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ABSTRACT

Square root laws state that the capacity of an imperfect stegosystem – where the embedding does not preserve
the cover distribution exactly – grows with the square root of cover size. Such laws have been demonstrated
empirically and proved mathematically for a variety of situations, but not for nonstationary covers. Our aim
here is to examine a highly simplified nonstationary source, which can have pathological and unpredictable
behaviour. Intuition suggests that, when the cover source distribution is not perfectly known in advance, it should
be impossible to distinguish covers and stego objects because the detector can never learn enough information
about the varying cover source. However we show a strange phenomenon, whereby it is possible to distinguish
stego and cover objects as long as the cover source is stationary for two pixels at a time, and then the capacity
follows neither a square root law nor a linear law.
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1. INTRODUCTION

Imperfect steganography, where the embedding does not preserve all the statistics of the cover, is very different
from perfect steganography. Although there are theoretical constructions for the latter, the former applies to all
known practical steganographic embedding in digital media, text, and other non-artificial sources, because the
cover source distributions will never be perfectly known1 and so cannot be preserved exactly. And the capacity
of the two scenarios differs fundamentally: perfect steganography typically allows embedding of payload linear
in the size of the cover (at up to the entropy rate of the cover source2), whereas the “Square Root Law” applies
to imperfect embedding.

Square root laws have been demonstrated empirically,3 and proved for a variety of situations, including various
models of cover and imperfect embedding,4–6 but the case of nonstationary covers has never been considered.
Our aim here is to examine a highly simplified nonstationary source: a binary stream where the probability of
the two symbols can vary arbitrarily at every step. Even given access to another cover source with synchronized
probabilities, it should be impossible to distinguish covers and stego objects because the detector can never learn
enough information about a constantly varying source. This turns out to be true as long as the embedding
preserves the first-order statistics of the cover source (a much weaker condition than perfect security). However
we show a strange phenomenon, whereby it is possible to distinguish stego and cover objects, given a synchronized
cover oracle, as long as the cover source is stationary for two symbols at a time, and then imperfect embedding
capacity follows an intermediate law, O(n3/4) where n is the cover size.

We stress that these results apply to a completely artificial model and we do not claim that it reflects the
practice of steganography in digital media. Nonetheless, it demonstrates that asymptotically perfect detection is
possible for nonstationary sources (given a synchronized cover oracle). Moreover, the dichotomy between linear
capacity laws (perfect steganography) and square root laws (imperfect steganography) is not necessarily correct.
It also highlights the importance for first-order security, even when perfect security is impossible.

We will briefly review the classic square root law in Sect. 2 then turn to constantly varying sources in Sect. 3,
where we prove capacity laws for the cases of perfect and imperfect knowledge. The results are briefly discussed
in Sect. 4.
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Throughout the paper, vectors will be denoted boldface (X, µ, 0 the zero vector) and matrices as uppercase
Greek (Σ, I the identity). The notation X ∼ N(µ,Σ) indicates that the random vector X has the multivariate
normal distribution with mean µ and covariance matrix Σ, including the case when Σ is singular. The notation
S ∼ M(n,φ) indicates that S has the multinomial distribution, where n samples are allocated into categories
with respective probabilities φ. X ∼ U[0, 1] indicates a uniform random scalar. E[−] denotes expectation, and
Var[−] the variance (covariance) matrix of a random scalar (vector). IA is the indicator random variable for the
event A. The Kullback-Leibler (KL) divergence between two distributions will be denoted DKL(X ‖Y ), where
X and Y are random variables or vectors with the distributions concerned.

2. SQUARE ROOT LAWS

In the terminology of statistics, a detector is a hypothesis test. Typically there is a scenario which depends on
a number of parameters, including a problem size n, all of which are known except for a single unknown (things
are more complex when additional parameters are unknown, as we shall discuss later). The detector is to decide
between (usually) two values for the unknown parameter. In the case of steganalysis, the parameter n is usually
the size of the cover object, and the unknown parameter is γ, the rate of embedded payload for which the two
cases are zero or some known, positive, alternative∗. Square root laws concern the accuracy of the detectors,
asymptotically as n → ∞, when γ bears some asymptotic relationship to n.

To shorten the statement of our results, we introduce some convenient terminology for situations which appear
in the literature on square root laws:

(i) We say that there is asymptotically perfect detection if there exists family of detectors (parameterised by n)
such that, for sufficiently large n, the false positive and false negative error rates become arbitrarily small.
In statistics this concept is referred to as consistency.

(ii) We say that there is asymptotic perfect security if, for every possible detector and any given bound, for
sufficiently large n the detector’s error rates exceed the bound.

