Going from Small to Large Data in Steganalysis

Ivans Lubenko and Andrew D. Ker
The Department of Computer Science, Parks Road, Oxford OX1 3QD, England.

ABSTRACT

With most image steganalysis traditionally based on supervised machine learning methods, the size of training
data has remained static at up to 20000 training examples. This potentially leads to the classifier being under-
trained for larger feature sets and it may be too narrowly focused on characteristics of a source of cover images,
resulting in degradation in performance when the testing source is mismatched or heterogeneous. However it is
not difficult to obtain larger training sets for steganalysis through simply taking more photos or downloading
additional images.

Here, we investigate possibilities for creating steganalysis classifiers trained on large data sets using large
feature vectors. With up to 1.6 million examples, naturally simpler classification engines must be used and
we examine the hypothesis that simpler classifiers avoid overtraining and so perform better on heterogeneous
data. We highlight the possibilities of online learners, showing that, when given sufficient training data, they
can match or exceed the performance of complex classifiers such as Support Vector Machines. This applies to
both their accuracy and training time. We include some experiments, not previously reported in the literature,
which provide benchmarks of some known feature sets and classifier combinations.

Keywords: Steganalysis, Benchmarking, Online Learning, Large Data Sets, Average Perceptron, Support Vec-
tor Machine

1. INTRODUCTION

Most image steganalysis is based on supervised machine learning methods, and the paradigm has been largely
unchanged for the past decade: a feature set of a few dozen to a few hundred features extracted from every image,
and a nonlinear classification algorithm (almost always a kernelised Support Vector Machine) trained on a few
thousand examples.'™ Although there have been some exceptions to this, including alternative classifiers,® 9 the
use of regression instead of classification,!? and notably the introduction of very large feature sets and ensemble
classifiers,!! the size of the training data has remained fairly static, usually between 4000 and 20000 training
examples (half cover and half stego). For the larger feature sets this means that the classifier is under-trained,
and so may be too narrowly focused on characteristics of a particular source of cover images, with performance
degrading when the testing source is mismatched or if the source is a heterogeneous mixture.? 1213

Unlike the application of machine learning to, for example, natural language processing or intrusion detection,
it would not be particularly difficult to acquire larger training sets for steganalysis: one simply takes photographs
(or downloads more images) to get more cover data, and embeds data at will to create stego data.

In this paper we investigate some possibilities for creating steganalysis classifiers trained on large data sets
(up to 1.6 million examples), with large feature vectors (around 50000 features per image). The sheer size of
the training data means that simpler classification engines must be used, and this also allows us to examine the
hypothesis that simpler classifiers will avoid overtraining, and thus perform better on realistic heterogeneous
data. We highlight the possibilities for online learners, which can be incrementally trained. We perform some
experiments to demonstrate that extremely simple online learners, when given sufficient training data, can match
or exceed the performance of complex classifiers such as Support Vector Machines (in terms of both accuracy and
training time). This includes some experiments which provide benchmarks of some known feature and engine
combinations which have not been reported in previous literature.

Further author information: (Send correspondence to ADK):
A. D. Ker: E-mail: adk@cs.ox.ac.uk, Telephone: +44 1865 283530
I. Lubenko: E-mail: ivans.lubenko@cs.ox.ac.uk

2. MOTIVATION FOR THE “LARGE DATA” APPROACH

In recent research, steganalysis classifiers tend to work with rather small training sets, compared with the number
of features. A typical testing scenario includes one or more image sets from a unique cover source (personal photo
library or a public image database such as the NRCS photo gallery) and the results are reported on per-set basis.
The size of such individual homogenous data sets varies between 2000 (Ref. 5) and 10000 (Ref. 14) images.
The actual number of training examples is then doubled because we normally consider the binary classification
problem where cover images are to be discriminated against the images carrying the stego signal of a fixed
payload size. Unlike the image sets, the size of the feature sets has been steadily increasing. For example, a
near-50000-long feature set was recently introduced for detection of nsF5.1' For such problems many accurate
classifiers have been found,® 1:15 notably the kernel Support Vector Machine (kSVM).

