is embedded, because the number of
embedding changes depends on random correlations with the
cover, the changes do not indicate exactly the size of the pay-
load. In our experiments, we have eliminated this deviation by
working directly with the number of embedding changes. This

error, however, may have a nonnegligible effect when the esti-
mator is applied to genuine stego images, and we call it change-
rate uncertainty (CRU). The remaining error can be partly at-
tributed to random placement of the payload within the cover,
the so-called within-image error (WIE), and the rest to the prop-
erties of the cover itself, called the between-image error (BIE).
These errors are not independent, but can be approximately sep-
arated and compared by repeatedly embedding different pay-
loads in each cover.
We selected six embedding change rates,

, and embedded
200 random payloads into each of the approximately 4600
images in the training set, using Jsteg, nsF5, and LSB matching.
We term each combination of the embedding algorithm,
change rate, and cover image, a cell, so that each cell contains
estimates of 200 equally sized but differently located payloads
(except for cells with no payload, for which there is only one
possible object per cover).
First, we consider the shape of the within- and between-image

errors: picking a single cell of the Jsteg steganalyzer, we display
a log-log empirical cumulative distribution function (cdf) plot
for the 200 estimates in Fig. 2. The data has been normalized to
zero mean, and the Gaussian fit is selected to match the sample
variance: it appears to be excellent, and we see similar results
across all steganalyzers, images, and embedding rates. A sum-
mary of these fits is found in the first columns of Table II: we
computed Shapiro-Wilk tests [37] for normality in every cell,
and display the proportion of cells with values above 0.1. If
the cells are truly Gaussian, we would expect that 90% of cells
would pass this test; here, any deviation from normality is small
enough to be undetectable with 200 samples per cell.
The cell means describe the between-image error, and we

plot log-log empirical cdfs for one particular embedding rate in
Fig. 2. These data are clearly not Gaussian, but there is a good
fit with the Student -distribution. These results accord closely
with what was observed for heuristic LSB replacement estima-
tors in [36] and [31] (it is surprising that quantitative steganal-
ysis of JPEG embedding via SVR displays the same character-
istics as structural steganalysis of spatial-domain embedding,
given that their modes of operation are so different). An im-
portant consequence of this observation is that it is unsound to
measure estimator variance, standard deviation, or mean square
error: the true estimator variance may be infinite, or even if fi-
nite the sample statistic will converge only very slowly to the
true value.
Finally, we compare the magnitudes of the within- and be-

tween-image errors, also including the theoretical predictions
for embedding change rate uncertainty which is given by a
simple Binomial distribution whose dispersion depends on the
number of embedding locations. For this analysis, bias is dis-
counted. Because of the heavy tails in the between-image error,
we use interquartile range (IQR) as a highly robust measure of
spread. For six embedding change rates, the IQRs of these three
error factors are displayed in Table II. Because the CRU and
WIE vary a small amount between covers, the table displays
the average values for these IQRs.
The magnitude of the CRU is generally negligible. For BIE

and WIE, the behavior of the JPEG steganalyzers differs from
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Fig. 2. Log-log tail plots of empirical distributions of (left) within- and (right) between-image errors, for the Jsteg steganalyzer. Gaussian and Student- fits are
shown.

TABLE II
PROPORTION OF CELLS PASSING A SHAPIRO-WILK (S-W) TEST FOR NORMALITY OF WITHIN-IMAGE ERROR, AT 10% SIGNIFICANCE;

COMPARISON OF MAGNITUDES OF BETWEEN-IMAGE ERROR (BIE), WITHIN-IMAGE ERROR (WIE), AND CHANGE RATE
UNCERTAINTY (CRU), MEASURED BY INTER-QUARTILE RANGE, FOR SIX EMBEDDING CHANGE RATES ( )

the spatial-domain case: for the latter, the dispersion of WIEs
are not negligible, even for fairly small embedding rates. This
is also in contrast to the structural steganalyzers considered in
[36] and [31]. Also, the BIE for JPEG domain steganalysis re-
mains stable or increases at larger embedding rates, whereas the
opposite holds for spatial-domain estimators.

VI. COMPARISON WITH PRIOR ART

This section compares the SVR-based quantitative stegana-
lyzers of Jsteg, LSB matching, and LSB replacement with their
heuristic-based counterparts from the literature. Because of the
lack of accurate quantitative steganalyzers, we could not make
comparison with other steganographic algorithms for JPEG im-
ages.3

A. Jsteg

Among themultitude ofmethods described in [8], we selected
Jpairs and Weighted Nonsteganographic Borders Attack (WB)
and compared their performance with our quantitative SVR

3The heuristic quantitative steganalyzer of F5, presented in [1], is based on
an essentially the same idea (regression). It uses a 2d-feature vector (two his-
togram bins) for which an analytic expression for the stego feature vector as a
function of change rate can be derived. Thus, by definition, it will be less accu-
rate, because the used 275-PEV feature vector is a superset of this 2d vector.

steganalyzer. According to [8], the Jpairs quantitative stegana-
lyzer was one of the most accurate quantitative steganalyzers
for Jsteg. The algorithms were compared on the approximately
4600 images in the testing set, by bias and IQR, at 21 embedding
change rates from the set .
Fig. 3 shows that the quantitative steganalyzer constructed by

SVR has almost always better performance than both Jpairs and
WB attacks. Moreover, its performance is more stable with re-
spect to the change rate. Contrary to the conclusion reached in
[8], we found that the WB attack was more precise than Jpairs
attack; this discrepancy could be caused by us using a different
database of images. Note, though, that Fig. 3 overstates the ac-
curacy of JPairs, because the JPairs method sometimes fails to
produce an estimate at all. This happens most often for large
embedding rates: for , as many as one third of esti-
mates fail. The SVR and WB methods never fail to produce an
estimate.