These embody the two cases of an embedder’s ever-increasing, or ever-decreasing, risk which appeared in the
very first publication on the capacity of imperfect stegosystems.7 In this paper, we will also prove some results
which say that there is no asymptotically perfect detection: this is an intermediate situation in which we can say
that the embedder’s risk of perfect detection does not tend to one, but neither does it guarantee that the risk
tends to zero.

We now re-state the simplest possible square root law (even simpler than that found in Ref. 4, from which
the proof can be adapted). It applies to “hiding” in independent and identically distributed (i.i.d.) random bit
streams, where the hiding involves (pseudorandomly) replacing cover bits with stego bits which have a different
distribution. In practice this need not be literal replacement: it also covers the case where the cover bits are
modified in any way which does not preserve their distribution.

Theorem 1. Suppose that a cover consists of n bits, independent and identically distributed, taking value 1
with fixed probability p 6= 0, 1. Each cover bit may be replaced by a stego bit, and the stego bits are independent
of everything else, taking value 1 with probability q 6= p. Suppose that each location is used as a stego bit with
probability γ, independent of everything else. As n → ∞,

(i) if γ
√

n → ∞ then there is asymptotically perfect detection;

(ii) if γ
√

n → 0 then there is asymptotic perfect security.

Note that we ruled out the case of deterministic covers (p = 0 or 1) and perfect embedding (p = q). It is of
key importance that the embedding be imperfect, i.e. it does not preserve the cover distribution exactly. We, and
others, have argued1,6 that it is a practical impossibility for embedding to preserve completely the distribution
of realistic covers, though later in this paper we will consider a weaker form of distribution-preservation which
is achievable.

∗In fact, it will not make any difference to our results whether the alternative is known or not, because all the tests

we construct are uniform in γ.



The embedding probability γ is related to the nominal payload size which caused the embedding changes: in
the absence of adaptive source coding, the payload size m would be proportional to γn. Hence m = O(

√
n) is

the critical rate: asymptotically perfect detection is possible above this rate, asymptotic perfect security holds
below it. Thus a square root law.

The model of covers is highly simplified, but the same result can be shown for covers with arbitrary numbers
of pixel colours,4 where the covers form a Markov chain,5 for payload which is of fixed size (rather than each
location being used independently at random),4 and equivalent results for embedding using adaptive source
coding.8 Note that in Theorem 1 the detector must know the value of p, which is to say that they must have
perfect knowledge of the cover source. An interesting alternative is that they learn about the cover source from
a cover oracle, and a suitably modified square root law is proved in Ref. 6. Our aim in this paper is to consider
whether a related result could possibly hold for nonstationary sources.

3. THE SIMPLEST PATHOLOGICALLY NONSTATIONARY SOURCE

We consider a very simple nonstationary cover source, which represents a severe challenge. We continue to sup-
pose that the cover consists of independent bits, which we denote (X1,X2, . . .), but suppose that the probability
of a 1 bit can vary at every step. That is, Pr[Xi = 1] = pi, where pi is some arbitrary sequence in (0, 1). This
represents a very difficult cover to perform steganalysis on, as its future behaviour is completely unpredictable
from past behaviour. We also assume that stego bits can vary in probability, again changing arbitrarily often,
so that if pixel i is used as a stego location then Pr[Xi = 1] = qi. Again, (qi) may be arbitrary. Since are
considering imperfect steganography, we assume that qi 6= pi for all i, though it is sufficient for the inequality to
hold for any positive proportion of indices.

We need to rule out pi = 0, 1 so that the cover is not deterministic at any point, and we also need to rule
out the fiddly situations pi → 0, pi → 1, or pi − qi → 0 as i → ∞; this last would mean that the distribution
of stego bits converges to that of cover bits, which would certainly disturb any asymptotic results. To exclude
these, and similar, cases we will make the following broad assumption:

(∗) ∃ǫ > 0 such that, for all i, ǫ ≤ pi ≤ 1 − ǫ, and |qi − pi| ≥ ǫ.

It is possible to perform a more delicate analysis, giving a slight weakening of (∗) without changing the conclusions
of our results, but it complicates the exposition and we are content with the assumption as stated.

3.1 Perfect Knowledge

First consider the case analogous to Theorem 1, when the detector has perfect knowledge of the distribution of
cover and stego bits. With nonstationary sources, this means knowledge of all pi and qi. Then the nonstationarity
presents no particular difficulty:

Theorem 2. Suppose that a cover consists of n independent bits, and bit i takes value 1 with probability pi. If
replaced by a stego bit, bit i will take value 1 with probability qi instead. Each location is used as a stego bit with
probability γ, independent of everything else. Also, assume (∗). Then, as n → ∞,

(i) if γ
√

n → ∞ then there is asymptotically perfect detection;

(ii) if γ
√

n → 0 then there is asymptotic perfect security.

Proof. The proof is very similar to that of Theorem 1, mutatis mutandis. For convenience, let us write
ri = qi − pi.