The performance of these typical classifiers is often disappointing on heterogeneous data sets, or if “cross
trained” (trained on data from one source, tested on another). It has been shown that combining the data sets
negatively impacts the success rate of detection. 213 Pevny shows that training a model on images from four
sets lead to the classification error increasing two-fold (ref. 13, Tables II and V). A similar result was achieved
in Ref. 12. In the real word, however, a steganalyst is likely to be required to deal with images from a mixture
of sources. Therefore it is desirable to find good classifiers for heterogenous training and test data, rather than
training and testing our classifiers on simple data from one source. Fridrich!'® suggested that the problems of poor
generalisation on non-homogenous data occur because the steganalysis features like those used in Refs. 2,12,13
(known as WAM, CC-PEV, and SPAM, respectively) are sensitive to microscopic properties of the source. It is
unclear whether the problems persist when using larger feature sets (e.g. CC-C300, MINMAX+MARKOV!!) or
larger data sets (orders of magnitude more than 20000), or whether other factors exist that negatively impact
the classification success rate in the heterogenous data test case.

However, it is not so difficult to obtain large training sets for steganalysis. We can just take more photos,
and other operations such as data embedding, feature extraction and labelling require no manual processing and
are cheap, compared to training a classifier. Here, we test on data magnitudes larger than that have been used
in previous research, e.g. Ref. 1-7,14. Our hypothesis is that such a large training set will allow for training
a less cover source dependent classifier. Classifiers trained on large non-homogenous data should, in our view,
generalise better on the test examples than complex classifiers trained and tuned to small data sets. This is
similar to the ideas exploited by Yahoo! Labs which they advocate in Ref. 17. It has been found that using
large data improves the performance of machine learning algorithms. In Ref. 18, the author gives examples of
machine learning research where large data made a positive impact on the empirical results from experiments.
In particular, data sets containing over a million instances were employed. We take our cue from these examples
and propose to train on data of the same magnitude.

A further reason for the use of bigger training data sets is the recent increase in the size of steganalysis feature
vectors. The state-of-the art feature sets for both transform (CC-C300) and spatial (MINMAX+MARKOV)
domain are very large'!" 14 and non-sparse, so they require larger data sets to populate the feature space diversely.
Also, research has shown!? that large dimensionality imposes a higher chance of overfitting.

Unfortunately, complex classifiers such as the kSVM are limited in how much data they can train on, because
of the computational complexity involved. In the next section we consider the difficulties associated with working
with large data.

3. WORKING WITH LARGE DATA SETS

We are looking into using millions of examples for our training data set. In order to acquire such data for
steganalysis we need a source of public images. They are not required to share some common properties such
as those that affect within-image statistics because we are concerned with the real-world problem, i.e. a non-
homogenous image set. But certain properties, such as format and size, should be fixed for simplified processing
and embedding. The Internet contains many such images and we will use images downloaded from public sources
in our experiments.

However there exist certain difficulties when dealing with data of this size. If steganalysis were performed
using, say, 1000 (double-precision floating point) features per image, with a training set of 20000 images, the

raw training data would take a mere 160MB to store. Large data presents new difficulties: in our experiments
we will use around 50000 features per image, and in the extreme case up to 1.6 million training images, which
means 640GB of training data. This is far too large to fit into the memory of a modern computer, and at typical
SATA 2 transfer rates of 100MB/s would take ten hours just to read from a hard disk. Any algorithm which is
to process such data must be extremely simple, preferably passing just once through the training data.

3.1 Simple Supervised Classifiers

Complex algorithms such as the kernel SVM are too slow for large data. Most optimisation algorithms associated
with such complex classifiers, e.g. the (quasi-) Newton’s method (SVM) or the gradient-descent (Logistic Re-
gression®), currently offer only super-O(N) time complexity. In particular, kSVM’s time complexity is O(M N?),
where M is the number of features and N is the size of the training data. Taking into consideration the require-
ment of parameter optimisation, the practical computation time of such algorithms increases even further. This
limits the size of data that can be processed, which has been shown in Ref. 11, where kSVM was reported to
scale poorly with the number of features given a fixed data size.