B. LSB Matching

To the best of our knowledge, the only quantitative stegana-
lyzer of LSB matching is based on maximum likelihood prin-
ciple [9]. We compared the accuracy of this detector with our
solution based on SVR and SPAM features. Since we did not
possess the implementation of the maximum likelihood esti-
mator, we mimicked the testing conditions published in [9, Sec.
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Fig. 3. Comparison with prior art: Jsteg. (Left) Interquartile range and (right) bias of Jpairs, WB, and SVR quantitative steganalyzers.

Fig. 4. Comparison with prior art: LSB matching. Bias and variance of Soukal’s estimator and SVR steganalyzer at five embedding rates.

3.1]. This means that we have used the same image database
(Greenspun database [38]), embedding rates, number of images
for testing (180 images), and the same evaluation criteria (bias
and variance4). We have been also careful to avoid using testing
images for training the SVR estimator.
Results for five different payloads are summarized in Fig. 4

and Table III. We can see that our estimator has approximately
three orders of magnitude lower variance than Soukal’s, and
one order of magnitude smaller bias. Here, we need to point
out that images in Greenspun database used in this experiment
were JPEG compressed (at quality factor 75), which signifi-
cantly simplifies the steganalysis in spatial domain.

C. LSB Replacement

Unlike quantitative steganalyzers for LSBmatching, state-of-
the-art quantitative steganalyzers for LSB replacement are very
accurate because they exploit an asymmetry in the parity struc-
ture of the embedding process. The SPAM features we have

4Although we stated in Section V that variance is not good for evaluation of
the quality of the estimator, we made an exception here, because Soukal’s work
reports errors by bias and variance.

TABLE III
COMPARISON WITH PRIOR ART: LSB MATCHING. BIAS AND

VARIANCE OF SOUKAL’S ESTIMATOR AND SVR
STEGANALYZER AT FIVE EMBEDDING RATES

used for spatial domain steganalysis do not expose this asym-
metry. We compared the accuracy of SVR-based steganalyzer
of LSB matching presented in Section IV to Sample Pairs anal-
ysis (SPA) [2] and improved WS estimator [39]. According
to [39], the improved WS method is the most accurate esti-
mator for LSB replacement in the spatial domain. Fig. 5 com-
pares bias and IQR on 21 different embedding change rates

.
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Fig. 5. Comparison with prior art: LSB replacement. (Left) Interquartile range and (right) bias of WS, Sample Pairs, and SVR quantitative steganalyzer.

As expected, Sample Pairs analysis and improved WS esti-
mators offer an order of magnitude higher accuracy than the
SVR-based estimator. We strongly believe that this is only due
to the fact that SPAM features do not exploit the parity asym-
metric embedding operation of LSB replacement.

VII. CONCLUSION

Quantitative steganalyzers were so far available only for a
small set of specific embedding methods, because their design
was inherently very difficult. Until now, their design was driven
by heuristics and the intuition of the steganalyst, and it required
a complete knowledge of the attacked steganographic scheme.
A solid foundation enabling easy construction of quantitative
steganalyzers for an arbitrary scheme was missing.
This paper presented a method to construct quantitative ste-

ganalyzers in a fashion similar to blind steganalyzers, based on
the combination of steganographic features and a pattern recog-
nition algorithm. Themain idea is to use steganographic features
and learn the relationship between the features’ location and the
change rate using regression.
The presented method assumes that the steganalyst possesses

steganographic features that react predictably to the number
of embedding changes. On the example of seven out of eight
steganographic algorithms in the JPEG domain, as well as
LSB matching and LSB replacement in the spatial domain, we
have successfully demonstrated that the assumption holds for a
wide variety of steganographic schemes: it failed for one JPEG
steganographic scheme (Perturbed Quantization), which al-
lowed only small payloads to be estimated. Using the proposed
method, we were able to construct quantitative steganalyzers
for stegosystems for which no quantitative attacks existed.
Because of this lack of prior art, we could compare the perfor-
mance only to a limited set of steganalysis methods for Jsteg,
LSB matching, and LSB replacement. Similar to previously
proposed quantitative steganalyzers, the within-image error of
the proposed steganalyzers is significant in magnitude and the
between-image error exhibits heavy tails. This means that care
must be exercised to use robust measures of accuracy: variance
and mean square error are unsound in such a circumstance.

We believe that the application of the presentedmethod in ste-
ganalysis is vast. The new approachmay provide a better control
of the false-positive rate in targeted blind steganalysis (blind ste-
ganalyzer trained as targeted) due to the fact that the estimated
change rate is a scalar quantity. Another tempting possibility is
to combine existing quantitative LSB estimators, such as Triples
[5], SPA [35], and WS [39], and use them together in the pro-
posed framework to construct a new quantitative steganalyzer
with higher accuracy.
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