For (i) we construct an asymptotically perfect detector as follows. Let (X1,X2, . . .) be the observed binary
stream and set

T =

n
∑

i=1

(Xi − pi)ri. (1)



Each bit is a random mixture, in the ratio 1 − γ : γ, between the streams with probability (pi) and (qi), and
everything is independent of everything else, so P (Xi = 1) = pi + γri. Hence

E[T ] = γ

n
∑

i=1

r2
i ≥ γcn, Var[T ] =

n
∑

i=1

r2
i (pi + γri)(1 − pi − γri) ≤ dn, (2)

where c and d are positive constants. The inequalities are justified by (∗), which ensures that all sums are linear
in n.

Of course, E[T ] = 0 if γ = 0. So we define a detector to give a positive detection if T > k
√

n, where k is a
positive constant. The probability of a false positive is

Pr[T > k
√

n] ≤ Var[T ]
(

k
√

n − E[T ]
)2 ≤ dn

(k
√

n)2
=

d

k2
,

by Chebychev’s inequality, and this can be made arbitrarily small by large enough choice of k. By the same
argument, the probability of a false negative is

Pr[T ≤ k
√

n] ≤ Var[T ]
(

E[T ] − k
√

n
)2 ≤ dn

(γcn − k
√

n)2
→ 0

as long as γ
√

n → ∞, regardless of k. Thus we have constructed a detector with arbitrarily small error rates for
sufficiently large n.

For (ii), consider the KL divergence between two individual bits X and X ′, which take 1 with probabilities
p and p + γr, respectively:

DKL(X ‖X ′) = −p log
(

1 + γ rp
)

− (1 − p) log
(

1 − γ r
1−p

)

≤ γ2 r2

p(1 − p)
,

the inequality holding at least as long as γ is sufficiently small that the arguments to both logarithms are at least
1
2 , whereby we can apply log(1 + x) ≥ x − x2. Therefore, because all bits are independent, the KL divergence
between a sequence of cover bits X and a sequence of stego bits X′ satisfies

DKL(X ‖X′) =

n
∑

i=1

DKL(Xi ‖X ′
i) ≤ γ2

n
∑

i=1

r2
i

pi(1 − pi)
→ 0

if γ
√

n → 0, again using (∗) to ensure that the sum is linear in n.

This ensures that the distributions ofX andX′ converge for sufficiently large n, and any detector attempting
to distinguish them has arbitrarily high error rates: a standard argument using the data processing theorem, for
example as in Ref. 7. �

So the situation is similar to the classic square root law but with one significant difference: the asymptotically
perfect detector (1) uses knowledge of all qi as well as all pi, whereas in the classic case it is not required to know
q as well as p. In the nonstationary case, it is necessary at least to know whether qi > pi or pi > qi, so that a
“1” in place i represents a little piece of evidence in favour of, or against, a positive detection.

3.2 Imperfect Knowledge and Parallel Streams

Now consider the case, analogous to that in Ref. 6, where the detector does not have knowledge of the cover
source, i.e. is ignorant of (pi), but must learn about the cover from an oracle. The oracle is useless if its bit
probabilities change independently of the embedder’s source, so let us assume that the cover oracle is synchronized
with that of the embedder. This means that the detector sees two parallel streams of bits, one a guaranteed
cover (Xi), with arbitrarily varying probabilities pi = Pr[Xi = 1], and one a potential mixture of cover and stego,



(Yi) with Pr[Yi = 1] = pi + γ(qi − pi) for an arbitrary sequence qi. Either γ = 0 (no steganography) or γ > 0
(steganography present). We may assume that γ the embedding rate, if not zero, is known to the detector, but
in fact it will turn out that the detector will not use such knowledge. The detector is supposed to be ignorant
of the sequence (pi), and we will also assume that they are ignorant of (qi) too, although this is inessential.

In this situation it is not always possible fully to distinguish cover and stego streams, even if the embedding
rate does not diminish at all:

Theorem 3. Given the observations

(Xi), with Pr[Xi = 1] = pi, and (Yi), with Pr[Yi = 1] = pi + γ(qi − pi),

assuming (∗), there does not necessarily exist a detector that is ignorant of (pi) and can distinguish γ = 0 and
γ > 0 with asymptotically perfect detection, even if γ does not diminish.

This is true because, given no knowledge of the pi or qi, the detector is forced to rely on first-order statistics,
and there exist sources for which the first-order statistics are identical even when the cover and stego distributions
are not.