Linear time complexity, which could be gained from using a simple algorithm, would be very helpful for
training on large data. The Perceptron is an example of such a simple linear algorithm that is very fast. Its
learning rule is very simple involving only a few operations to update the weight vector. The Average Perceptron
is a regularised version of it that improves its stability and performance. We will use the Average Perceptron
to process our data set of 1.6 million training examples. Visiting more data points allows for training a more
general model, which has the potential to perform well on test data.

3.2 Online Algorithms

Online learners are those which continually update their model, as more training data is supplied, without having
to remember past training data. They process examples one by one in an incremental manner using stochastic
update. The stochastic update rule approximates the online classifier’s objective function by estimating the loss
incurred after seeing only one example. The ability to learn piece-by-piece may itself be an advantage, if the
steganalysis application requires a continually-refined cover model.?°

One feature which is critical for classifiers trained on very large data is to pass through these data only
once, and online algorithms provide this. It was shown that O(1) passes over a dataset are sufficient to obtain
optimal approximation.'” There exist online versions of popular optimisation algorithms such as the gradient
descent, which is a part of common classifiers such as Logistic Regression.® However we will look at linear online
algorithms, in view of their simplicity and speed. Unlimited data can be processed because the trained model
can be saved at each incremental step. Moreover, “[we can reduce] the runtime behaviour of inference algorithms
from cubic or quadratic to linear in the sample size”.2! There are additional benefits as well, importantly the
absence of parameter optimisation and the ability to test the classifier as we train.

4. EXPERIMENTS
4.1 Acquisition of Large Dataset

Our experiments were performed on a highly realistic data set, obtained from a leading social networking site.
This site allowed users to make their photos open to the entire public, if they wished, and gave viewers the
option to click “next photo” links to see the entire set of photos featuring each such user. Also, it offered links
to photos of other users, tagged in the current photo, who chose to make theirs public too. Many users made
their photographs public. By starting with a single public photo, and automating the process of clicking on
these links, we downloaded over 4 million publicly-visible JPEGs from the site during December 2010. The
crawl was restricted to users who publicly identified themselves with the Oxford University network and the
data was then anonymised. We emphasise that only publicly-available photos were downloaded, and that no
personally-identifiable information was retained.

Each photo is identified with the unique user who uploaded it. This enabled us to select a subset of exactly
200 photos from each of 4000 users. These 800000 images form the data set used in this paper. It is highly
realistic because it is exactly the sort of media used on the internet in large social networks. Our only caveat is

the small possibility that some of the users were already using steganography in their images: if so, our set of
“cover” images may not be entirely clean, and may contain a few stego images. Hopefully, use of steganography
in social media is not (yet) widespread, at least in Oxford University.

These images are very difficult for conventional steganalysis: the social network offers to resize uploaded
images to approximately 1 megapixel (but by no means to a uniform size), and also recompresses almost every
image to JPEG quality factor 85. This means that the cover images will have resampling and double-compression
artefacts, the latter known particularly to affect steganalysis reliability.'® The different users will be using
different cameras, which makes the set heterogeneous (except for its ultimate compression factor, and restricted
range of images sizes). Some images are not even natural photographs: they may be montages, have captions,
or be entirely synthetic. In a realistic scenario, we must deal with this type of difficult data.

The only way in which the data set has been screened was the removal of images with file size smaller than
5KB (which deletes images with little or no content) or which do not follow the standard compression factor
(this was less than 1% of the images downloaded).

4.2 Embedding

We focus on the nsF5 embedding scheme?? with payloads of 0.1 and 0.2 bits per non-zero Discrete Cosine
Transform (DCT) coefficient (bpnc). The nsF5 algorithm is the improved version of F5 that uses wet paper
codes to eliminate shrinkage.?? nsF5 is a simple algorithm, probably one of the best for JPEGs and we do not
have any reason to think that the choice of embedding will make a significant difference to our conclusions in
this work. We do not have sufficient disk space to extract features for too many different algorithms, but this
will be the subject of future work.

Training and test sets contain 50/50 split between cover and stego images, with stratification of cover-stego
pairs.

4.3 Extraction of Features

We employ the state-of-the-art 48600-dimensional CC-C300 feature set which was a part of the slightly larger
feature set that currently gives the most sensitive detector of nsF5 in JPEG images when coupled with an
ensemble Fisher Linear Discriminant.!! A brief comparison was drawn with the 548-dimensional CC-PEV
features in Ref. 11, where only the ensemble classifier’s figures were reported for both feature sets. We aim to
report the kernel SVM figures as well because there is little research into comparison of the CC-C300 set to other
transfer-domain features within the framework of one classifier.

4.4 Training Methods

Our aim is to test our hypothesis by comparing the accuracies of a number of classifiers on non-homogenous
test data, where possible trained on the entire data set. We will test online and iterated versions of Average
Perceptron, ensemble methods based on the Average Perceptron and the Fisher Linear Discriminant (FLD) and
compare them to kSVM as the state-of-the-art reference point. A review of each of these algorithms is given
below.

4.4.1 Support Vector Machines

Kernel SVM was designed to produce high accuracy from small data through the use of the kernel trick and
the soft margin. These make it very suitable for a typical steganalysis problem, as we know it, i.e. a binary
classification problem with very limited training data. But they are not ideal for large training data.

We use the RBF (Gaussian) kernel, following the configuration of the original SPAM detector!® and Ref. 8.
In this configuration, the kernel SVM has two parameters to optimise, cost C' and kernel width +. A grid search
is performed to find the best combination of C' with , with five-fold cross validation also used to minimise
statistical noise. The grid in our experiments was experimentally reduced to the following 6 values of C' from

{2¢ Jie{11,13...,21}}

(with closer examination around the best values), and 6 values of v from

{27 | j e {-13,-15,...,-23}}.

Whilst very simple to use because of the availability of ready tools such as libsvm,?? kSVM is impractical
for real-world problems such as the near-online problem described in our experiments. Using the large modern
feature vector, CC-C300, it was only possible to process a maximum training set size of 20000 and only using a
very limited grid search. Anything larger simply takes too long for any useful purposes. It has other disadvantages
too: unlike online methods it is iterative and hence requires many passes through the data and also requires
parameter tuning via the expensive grid search.

We used the libsvm?? with its extensive toolkit for our kSVM tests.

4.4.2 Ensemble FLD

For the ensemble algorithm we will follow the example in Ref. 11. In this configuration, L Fisher Linear
Discriminant base learners were trained on L different subsets of k dimensions drawn at random from the
original CC-C300 feature set. Here, as in Ref. 11, L = 99 and k& = 2000. The base learners’ outputs were then
combined for classification using the majority vote:

L
y(z) = {t | te{-1;+1} /\argrtnaXZ(wlT(x —q) = t)}
I=1

w is the Fisher’s discriminant, ¢ is the parameter that guides the position of the hyperplane and can be found
analytically and ¢ is the label of training example x.

This method has shown!! very promising results using the new CC-C300 feature set and its derivative
feature sets. A major advantage was shown to be the speed of training and the reduced complexity of parameter
optimisation. No direct comparison was drawn with kSVM using the same features.

4.4.3 Average perceptron

We will use an online version of the Average Perceptron,?* which is a self-regularising version of the Perceptron
algorithm. The Averaged Perceptron is capable of training on one example at a time, which allows for processing
unlimited data with no memory overhead.

This is made possible through the simple update rule it shares with the Perceptron, which only requires the
weight vector and the feature vector of the current image. The Perceptron aims to minimise the number of
incorrectly classified examples, i.e. the training error:

min(E,) = argmin — E wlx,t,
v neM

where w is the weight vector, t € {—1;+41} is the label of training example x and where M is the set of all mis-
classified training examples. The minimisation is realised via stochastic updates, which allow for approximating
w one example ¢ at a time:

w; = wi—1 + Tit;

The update happens when a new input example is assigned the wrong label. In the Average Perceptron the
update includes the regularisation step, where the average weight vector is updated:

Wapg = Wavg + Wj

The vector wqyg is used in the final decision function to predict the label of test example x:

y(x) = sign(wy,,o)

4.4.4 Batch iterated perceptron

Batch iterated perceptron is our modification to the Average Perceptron algorithm, where data is processed in
batches of fixed size n. In this algorithm we save n consecutive input examples and instead of processing the
next example n + 1, we iterate over these n examples k times, for some fixed k. This procedure is then repeated
with the next n input examples, this time starting from example n + 1 and so on. The averaged weight vector
Waug 1s still updated stochastically throughout the training. The idea behind this algorithm is to train the online
model on same examples multiple times to maximise the chance of convergence, which, in our experiments, the
Averaged Perceptron seems unable to achieve even after 1.6M training examples.