Proof. It is useful to write indicator random variables for the four possible occurrences at each position in the
parallel streams (Xi) and (Yi):

Z0
i = I(Xi,Yi)=(0,0)

Z1
i = I(Xi,Yi)=(0,1)

Z2
i = I(Xi,Yi)=(1,0)

Z3
i = I(Xi,Yi)=(1,1)

and the probabilities π
j
i = Pr[Zj

i = 1], if p′i = pi + γ(qi − pi), and as usual writing ri = qi − pi,

π0
i = (1 − pi)(1 − p′i) = (1 − pi)

2 − (1 − pi)γri

π1
i = (1 − pi)p

′
i = pi(1 − pi) + (1 − pi)γri

π2
i = pi(1 − p′i) = pi(1 − pi)− piγri

π3
i = pip

′
i = p2

i + piγri.

(3)

We must consider what it means for a detector to be ignorant of (pi) (and perhaps also of (qi)). As discussed
in Refs. 6 and 9, it can be difficult to impose a lack of knowledge. For any sequence (pi) an asymptotically
perfect detector does exist: it is the one from the previous section, which happens to have the correct sequence
(pi) hardwired into it. In Ref. 6 we solved the problem by imposing unbiasedness on the detector. Here, we have
a more attractive option: a detector ignorant of (pi) is certainly ignorant of any permutation applied to (pi), so
its behaviour should be the invariant under all permutations to the observations (Xi, Yi). This is the statistical
property of invariance (see, for example, chapter 6 of Ref. 10) and in our case it forces a detector to make a
decision solely from the number of occurrences of the different cases (Xi = 0, Yi = 0), (Xi = 0, Yi = 1), etc.,
rather than the positions in which they occur. This is intuitive, as well as statistically rigorous.

So an ignorant detector is required to decide whether γ = 0 or γ > 0 based on the 4-dimensional vector
S = (S0, S1, S2, S3), where Sj =

∑

i Z
j
i . This amounts to saying that only the first-order statistics of the

observations can be considered, and points the way to an example of cover and stego distributions which cannot
be perfectly separated.

To prove our result, it suffices to find one example of sequences (pi) and (qi), satisfying (∗), for which no
asymptotically perfect detector distinguishes γ = 0 and γ > 0 . We use

pi = 1
2 , qi = 1

2 + (−1)iǫ, (4)

where ǫ is any positive number strictly less than 1
2 . In which case, (3) gives π0

i = π2
i = 1

4 − (−1)i ǫ2γ and
π1
i = π3

i = 1
4 + (−1)i ǫ2γ.



We may assume that the number of observations is even, say 2n. We decompose S into the parts arising
from odd and even positions:

Sj = T
j
1 + T

j
2 , T

j
1 =

n−1
∑

i=0

Z
j
2i+1, T

j
2 =

n
∑

i=1

Z
j
2i,

and note that the corresponding vectors T1 and T2 are both examples of multinomial distributions with four
possible outcomes

T1 ∼ M(n,φ), T2 ∼ M(n,ψ), where

φ = (1
4 + ǫ

2γ, 1
4 − ǫ

2γ, 1
4 + ǫ

2γ, 1
4 − ǫ

2γ),

ψ = (1
4 − ǫ

2γ, 1
4 + ǫ

2γ, 1
4 − ǫ

2γ, 1
4 + ǫ

2γ).

The rest of the proof is conceptually simple, but technically difficult. The idea is to use the convergence
of the multinomial to the multivariate normal distribution (the multivariate central limit theorem, see e.g. 2.18

of Ref. 11) which states that T1

·∼ N(nφ, nΣφ) with Σφ some covariance matrix depending on φ. Similarly,

T2

·∼ N(nψ, nΣψ), hence S
·∼ N

(

n(φ+ψ), n(Σφ + Σψ)
)

. Since φ+ψ = (1
4 , 1

4 , 1
4 , 1

4 ) is a fixed mean, we would

appeal to Lemma 6, in the Appendix, to deduce that no asymptotically perfect detector exists. However, “
·∼”

here is not a mode of convergence which applies to probabilities of false positive and negative. Furthermore, Σφ
and Σψ are singular.

We now address these technical issues. The reader may safely skip the rest of the proof.

In order to relate a detector for a limiting distribution with its performance on approximants, we need a
strong version of convergence. Recall that the total variation between random variables or vectors X and Y

(strictly speaking, between their distributions), is given by

DTV(X ‖Y ) = sup
A

∣

∣Pr[X ∈ A] − Pr[Y ∈ A]
∣

∣

where the supremum is over measurable sets. We say that Xn converges in total variation to Y if DTV(Xn ‖Y ) →
0 as n → ∞. See section 2.9 of Ref. 11 for more on total variation.

Let T1 be as above and set V1 ∼ N(nφ, nΣφ), where nΣφ is the covariance matrix of T1 (we need not compute
it, though we note that it will be singular because the components of T1 are constrained to add to n). Although
T1 converges to V1 in distribution, it does not do so in total variation, because T1 is constrained to an integer
lattice while V1 inhabits a 3-dimensional hyperplane in R

4. The solution is to add small random perturbations
to the components of T1, making it into a continuous distribution on the same hyperplane while not completely
destroying its connection to the original, unperturbed, variable: this idea is studied in detail in Ref. 12, from
which we extract the key result. Note that the probabilities in φ are bounded away from 0 (uniformly in γ),
hence their ratios are bounded, and this allows the results of Ref. 12 to be applied.