In our experiments we used the batch sizes of n = 4000 and n = 40000, and a fixed number of iterations
k = 50.

4.4.5 Ensemble average perceptron

We also introduce here the third type of large-scale classifier: the online ensemble Average Perceptron, which
fuses the advantages of stochastic nature of online learners with the increased accuracy of ensembles classifiers.
The set up remains identical to the ensemble FLD, with the same number of learners, same number of randomly-
chosen features per learner, and majority vote, except that stochastic learning is made possible via the use of
online base learners each employing the online Average Perceptron update.

4.4.6 Implementation considerations

Due to the sheer size of our data sets, they cannot be processed all in memory, which poses problems for many
learning algorithms, even when working in the reduced subfeature space. In particular we found that:

a) Iterative algorithms are slowed down by disk access because the processing is only possible in chunks;
this requires careful memory management. In particular, on our machines the iterative Average Perceptron was
trained on chunks of up to 50000, but this figure may be required to be reduced if memory is more limited (our
main experiments were performed on a machine with 96GB of memory).

b) Kernel SVM can be very space and time demanding, specifically on the more complex problems. The
kernel trick requires extra memory space and it is difficult to estimate this requirement. Problems of different
complexity (0.1 bpne or 0.2 bpnc) as well as certain choices of the v and ¢ parameters affect both kSVM’s space
and time complexity. For example we found that training it on 0.1 bpnc took five times longer than on 0.2 bpnc.
Necessarily this limited our training set sizes for this classifier. In practice it was found that kSVM required
data set sizes greater than 10000 examples to compete with other algorithms, which quickly became too large
to use in the time available for our experiments, given the requirement for the grid search and the extra large
feature set. Similarly, even doing just one training run on much larger data was found to be impractical as well.

¢) Ensemble FLD also calls for storing the full training data in memory unless the reduced feature sets
are pre-calculated for the whole ensemble. Even though we were able to test ensemble FLD on 100000 and
400000 examples, it was only possible by precalculating and storing the subfeatures on disk. This preprocessing
procedure drastically reduces the computational efficiency of the algorithm.

These problems show that online learning is desirable when processing large and high-dimensional data.

4.5 Benchmark

The classifiers will be evaluated on testing sets which are completely separate from the training data. There are
two such sets, one for each payload size. Both sets are composed of a set of 40000 images with 50/50 stratified
cover /stego split and drawn at random from the same source as the original training data.

Normalisation of the data was performed to zero mean and unit variance: this is critical for the success of
SVM?23 and perhaps other classifiers as well. It is less clear whether normalised data affects the ensemble percep-
tron or ensemble FLD algorithms, but from our experiments we found that they perform better on normalised
data when tested under the same conditions. The normalisation was based on the testing set only, as it would
be very difficult to perform accurate normalisation on the training data in the online setting (i.e. approximating
the normalisation factors as training examples arrive). Two different normalisation coefficients were required,
one for each payload.

Our testing benchmark is the testing accuracy, which is defined as the proportion of correctly classified
examples measured on the testing set. We also measure the approximate training times, which are reported in
the results section.

The majority of our experiments were performed on the main test machine: a 12 core Intel Xeon 3.47GHz
with 96GB of RAM. Some of the memory-intensive experiments with kSVM and eFLD would not have been
possible without it.

5. RESULTS

Figure 1 (top) shows the summary of the experiments we performed, using all five classifiers, on the 0.1 bpnc
testing set. Note the nonlinear xz-axis. The lines represent the test accuracy of the online training algorithms, as
they pass through the entire 1.6M training examples, whilst the individual marks show the accuracy achieved by
the other algorithms given the indicated training set size. Each of the non-online algorithms had to be trained on
the first K examples, where indicative values of K were chosen subject to feasibility of performing the training
in a reasonable amount of time. The horizontal threshold line shows the accuracy that was achieved by the
ensemble version of the Average Perceptron once it had used the entire 1.6M training set.

The corresponding results for 0.2 bpnc embedding are shown in fig. 1 (bottom): the results are in line with
those for 0.1 bpnc and will not be discussed further.

Almost all experiments use the CC-C300 feature set, but we also performed a few using the CC-PEV features*
for comparison with prior art. Note the relatively poor performance of CC-PEV features on this data (0.892
accuracy on 0.1 bpnc payload, with 10k training examples). This illustrates how difficult the social networking
dataset is, with heterogeneous images and double-compression artefacts. It seems to be an emerging phenomenon
that simpler, less specialised, feature sets perform better on heterogeneous data.

The red lines shows clearly the nature of the linear Average Perceptron algorithm. Despite its attempt at
self-regularisation, its instability yields the rough line which does not appear to converge on this data. However
it still manages to yield accuracy very near the benchmark line, given enough examples. This highlights the
presence of linearity in this classification problem when expressed using the full CC-C300 feature set, and perhaps
enforces the motivation for using fast linear classifiers.

We expect that a different choice of a quick linear classifier here, e.g. Logistic Regression with online gradient
descent optimisation, would have resulted in a more stable performance, but one that was similar in terms of the
overall accuracy performance. We suspect that the spikes of instability owe to some outliers in the training set,
such as computer-generated images or images containing computer-generated content. A task for the future will
be to implement active learning with Average Perceptron, where such outliers would be ignored during training.
The black line was produced by our new online ensemble algorithm using the Average Perceptron. It shows an
ability to converge relatively quickly and is the best performing of any of the classifiers we tested, though it
does need on the order of 100000 items of training data to achieve this good performance. The high accuracy
demonstrated here in conjunction with the fast unlimited training and the absence of tuning makes it a good
candidate classifier for steganalysis if large training data is available.

Although the kSVM appears to make the most of a small training data set, its advantage is no longer evident
when compared with an online nearly-linear classifier such as the ensemble Average Perceptron that has been
trained on a larger data set. We were only able to train a k<SVM on a maximum of 20000 examples when using
the full CC-C300 feature set, an experiment which took over 10 days. With kSVM (shown as crosses on the
graph) the accuracy was achieved by using hyperparameters from a grid search. Inevitably time and skill needs
to be invested in finding the suitable parameters, which is both costly and prone to human error. With slightly
different parameters the kSVM accuracy could have been significantly lower or significantly higher depending
on which points on the optimisation plane are visited. However without visiting infeasible number of points we
would not be able to guarantee kSVM hitting its optimal accuracy. And, as it is demonstrated in the diagram,
this happens only with the largest training data set, which is the slowest to optimise for.

Shown in circles on the graph was the Average Perceptron run in iterative mode. When trained on chunks of
data in 50 iterations it exhibited a quicker tendency towards convergence than the online Average Perceptron,

but was a somewhat behind other classifiers when compared in terms of their ultimate accuracy. The reduced
accuracy could perhaps be explained by undertraining due to the small iterations count, something which requires
further investigation.

The comparison of runtime behaviour of these algorithms also shows the advantage of simple online classifiers.
With our implementation, it takes approximately 10 days to train a kSVM on 20000 samples with the CC-C300
features, even using a reduced grid search for the hyperparameters. On the other hand, it takes 1 hour to train
an Average Perception on 1.6M samples. Our implementation of the Kodovsky’s ensemble FLD takes about 8
hours to train on 20000 samples, and over 7 days on 400000 (which can be potentially reduced slightly using
hyper threading). It takes about 7 hours to train the online ensemble Average Perceptron on the full 1.6M data
set. In general it appears to be faster to train a simple algorithm on a very large data set, than a complex
algorithm on a small data set.

In summary, it can be safely concluded that the “generic” CC-C300 features have performed better than
the specialised CC-PEV features for classification of non-homogenous data embedded with nsF5. For kSVM
to return good results, it appears to require training on data set too large to process in practice. The online
algorithms are capable of achieving the same performance in much shorter time but (so far) only in the ensemble
setting. Potentially the “iterative batch” set up for online Average Perceptron would also be capable of achieving
this benchmark accuracy even faster, however this needs further investigation using more iterations. In terms of
the size of training set, the ensemble Average Perceptron requires a few hundred thousand examples to converge,
whilst the batch iterated Average Perceptron will potentially require more training data, based on the findings
from our current experiments.

6. CONCLUSION

In this paper we have investigated a new type of classifier for steganalysis: the online algorithms, in particular
some varieties of the Average Perceptron. We have benchmarked their performance, using the large CC-C300
feature set, against other state-of-the-art classifiers, on a realistic heterogeneous data set of images from a social
networking site. These images present difficulties for classical steganalysis because of their diverse character.

We found that the simple linear algorithms that we employed can be equally as accurate as the complex ones.
These simple algorithms require large data to achieve such performance and must be online. However they are
significantly faster to train on such large data than the complex algorithms are on smaller data sets. It was
also noted that using simpler but larger “generic” feature sets combined with the simple and, in this case, linear
algorithms can do better than targeted ones. We suspect that this is because the “generic” features remove
the non-linearity from the steganalysis problem. Simple algorithms are required to work with these features
effectively and avoid overtraining.

Whilst for some scenarios obtaining large training data is unrealistic, for many scenarios it is a distinct
possibility. We suggest that where large training data has been obtained for real-world like data sets tackling
the them with online algorithms is most suitable.

Of course, for robust conclusions we should explore the parameter space of the ensemble classifiers and further
examples of online and perhaps active learners. This is the main direction for further research.

REFERENCES

[1] Farid, H. and Lyu, S., “Detecting hidden messages using higher-order statistics and support vector ma-
chines,” in [Proc. 5th Information Hiding Workshop], Springer LNCS 2578, 340-354 (2002).

[2] Goljan, M., Fridrich, J., and Holotyak, T., “New blind steganalysis and its implications,” in [Security,
Steganography and Watermarking of Multimedia Contents VIII|, Proc. SPIE 6072, 0101-0113 (2006).

[3] Shi, Y. Q., Chen, C., and Chen, W., “A Markov process based approach to effective attacking JPEG
steganography,” in [Proc. 8th Information Hiding Workshop], Springer LNCS 4437, 249-264 (2007).

[4] Pevny, T. and Fridrich, J., “Merging Markov and DCT features for multi-class JPEG steganalysis,” in
[Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX], Proc. SPIE
6505, 03-14 (2007).

7 © 2 < - .ff ° o‘,g.-e-&9,°o°9_?n99.‘?‘°°:"5kz°°°%
4 i
)
o t x
3 o |
© T
5 o
3 4
Q
(o] m
(o))
= 7
D 4
()
= ~
S
b + KSVM (CC-PEV features)
1 X KSVM (CC-300 features)
1 b Average Perceptron, online
R * Iterated Average Perceptron, 4k batches
g —~ o lterated Average Perceptron, 40k batches
g <& Ensemble FLD
. —— Ensemble Average Perceptron, online
4 <
‘ ‘ \\\\\‘\\\HHH‘ ‘ \\\‘\\\\\\H\‘ ‘ ‘\\\\\\\‘\\\\\\\HHHH'
1k 2k 5k 10k 20k 50k 100k 200k 400k 800k 1600k
Number of training samples
— —
[e2]
o
o
[e'e) ““/’ J
o {
<) ¥
N~
[o)
(=]
38 -
€ o
3
S 1o
TS o
o O
=
D <
L o 4
F o
&
< + KSVM (CC-PEV features)
X KSVM (CC-300 features)
8_ L Average Perceptron, online
© o lterated Average Perceptron, 40k batches
o <& Ensemble FLD
g 1 —— Ensemble Average Perceptron, online
o i
o ‘ ‘ \\\\\‘\\\HHH‘ ‘ \\\‘\\\\\\H\‘ ‘ ‘\\\\\\\‘\\\\\\\HHHH'
1k 2k 5k 10k 20k 50k 100k 200k 400k 800k 1600k
Number of training samples
Figure 1. Combined results of all experiments. Above, payload of 0.1 bpnc. Below, payload of 0.2 bpnc. Note the

nonlinear scale on the z-axis.

[6] Ker, A. D. and Lubenko, I., “Feature reduction and payload location with WAM steganalysis,” in [Media
Forensics and Security XI), Proc. SPIE 7254, 0A01-0A13 (2009).

[6] Kodovsky, J., Pevny, T., and Fridrich, J., “Modern steganalysis can detect YASS,” in [Media Forensics and
Security XII|, Proc. SPIE 7541, 0201-0211 (2010).

[7] Bas, P., Filler, T., and Pevny, T., “Break Our Steganographic System: the ins and outs of organizing
BOSS,” in [Proc. 13th Information Hiding Workshop], Springer LNCS 6958, 5970 (2011).

[8] Lubenko, I. and Ker, A. D., “Steganalysis using logistic regression,” in [Media Watermarking, Security, and
Forensics III], Proc. SPIE 7880, 0K01-0K11 (2011).

[9] Davidson, J. L. and Jalan, J., “Steganalysis using partially ordered Markov models,” in [Proc. 12th Infor-
mation Hiding Workshop), Springer LNCS 6387, 118-132 (2010).

[10] Pevny, T., Fridrich, J., and Ker, A., “From blind to quantitative steganalysis,” in [Media Forensics and
Security XI], Proc. SPIE 7254, 0C01-0C14 (2009).

[11] Kodovsky, J. and Fridrich, J., “Steganalysis in high dimensions: fusing classifiers built on random sub-
spaces,” in [Media Watermarking, Security, and Forensics III], Proc. SPIE 7880, 78300L (2011).

[12] Barni, M., Cancelli, G., and Esposito, A., “Forensics aided steganalysis of heterogeneous images,” in [Acous-
tics Speech and Signal Processing], Proc. IEEE ICASSP ’10, 1690 —1693 (2010).

[13] Pevny, T., Bas, P., and Fridrich, J., “Steganalysis by subtractive pixel adjacency matrix,” in [Proc. 11th
ACM workshop on Multimedia and Security], ACM MMéSec "09, 75-84 (2009).

[14] Fridrich, J., Kodovsky, J., Holub, V., and Goljan, M., “Steganalysis of content-adaptive steganography in
spatial domain,” in [Proc. 13th Information Hiding Workshop], Springer LNCS 6958, 102-117 (2011).

[15] Pevny, T., Kernel Methods in Steganalysis, PhD thesis, Binghamton University, SUNY (2008).

[16] Fridrich, J., [Steganography in Digital Media: Principles, Algorithms, and Applications|, Cambridge Uni-
versity Press (2009).

[17] Langford, J., Smola, A., and Zinkevich, M., “Slow learners are fast,” Journal of Machine Learning Re-
search 1(2099), 1-9 (2009).

[18] Halevy, A. Y., Norvig, P., and Pereira, F., “The unreasonable effectiveness of data,” IEEE Intelligent
Systems 24(2), 8-12 (2009).

[19] Tong, S. and Koller, D., “Restricted bayes optimal classifiers,” in [Proc. 17th National Conference on Ar-
tificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence], AAAI/TAAI
658-664, AAAT Press / The MIT Press (2000).

[20] Ker, A. D., “The square root law in stegosystems with imperfect information,” in [Proc. 12th Information
Hiding Workshop], Springer LNCS 6387, 145-160 (2010).

[21] Zinkevich, M., Weimer, M., Smola, A. J., and Li, L., “Parallelized stochastic gradient descent,” in [Proc. 24th
Neural Information Processing Systems|, Advances in Neural Information Processing Systems, 2595-2603
(2010).

[22] Fridrich, J., Pevny, T., and Kodovsky, J., “Statistically undetectable JPEG steganography: dead ends
challenges, and opportunities,” in [Proc. 9th ACM workshop on Multimedia and Security], ACM MMEéSec
07, 3-14 (2007).

[23] Chang, C.-C. and Lin, C.-J., LIBSVM: a library for support vector machines (2001). http://
www.csie.ntu.edu.tw/~cjlin/libsvm.

[24] Freund, Y. and Schapire, R. E., “Large margin classification using the perceptron algorithm,” Mach.
Learn. 37, 277-296 (December 1999).