Define another random vector U1 = (U1 + U2, U1 − U2,−U1 + U3,−U1 − U3) where each U j ∼ U[− 1
2 , 1

2 ].
This is two steps of the recursive construction in Ref. 12, designed to preserve the sum of components, and giving
DTV(T1 +U1 ‖V1) → 0 as n → ∞.

We repeat the construction by adding U2 = (U4 + U5, U4 − U5,−U4 + U6,−U4 − U6) to T2; if V2 ∼
N(nψ, nΣψ), where nΣψ is the covariance matrix of T2, we deduce DTV(T2 +U2 ‖V2) → 0. Finally, set

V ∼ N
(

n(φ+ψ), n(Σφ + Σψ)
)

and apply VIII.10.14 of Ref. 13, deducing that

DTV(S +U1 +U2 ‖V ) → 0. (5)



To apply Lemma 6 we need a multivariate normal distribution with nondegenerate covariance matrix: not
true of V . Thankfully, we can simply eliminate the final component of V without losing any information, since
its components are constrained to sum to n. Let us write V ′ for the 3-dimensional vector thus created. Then

V ′ ∼ N
(

nµ, nΣ(γ)
)

, (6)

with µ = (1
4 , 1

4 , 1
4 ) independent of γ, so we can apply Lemma 6 to deduce that there is no asymptotically perfect

detector for γ = 0 against γ > 0 based on V .

This implies that there cannot be an asymptotically perfect detector based on S +U1 +U2 either, because
for any region R ⊆ R

4 where a positive or negative decision is given, Pr[S +U1 +U2 ∈ R]−Pr[V ∈ R] → 0, by
(5). Of course S+U1 +U2 is a version of S “corrupted” by some noise. Happily, we know that any decision on
S need consider only integer arguments, and there is a strictly positive probability (independent of n) that the
integer part of U1 + U2 will be 0, so there is a strictly positive probability that a decision based on S will be
identical to one based on S +U1 +U2, which in turn must have probability of error not tending to zero. �

We have not proved asymptotic perfect security in this case, and indeed it does not hold: the mean of S does
not depend on γ, but the covariance matrix does, and one can construct detectors based on this difference. Their
performance is better than random, but not asymptotically perfect. Note that, for Theorem 3, it is necessary
that the mean of (6) does not depend on γ. That follows because the overall effect of the embedding, in the
example (4), is first-order secure in the sense that the long-run proportion of 0s and 1s is identical in cover
and stego bit streams. It is clear that the same result would hold for any sequences (pi) and (qi) with the same
first-order statistics. But if the sequences (pi) and (qi) were such that more 1s would be expected in stego streams
than cover streams, or vice versa, a detector could be constructed similar to that in Theorem 1, and under mild
conditions a square root law would hold. In Sect. 4 we will discuss the plausibility of first-order security, given
implausibility of perfect embedding.

The reader might think that this is the whole story: one cannot perform steganalysis in pathologically
nonstationary sources, even when given a reference source with synchronized probabilities, because there is no
time to learn about the source before it changes. However, the situation is different if a very small modification
is made.

Suppose it is known that (pi) and (qi) remain stationary for two bits each time, i.e. p2i = p2i+1 and q2i = q2i+1

for all i. The detector still does not have time for more than a cursory estimation of pi, before it changes. But
even this amount of stationarity unlocks a new detector, with the following performance.

Theorem 4. Given the observations

(Xi), with Pr[Xi = 1] = pi, and (Yi), with Pr[Yi = 1] = pi + γ(qi − pi),

where p2i = p2i+1 and q2i = q2i+1 for all i, and (∗), as n → ∞,

(i) if γn1/4 → ∞ then an asymptotically perfect detector exists;

(ii) if γn1/4 → 0 then there does not necessarily exist a detector, ignorant of (pi), which can distinguish γ = 0
and γ > 0 with asymptotically perfect detection.

Proof. We may assume that the cover size is even (if not, for (i) disregard the last observation and for
(ii) we may permit a detector an additional observation). The proof now follows the same argument as that
of Theorem 3. Considering now pairs of pixels in both cover and stego stream, define indicators for the 16
possibilities

Z0
i = I(X2i,X2i+1,Y2i,Y2i+1)=(0,0,0,0)

Z1
i = I(X2i,X2i+1,Y2i,Y2i+1)=(0,0,0,1)

Z2
i = I(X2i,X2i+1,Y2i,Y2i+1)=(0,0,1,0)

...
...

Z15
i = I(X2i,X2i+1,Y2i,Y2i+1)=(1,1,1,1)



and the probabilities π
j
i = Pr[Zj

i = 1], with p′i = pi + γ(qi − pi) = pi + γri,

π0
i = (1 − pi)

2(1 − p′i)
2 = (1 − pi)

4 − 2(1 − pi)
3γri + (1 − pi)

2γ2r2
i

π1
i = π2

i = (1 − pi)
2p′i(1 − p′i) = pi(1 − pi)

3 + (1 − pi)
2(1 − 2pi)γri − (1 − pi)

2γ2r2
i

π3
i = (1 − pi)

2p′i
2 = p2

i (1 − pi)
2 + 2pi(1 − pi)

2γri + (1 − pi)
2γ2r2

i

π4
i = π8

i = pi(1 − pi)(1 − p′i)
2 = pi(1 − pi)

3 − 2pi(1 − pi)
2γri + pi(1 − pi)γ

2r2
i

π5
i = π6

i = π9
i = π10

i = pi(1 − pi)p
′
i(1 − p′i) = p2

i (1 − pi)
2 + pi(1 − pi)(1 − 2pi)γri− pi(1 − pi)γ

2r2
i

π7
i = π11

i = pi(1 − pi)p
′
i
2 = p3

i (1 − pi) + 2p2
i (1 − pi)γri + pi(1 − pi)γ

2r2
i

π12
i = p2

i (1 − p′i)
2 = p2

i (1 − pi)
2 − 2p2

i (1 − pi)γri + p2
i γ

2r2
i

π13
i = π14

i = p2
i p

′
i(1 − p′i) = p3

i (1 − pi) + p2
i (1 − 2pi)γri − p2

i γ
2r2
i

π15
i = p2

i p
′
i
2 = p4

i + 2p3
i γri + p2

i γ
2r2
i .

(7)

We know that detectors ignorant of (pi) and (qi) must be based solely on the vector S = (S0, . . . , S15) with
Sj =

∑

i Z
j
i .

For (i) we construct an asymptotically perfect detector: the key is to combine the probabilities to ensure that
only terms quadratic in γri appear: this means that γ > 0 always gives a signature of positive sign, whether ri
is positive or negative. A statistic with this property is

T = S3 − S5 − S10 + S12.

(In other words, count the number of times we observe X2i = X2i+1 6= Y2i = Y2i+1 and subtract the number of
occurrences of X2i = Y2i 6= X2i+1 = Y2i+1.)

Write T =
∑

Ti where Ti = S3
i −S5

i −S10
i +S12

i . It is easy to check that E[Ti] = π3
i −π5

i −π10
i +π12

i = γ2r2
i ,

and |Ti| ≤ 1 gives Var[Ti] ≤ 1, so we have

E[T ] = γ2
∑

r2
i ≥ γ2cn, Var[T ] ≤ n.

Now the situation is identical to that in (2), but with γ2 replacing γ. So for identical reasons to those in Theorem
2, part (i), a detector based on T > k

√
n is asymptotically perfect as long as γn1/4 → ∞.

The proof of (ii) is related to that of Theorem 3. We use the same example

pi = 1
2 , qi = 1

2 + (−1)iǫ,

for which (7) gives

π0
i = π4

i = π8
i = π12

i = 1
16 − (−1)i ǫ4γ + ǫ2

4 γ2

π1
i = π2

i = π5
i = π6

i = π9
i = π10

i = π13
i = π14

i = 1
16 − ǫ2

4 γ2

π3
i = π7

i = π11
i = π15

i = 1
16 + (−1)i ǫ4γ + ǫ2

4 γ2.

(8)

Again, we isolate the contribution from odd and even positions,

Sj = T
j
1 + T

j
2 , T

j
1 =

n−1
∑

i=0

Z
j
2i+1, T

j
2 =

n
∑

i=1

Z
j
2i,

where
T1 ∼ M(n,φ), T2 ∼ M(n,ψ)

and φ and ψ are 16-dimensional vectors from (8), with i odd and even respectively.

Define
V ∼ N

(

n(φ+ψ), n(Σφ + Σψ)
)

.



By applying the result from Ref. 12 again, which applies to multinomials of arbitrary dimension, we can deduce
that DTV(S +U ‖V ) → 0 as n → ∞, where U is some combination of bounded, uniform, random numbers (a
more complex combination than in Theorem 3, but this affects nothing).

As before, we can drop the final component, leaving a 15-dimensional random vector which has nonsingular
covariance matrix. This time, the key is to note that, by (8), φ+ψ = µ+γ2ν, where µ and ν do not depend on
γ: there is no first-order term. Hence Lemma 7 applies, which gives no asymptotically perfect detector for γ = 0
against γ > 0 (in fact it gives asymptotically no detection power at all), and the same total variation argument
transfers the conclusion to S. �

In this model of cover and stego streams, γ does have to diminish as n increases, but not as fast as either
the stationary case (Theorem 1) or the perfect knowledge nonstationary case (Theorem 2). The rate must be
γ = O(n−1/4), which would mean (in the absence of source coding) a payload size of order n3/4. One might
expect that the law changes, moving towards a payload of order n1/2, if the cover source has to be stationary for
more than two bits at a time, but this is not the case. Exactly the same result holds in more restrictive cover
models, where pi and qi are allowed to vary only once every k steps:

Theorem 5. For any k ≥ 2, if pki = pki+1 = · · · = pki+k−1 and qki = qki+1 = · · · = qki+k−1 then we have the
same conclusion as in Theorem 4.

Sketch Proof. We can construct the asymptotically perfect detector, if γn1/4 → ∞, in exactly the same way:
use only the first 2 out of each group of k bits and ignore the rest. For (ii), we re-use the example

pi = 1
2 , qi = 1

2 + (−1)iǫ,

if k is even, and a simple modification such as

pi = 1
2 , qki = qki+1 = 1

2 − 1
2ǫ, qki+j = 1

2 + (−1)jǫ for 1 < j < k,

for which the probabilities
∑

i π
j
i have no first-order dependence on γ. The random vector S has dimensionality

4k, but the results of Ref. 12 still apply and the multivariate normal approximation has all the same properties
as in Theorem 4. �

4. DISCUSSION

We have analysed the asymptotic capacity of some artificial stego systems where the cover source is nonstationary.
We do not claim that the model is realistic for steganography in practical covers: our choice of cover model was
deliberately as unconstrained as possible, because if steganalysis is possible even in constantly varying sources,
then it should be possible anywhere.

We have shown that a square root law remains valid in constantly varying sources, if the characteristics of the
source are known exactly to the detector (Theorem 2). If they are not, we must assume that the detector learns
something about the covers from another source, and in our model this only makes sense if their cover “oracle”
has bit probabilities synchronized with that of the source used by the embedder (though we have not attempted
to describe a realistic scenario in which this might arise). Then, we have shown, asymptotically perfect detection
becomes impossible (Theorem 3). Note that this is not to say that there is asymptotic perfect security, and
indeed there is not, but that the risk of detection does not grow without bound as n increases, even if payload
is linear in the cover size.

However, it only requires the cover source to remain stationary for two bits at a time for the result to
change (Theorem 4). Then the embedder must diminish their embedding rate γ at order n−1/4. Assuming no
adaptive source coding, this means that the capacity law is n3/4: a curious result indeed. It indicates that there
is a situation to fill the gap between perfect embedding (the linear capacity law) and imperfect embedding in
stationary sources (the square root law). We highlight a difference between the statements of Theorems 2 and 4:
in the former case, for sufficiently-fast diminishing γ, there is asymptotic perfect security; in the latter, there is
no asymptotic perfect detection. Unlike the case of Theorem 3, we believe that this can be improved:

Conjecture. Under the conditions of Theorem 4, as n → ∞,



(i) if γn1/4 → ∞ then an asymptotically perfect detector exists;

(ii) if γn1/4 → 0 then there is asymptotic perfect security.

This should hold because the asymptotic distribution of S and V , in the proof of Theorem 4, is so close. The
randomization needed to show convergence in total variation is of bounded magnitude, and hence asymptotically
negligible as n → ∞, and according to Lemma 7 there is asymptotic perfect security against an observation of
V . Perhaps the conjecture can be proved with only minor modifications to our current techniques.

Note that the detector would need to know exactly which pairs of bits, in the cover, had the same distribution:
it must not be desynchronized. Again, we have not attempted to find a realistic situation in which this would
occur. According to Theorem 5, any source which is stationary for k ≥ 2 bits at a time, assuming that the
detector knows which bits have the same distribution, gives the same result. This would give a n3/4 capacity law
for any k except k = 1, which has a linear law. It is also counterintuitive that, as k → ∞, the cover source tends
to stationarity, and yet a square root law has already been proved for exactly this situation in Ref. 6. Apparently
the limiting behaviour as k → ∞ does not match the behaviour at any finite k. This is not as paradoxical as it
appears because such “behaviour” is itself a limit as n → ∞. Were we to examine the performance of detectors
at any finite n we would naturally see a strong dependence on k.

Finally, we note that the “secure” rate of γ = O(n−1/4) only occurs if the embedding is first-order secure,
i.e. that the first-order statistics of a cover stream match those of a stego stream. Given that we have ruled
out perfect embedding, which preserves all statistics, as impracticable, how realistic is it to consider embedding
which manages to preserve first-order statistics? (In stationary sources with independent components, first-order
security is equivalent to perfect security.)

We believe that it is a highly plausible situation. It is not necessary to know the first-order statistics to
preserve them because, for example, every change of pixel colour x to y can be counterbalanced with one of y to
x: steganographic embedding with this property has been around for many years (e.g. Outguess14). Indeed it is
the fact that permutation preserves first-order statistics which drives the perfect steganography construction of
Ref. 2. The impracticability of perfect steganography arises from the need to preserve all statistics of the cover
source, including the joint distributions of all tuples of bits/pixels/coefficients. So, in the continuum between
completely imperfect embedding which preserves nothing, and perfect embedding which preserves everything, at
least some possibilities are practicable.

It is much less plausible that the cover symbols should be uncorrelated, and indeed the failure of stegano-
graphic embedding which preserves first-order statistics (e.g. detectors for Outguess15,16) effectively exploit a
failure to preserve higher-order statistics of the cover source. An obvious extension of this work is to attempt to
extend it to Markov chain cover models, in analogy with Ref. 5. The analysis is likely to be challenging.
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APPENDIX A. ASYMPTOTICALLY PERFECT DETECTION AND SECURITY
FOR MULTIVARIATE NORMAL OBSERVATIONS

We prove some lemmas which are used in the body of the paper. Recall that the density function of a multivariate
normal random variable X ∼ N(µ,Σ) is

|2πΣ|−1/2 exp
(

− 1
2 (x− µ)TΣ–1(x− µ)

)

,

as long as Σ is (symmetric) positive definite. When Σ is singular, the random vector’s domain is constrained to
a plane and the density does not exist.

The first lemma applies to perturbations in the covariance matrix, but not the mean, of a multivariate normal
observation.

Lemma 6. Let µ ∈ R
p be known, and let {Σ(δ) | δ ∈ [0, d]} be a known family of symmetric, positive definite,

p × p matrices. Let δ ∈ [0, d] be unknown. From an observation

Xδ ∼ N
(

nµ, nΣ(δ)
)

there is no asymptotically perfect detector for the cases δ = 0 against δ = δ1 ∈ (0, d].

Proof. Assume that Σ(δ1) 6= Σ(0), otherwise the result is immediate. Since this detection is a simple hypothesis
test, the Neyman-Pearson Lemma gives us the optimal decision function: a negative decision (that δ = 0) if

|2πnΣ(0)|−1/2 exp
(

− 1
2 (x− µ)T

(

nΣ(0)
)–1

(x− µ)
)

|2πnΣ(δ1)|−1/2 exp
(

− 1
2 (x− µ)T

(

nΣ(δ1)
)–1

(x− µ)
)

is greater than some threshold. This minimizes the false negative rate for any given false positive rate. The
region is equivalent to

Ac = {y |yT
(

Σ(0)–1 − Σ(δ1)
–1

)

y < c}
where y is an observation of

Yδ =
Xδ − µ√

n



and c is a constant determining the true and false negative rates. Note that the distribution

Yδ ∼ N
(

0,Σ(δ)
)

,

and Ac, are independent of n, and that Ac is a family of sets monotone increasing in c. Furthermore, the density
of Yδ is strictly positive on R

p. Therefore a sequence of detectors, one for each n, can only have the false negative
rate tending to zero if c → ∞, which forces the true negative rate to tend to zero also. Hence no asymptotically
perfect detector exists. �

The second lemma applies to locally-square perturbations in the mean of a multivariate normal observation.

Lemma 7. Let µ,ν ∈ R
p be known, and let {Σ(δ) | δ ∈ [0, d]} be a known family of symmetric, positive definite,

p × p matrices continuous in δ. Let δ ∈ [0, d] be unknown. From an observation

Xδ ∼ N
(

n
(

µ+ δ2ν + O(δ3)
)

, nΣ(δ)
)

there is asymptotically perfect security against detectors for the cases δ = 0 against δ = δ1 ∈ (0, d], as long as
nδ4

1 → 0.

Proof. We will show that the KL divergence DKL(Xδ ‖X0) (note that this is the other way around from the
usual square root law proofs) tends to zero if nδ4 → 0.

It is known that the KL divergence between p-dimensional distributions N(µ0,Σ0) and N(µ1,Σ1) is

1

2

[

log |Σ1|
|Σ0|

+ tr(Σ–1
1 Σ0) − p + (µ1 − µ0)TΣ–1

1 (µ1 − µ0)
]

so

DKL(Xδ ‖X0) =
1

2

[

log
(

|nΣ(0)|
|nΣ(δ)|

)

+ tr
(

Σ(0)–1Σ(δ)
)

− p +
(

nδ2ν + O(nδ3)
)T (

nΣ(0)
)–1(

nδ2ν + O(nδ3)
)

]

.

The first term tends to zero by continuity of Σ, determinant, and logarithm; similarly, the second term to
tr(I) = p by continuity of Σ and trace. That leaves a leading term of O(nδ4), and the usual data processing
theorem argument completes the result. �


