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The Steganographer is the Outlier:
Realistic Large-Scale Steganalysis

Andrew D. Ker, Member, IEEE, and Tomáš Pevný

Abstract— We present a method for a completely new kind of
steganalysis to determine who, out of a large number of actors
each transmitting a large number of objects, is hiding payload
inside some of them. It has significant challenges, including
unknown embedding parameters and natural deviation between
innocent cover sources, which are usually avoided in steganalysis
tested under laboratory conditions. Our method uses standard
steganalysis features, the maximum mean discrepancy measure of
distance, and ranks the actors by their degree of deviation from
the rest: we show that it works reliably, completely unsupervised,
when tested against some of the standard steganography methods
available to nonexperts. We also determine good parameters for
the detector and show that it creates a two-player game between
the guilty actor and the steganalyst.

Index Terms— Data security, information security.

I. INTRODUCTION

STEGANALYSIS aims to detect the presence of hidden
payload inside apparently-innocent covers. Although a

refined discipline, particularly when the covers are still images,
no research has yet considered how to detect payload when
monitoring an entire network. In such a case the detector
will see vast numbers of objects, transmitted by a variety
of users each of whom uses slightly differing sources, the
embedding methods used by “guilty” users may be unknown,
and the amount of payload almost certainly is unknown. Such a
situation is completely different to the “laboratory conditions”
found in most steganalysis experiments, and the challenges
are different from classifying an individual object as cover or
stego. We address them in this paper.

After briefly surveying the state of art in steganalysis of
individual objects (Subsection I-A), we explore the require-
ments of large-scale steganalysis (Section II). We then propose
a new steganalysis paradigm (Section III), which differs from
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conventional steganalysis in two main ways: it takes as its
unit the actor (network or social network user, or cover object
source) rather than the single object, and it performs anomaly
detection rather than classification, calibrating its expection of
actors by the behaviour of the majority. This means that the
method is entirely unsupervised, and robust to the challenges
of large-scale steganalysis.

We then perform large-scale experiments, using a real-
world social networking image set and steganography acces-
sible to the non-expert (Section IV), to demonstrate that the
method works robustly on a number of embedding algorithms
(Section V), and to tune some of its parameters (Section VI).
The experiments are performed using well-established embed-
ding methods with available implementations, and use a well-
established feature set: neither of these represents the academic
state-of-art, but we stress that the contribution of this paper is
the framework for large-scale steganalysis, rather than a detec-
tor using particular features. By testing in well-understood
circumstances, we eliminate potential complications from the
latest embedding methods and detection features. Finally, we
conclude with discussion of many future directions for this
line of research (Section VII).

This work extends our two previous conference papers on
this subject [17], [18]: as well as new metrics for accuracy, we
additionally evaluate a number of different parameters for the
large-scale detector, uncover a game between the embedder’s
strategy and the detector’s optimal behaviour, and compare to
the (scarce) relevant prior art.

A. State of the Art in Binary Steganalysis

The contemporary approach to steganalysis involves three
components. It extracts, from each object under examination,
steganalytic features of high dimension; it supplies training
sets of cover and stego objects; and it runs a machine learning
algorithm on the training data. This creates a decision function
for novel objects, classifying them as cover or stego, occasion-
ally with some sort of associated level of confidence.

Recent feature sets for the domain of still images, where the
literature is most advanced, comprise thousands of relatively
weak features [7], [8], [19]. It seems that there may be a
linear relationship between number (or rate) of embedding
changes and the position of feature in the feature space, since
linear classifiers [21], [24] are sufficient to devise very accurate
detectors.

Some drawbacks of this approach are that detectors are
targeted towards a given steganographic algorithm and payload
size [26] (used to create the training stego set), and to a
particular source of covers. If the objects under scrutiny
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come from a different source (e.g. camera or settings) from
the training data, the accuracy of detectors decreases, often
dramatically [1]. This phenomenon, a cover-source mismatch,
is unavoidable in reality unless the suspected steganographer
is considerate enough to supply their enemy with their cover
source.

Another drawback is that the design is for a decision
function for single objects, which would only be applicable
in the case when a steganalyst is presented with a small
amount of data to classify individually. It does not address
the challenges of large-scale steganalysis.

II. LARGE-SCALE STEGANALYSIS

Suppose that a steganalyst is monitoring a large network,
with multiple users and many potentially suspect communica-
tions. For example, they might be scanning all the images
on a social media site for hidden content, or acting as a
corporate firewall to prevent data exfiltration. We identify four
requirements for a steganalysis system:

Universality. The steganalyst may not know what steganog-
raphy algorithm is being used on the network. As much as
possible, their detector should be able to identify unknown
or new embedding methods, with unknown sizes of payload.
Most existing steganalysis methods do not have this property
(see Subsection III-D for a survey of prior art).

Robustness. If the steganalyst has some training data,
they cannot ensure that it comes from an identical source
to that used by the actors they are monitoring. As much as
possible, their detector should not suffer unpredictably from
cover-source mismatch. Again, existing steganalysis methods
generally fail this condition [27].

Multiple actor. The network has multiple users, some
(most) of them innocent of steganographic embedding, but
each with a slightly different cover source. The detector needs
to determine who is guilty, not necessarily which of their
objects specifically contain payload. No previous steganalysis
methods have considered this case. Exactly what output is
required depends on the situation: it might be known that at
least one guilty actor exists, or not, and it might be required
to obtain a probability of guilt for each or simply a ranking.
In this paper we assume that it is sufficient to rank the actors
in order of likeliness of guilt.

Multiple object. Each actor emits many objects. For inno-
cent actors, all of their objects are plain covers. For guilty
actors, some (not necessarily all) of them contain payload.
The detector must aggregate the evidence in the objects, and
this is the pooled steganalysis problem from [14], which has
not yet been addressed successfully.

We also require a certain computational efficiency, ideally
linear in the number of objects captured from the network.
Large-scale monitoring, in real-world scenarios, may have to
cope with vast amounts of intercepted data.

Naturally, we expect some penalty for universality and
robustness: a hypothetical detector for single images with
these properties would likely be inferior to existing binary
classification steganalysis when tested under laboratory con-
ditions (known algorithm and payload size, no mismatch).

However, we are able to turn the large-scale situation, with
multiple actors and objects, to our advantage. More evidence
is available: of individual actor’s guilt, of the behaviour of
innocent actors, and (crucially) of how much innocent actors
sources tend to differ from each other. As with the original
pooled steganalysis problem, the difficulty is how to aggregate
the evidence.

III. DETECTING ANOMALOUS ACTORS

Our proposed detector identifies actors that significantly
deviate from the majority. We assume the scenario of multiple
actors each emitting multiple objects, all of which are seen
by the detector, who also knows which actor sent what.
In the discussion below, we assume that the objects are digital
images, but the same system could be used for any domain
with good steganalytic features.

The detector works in three steps: first, extracting standard
steganalytic features from all objects; second, calculating
distances between each pair of actors based on the cloud
of feature points that they have emitted; third, identifying
actors deviating from the majority using an anomaly measure
computed from the distances. If steganalytic features are
sensitive to hidden payload, and relatively insensitive to other
characteristics of the objects, then an actor’s deviation is
evidence of their guilt: the steganographer is the outlier. These
three steps are now described in detail, with a discussion of
the design choices to be made by the steganalyst.

A. Features

The detector extracts features from every image transmitted
by every actor. The steganalyst’s first design decision is to
select a suitable feature set: in theory, a detector should work
with any steganalytic features sensitive to embedding changes
and relatively insensitive to image content.

In experiments performed in this paper, which use JPEG
images, we have chosen so-called PF274 features [28],
because they reliably detect the steganographic algorithms
used (described in Subsection IV-B), their extraction is fast,
and they have good signal to noise ratio. In other work we have
shown that the detector works with high dimensional features
as well [20], but due to their sensitivity to image content, they
have to be made robust with respect to it [31].

Once features are extracted from all images, the steganalyst
must pre-process them, to make the contribution of each
feature equal and hence the distance (below) meaningful.
We determined (see Section VI-A) that a global whitening
works best. The whitening projects features into a new space,
of slightly lower dimension, where features are uncorrelated
and they have unit variance in each direction. The base of
the projection space is found by eigenvalue decomposition of
the features’ covariance matrix (the same operation is used in
principal component analysis) calculated from all images. For
numerical stability, projections with corresponding eigenvalues
smaller than 0.01 (see Section VI-A) are discarded.

B. Distance Between Actors

We propose to measure distance between actors using an
empirical Maximum Mean Discrepancy (MMD) [9], which
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is a measure of similarity between probability distributions.
It has the useful property that it can be estimated robustly, even
for high dimensional probability distributions, from relatively
little data. MMD corresponds to an L2 distance in some
Hilbert space implicitly defined through a positive definite
kernel function κ(x, y) : R

d × R
d �→ R (if pre-processed

features are real and of dimension d). Popular kernels include
the linear kernel κ(x, y) = xT y and the Gaussian kernel
κ(x, y) = exp(−γ ‖x − y‖2), where γ is the inverse kernel
width. Assuming n samples {xi }n

i=1 and {yi}n
i=1, pre-processed

feature vectors from actors X and Y , a sample estimate of the
MMD distance has the following simple form

MMD(X, Y ) = 1
(n

2

)
∑

1≤i< j≤n

κ(xi , x j )

− κ(x j , yi ) − κ(xi , y j ) + κ(yi , y j ). (1)

An adjustment can be made when the number of samples is
different between X and Y , for which we refer to the original
publication [9].

The above formula requires O(n2) computations, where n is
the number of images emitted by each actor. This is undesir-
able for large-scale application, but a simple approximation
is available: in case of a the linear kernel, MMD converges
with n → ∞ to ‖x̄ − ȳ‖2

2, the L2 norm between the actors’
centroids x̄ and ȳ in the feature space (see Appendix B).
We call this the centroid ‘kernel’ (it is not really a kernel,
but an asymptotic approximation) and use it extensively in
our experiments because it can be computed in O(n) time.
The influence of the MMD kernel on the quality of detection
is studied in greater detail in Section VI-B.

C. Anomaly Detector

Once distances between actors are calculated, we iden-
tify outlying actors. From the plethora of outlier detection
methods [3], we have chosen the local outlier factor (LOF)
method [2], as it has several desirable features: (a) it detects
outliers in probability distributions with clusters of different
densities; (b) the provided anomaly score is interpretable, as
values around one corresponds to true ‘inliers’ and values
greater than two correspond to outliers. Given a set P of points
(actors) with a metric d : P × P → [0,∞) and an integer
parameter 1 < k < |P|, the LOF is calculated as follows.1

The reachability distance of point p from q , rk(p, q), is
the greater of d(p, q) and d(q, q ′), where q ′ is q’s k-nearest
neighbour. Compared with the metric d , the reachability
distance reduces statistical fluctuations for close objects, with
smoothing controlled by the parameter k.

Fix a point p, and write Pk for the k-nearest neighbourhood
of p in P . The local reachability density of p is defined as
an inverse of the average reachability distance of point p from
all points q ∈ Pk ,

lrdk(p) =
(

1

k

∑

q∈Pk

rk(p, q)

)−1

,

1For this exposition we assume no exact duplicates in P or exactly tied dis-
tances between members of P , which simplifies the description considerably.
For full details, see the original publication [2].

and the local outlier factor (LOF) of p is

lofk(p) = 1

k

∑

q∈Pk

lrdk(q)

lrdk(p)
.

Thus lofk(p) captures the degree to which p is further from
its k-nearest neighbours than they are from theirs. Defining it
as a relative number means that it does not depend on absolute
values of distances d(p, q).

The original publication recommends k = 10, and we
have used this value throughout all experiments except in
Section VI-C. The results will show that the optimal value of k
depends on the number of guilty actors and their embedding
strategies. The LOF calculation is quadratic in the number
of actors (as it must compute and rank all pairwise distances)
which is slightly undesirable, but the number of actors is likely
to be orders of magntitude smaller than the number of images.

By design, this detector works (only) for a multi-actor,
multi-image scenario. And because it is completely unsuper-
vised, it cannot suffer from mismatch between training and
testing data. Thus our requirement of robustness is automat-
ically met. It remains to demonstrate that it works and has
good universality.

D. Relation to Prior Art

The vast majority of published work on steganalysis attacks
a different problem: analysis of one image at a time. The
first work proposing to investigate multiple images from a one
actor was [14]: it describes different strategies of aggregating
detection results from individual images to find whether one
actor is guilty or not. Although the work assumes a targeted
detector for a single image, it could be used with universal
steganalyzer as well. It does not consider the scenario of
multiple actors.

Universal steganalysis, where the steganalyst does not know
the embedding algorithm, is a largely neglected field of
research. Probably the first work in this field was [25], which
modelled distribution of cover images by one-class SVM and
classified deviations as stego images. The problem was further
studied in [30], where it is shown that universal steganalyzers
are sensitive to what is now called cover-source mismatch.

To the best of our knowledge, the large-scale steganalysis
scenario described here has not been attacked at all, except
in our prior work [16]–[18]. Combining the universal single-
image steganalyzer [30] with aggregation methods published
in [14] is the only prior art we can find. We compare our
detector to it in Section V-B.

IV. SIMULATING THE REAL WORLD

We wish to validate this new detection paradigm, in a
situation which mimics as much as possible a real-world net-
work scanning problem. We therefore selected covers, stegano-
graphic embedding methods, and strategies for guilty actors
to allocate payload between covers, to mimic a hypothetical
steganographer inserting payload into social media images.
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A. Cover Images

The images were obtained from a leading social network
site, which is popular for sharing pictures. Such a service could
provide an ideal steganographic channel, because uploading
and downloading many images should not raise suspicion.
We used a web crawler to download all public images
from users who identified themselves as members of Oxford
University. We stopped after downloading more than 4 million
images from more than 70 000 users. All personally iden-
tifiable information was removed, and the files anonymized
except for grouping images uploaded by the same user. The
actors in our experiments are the uploaders, which mimic
well the behaviour of real-world actors: sometimes a single
actor uses two or three cameras. In the experiments described
here, we used a randomly selected subset of 4000 actors and
200 images for each actor, for a total of 800 000 images.

At the time of crawling, the social networking site automat-
ically resized large images, to approximately 1Mpix, and then
JPEG compressed them with quality factor 85. This simplifies
steganalysis, since it is known that steganalytic features are
very sensitive to different quantisation matrices [29], but does
introduce a second compression (if the files were originally
uploaded as JPEGs); double compression is usually considered
a difficult nuisance parameter in steganalysis [29].

Apart from a fairly uniform size and completely uniform
quality factor, the images in the database are very diverse,
as they (a) come from different sources (cameras, flatbed
scanners), (b) are of different types (indoor party pictures,
cities, outdoor nature scenes, etc.), and (c) underwent different
image processing from acquisition to download. Some of them
are not natural images at all, but synthetic images or mosaics.
Most steganalysis literature would perform experiments on
images with such “impurities” removed, but we did not remove
them: the impurities are there in practice and these images are
a good prototype for what might be expected when monitoring
a real network. Their proportion in the database should reflect
the proportion we can expect in the wild, since it was crawled
from a real-world source.

B. Embedding Algorithms

In our experiments, we have used the following five
steganographic algorithms: F5 [38], [39], F5 with shrinkage
removed by wet paper codes and matrix embedding turned
off (nsF5), JPHide&Seek [23], OutGuess [32], [33], and
Steghide [10], [11]. These algorithms have diverse embedding
mechanisms, software implementations are all publicly avail-
able (except for nsF5 where only a simulator exists), and they
do not utilise side information in the form of the raw image.
Thus they could be applied by a non-expert. Furthermore,
there is copious evidence that these embedding methods can
be detected by the chosen steganalytic feature set. Below, the
ideas behind each algorithm are briefly described. For further
details we refer to the original publications.

OutGuess [32] is an improved version of JSteg [37].
OutGuess inserts the message by using standard LSB
replacement, while it avoids changing zeros and ones.
Since this embedding operation changes the first-order

histogram of DCT coefficients, OutGuess reserves some DCT
coefficients to restore, approximately, the first order histogram.
By doing so, OutGuess performs approximately twice as
many changes as JSteg, which makes the algorithm more
detectable by methods (features) modelling higher order
dependencies.

Unlike OutGuess, F5 [38] does not try to preserve the first-
order histogram of DCT coefficients. Instead, it preserves the
shape of the histogram, making it similar to that of the cover
image. The message is embedded by changing the absolute
values of DCT coefficients toward zero. DCT coefficients
equal to zero are skipped, and if the coefficient is changed
to zero during embedding, it is skipped as well and a new one
is utilised for re-embedding. The F5 algorithm was also the
first algorithm to use matrix embedding, a coding scheme that
increases embedding efficiency, here measured as the number
of bits embedded per embedding change.

Steghide [11] tries to preserve first-order statistics, but with-
out making additional embedding changes like OutGuess. The
algorithm starts by constructing a graph, where each vertex
corresponds to a group of pixels that need to be changed. The
weight of an edge between two vertices is proportional to the
distortion caused by modification of both vertices such that
they code the message. During the embedding, the algorithm
finds the partition of the graph minimising the cost, subject to
the chosen message being coded.

Despite the C source code for JPHide&Seek being avail-
able, its method of operation has not been described. To our
knowledge, the algorithm has not been published in any
scientific or other paper.

The nsF5 algorithm uses the same type of embedding
changes as the F5 algorithm. To avoid introducing more
zeros (the shrinkage effect), nsF5 uses wet paper codes
with improved efficiency [6]. The experiments in this paper
used the version of the algorithm from 2008, which sim-
ulates the embedding efficiency of particular wet paper
codes; this differs from the version currently published
by the author, which simulates the theoretically-optimal
efficiency.

C. Embedding Strategies

Embedding in multiple images poses new problems, origi-
nally described in [14]. The steganographer must choose how
to spread a message of total length M bits into n covers
(X1, . . . , Xn) with capacities (c1, . . . , cn) by using the cho-
sen steganographic algorithm. We distinguish the embedding
strategy, which allocates payload amongst objects, from the
embedding algorithm which inserts the payload steganograph-
ically.

In [17], we have identified five simple strategies to break
the message into fragments of lengths (m1, . . . , mn) such that
M = ∑n

i=1 mi . Since one of the strategies had little practical
value, we omit it here. None of the strategies is theoretically
optimal, and indeed the batch steganography problem has
not been solved. We have chosen strategies that could be
applied by a non-expert, similarly to our choice of embedding
algorithms.
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The greedy strategy tries to use as few images as possible.
The steganographer chooses the cover with highest capacity,
and embeds part of his message up to maximum capacity.
If more message remains, he repeats with the cover of next
highest capacity, until the whole message is embedded.

If the images are ordered by capacity so that c1 ≥
c2 ≥ . . . ≥ cn , this leads to the following message lengths:

mi = ci , ∀i ∈ {1, . . . , I − 1},

mI = M −
I−1∑

i=1

mi ,

mi = 0, ∀i ∈ {I + 1, . . . , n},
where I denotes the smallest possible number of images with
sufficient capacity, i.e.

I = arg min
i

M ≤
i∑

j=1

c j .

The maximum strategy is a variation of the greedy strategy,
where the images for embedding are selected in random
order and used to full capacity. This simulates a case of a
steganographer who is not able to estimate capacity until they
embed.

The linear strategy distributes the message into all
available covers proportionately to their capacity. This means
that

mi = ci M
∑n

j=1 c j
.

(Fractional bits are ignored in this study.)
In the even strategy, the message is distributed evenly into

all available covers regardless of their capacity. Thus

mi = M

n
.

For relatively large payloads and covers of uneven capacity,
sometimes mi exceeds ci . In this cases, we set mi = ci

and recalculate an even message length for the remaining
images.

We do not consider, in this work, how the receiver is to
reconstruct the original message. The allocation of payload
might be part of a shared secret key, or stored in the first few
bits of payload in a fixed position.

V. MAIN EXPERIMENTAL RESULTS

We simulated large-scale steganalysis using tens of thou-
sands of experiments. In each experiment, we randomly
selected NA actors out of the 4000 in our data set, and NI

images from each actor. Exactly one guilty actor is simulated,
by using the chosen embedding algorithm (from Subsec-
tion IV-B) and embedding strategy (Subsection IV-C) to insert
of payload size np, where 0 ≤ p < 0.25 and n is the total
number of nonzero coefficients in their images. Thus p is the
number of bits per nonzero coefficient (bpnc). It is important
to measure the payload size relative to a fixed quantity, not to
the capacity of an individual embedding algorithm, otherwise
the results are incomparable. We then calculate features from

each of the NA NI images, MMD between each pair of actors,
and LOF scores for each actor.

For each combination of parameters, each experiment is
repeated 500 times with a different selection of actors and
guilty actor. We need a benchmark to reflect how well the
guilty actor is identified, and we have chosen the average
rank of the guilty actor. An average rank of one corresponds
to perfect detection — the guilty actor is always ranked most
suspicious — and an average rank of NA+1

2 corresponds to ran-
dom guessing. We would not expect a universal, unsupervised
detector to achieve perfect accuracy, but instead hope that it
provides intelligence by ranking a truly guilty actor amongst
the top 5-10%, say, of all actors.

A. Detecting Different Algorithms

We first demonstrate that the proposed detector is
capable of detecting a wide range of algorithms (it has
good universality). We tested NA ∈ {100, 400, 1600} actors
with NI = 100 images each, and every combination
of embedding algorithm and strategy from subsects. IV-B
and IV-C. The steganalyser used the centroid ‘kernel’ for the
MMD distance measure, whitening of raw features (more on
this in Subsection VI-A), and the LOF parameter k = 10.

The average ranks of the true guilty actor, when hiding
payloads p ∈ {0.025, 0.05, . . . , 0.25}, are shown in Figure 1.
Our first observation is that the method works, when the
total payload is large enough. There are differences between
embedding algorithms (it confirms the known relative secu-
rity of the embedding algorithms [28], that nsF5 is most
secure and OutGuess/Steghide least secure) and between
embedding strategies, but the overall pattern is consistent.
With weaker embedding algorithms, perfect identification of
the guilty actor is achievable around 0.1–0.2 bpnc payload
sizes; perfect detection is not observed with nsF5 and F5,
but the guilty actor is consistantly ranked as one of the
2–6 most suspicious out of 100. Monitoring larger number
of actors does not substantially change the results, except
that the average rank of the guilty actor apparently scales
slightly sublinearly with the total number of actors NA .
A similar phenomenon was observed in [17], using a different
metric for the anomaly detector, and this finding would seem
favourable for large-scale steganalysis, but it has not yet been
explained.

Second, we observe that the greedy strategy is consistently
the most secure for the embedder: the average rank of the
guilty actor is higher, in all algorithms and payloads. We
will later show that this is only true when the steganalyst
uses the centroid ‘kernel’. The second most secure strategy is
maximum, except in the case of F5 where the matrix embed-
ding induces a nonlinear relationship between payload size
and steganographic distortion. The linear strategy is next, and
even is most insecure. The reason that the greedy/maximum
strategy is more secure than linear/even has been explained
in detail in our prior work [17].2 In brief, this effect is
caused by whitening the features in the pre-processing stage.

2In [17] the greedy and maximum strategies are called max-greedy and
max-random, respectively.
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Fig. 1. Performance of the proposed detector: from top to bottom, five different embedding algorithms; from left to right, different numbers of actors NA
(NI = 100 in each case); lines in each chart denote different embedding strategies; each x-axis represents total payload (bpnc) and each y-axis represents the
average rank of the truly guilty actor. The detector parameters are: centroid ‘kernel’, whitened features, k = 10.

But, as will be shown in Subsection VI-A, such preprocessing
is needed to achieve good accuracy. We discuss this further
in Section VII.

Because the greedy strategy dominates maximum, and linear
dominates even, in subsequent experiments we will discard the
maximum and even strategies.
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Fig. 2. Comparison of proposed detector with prior art. Each x-axis represents total payload (bpnc) and each y-axis represents the average rank of the truly
guilty actor; left, using the linear strategy; right, using the greedy strategy. In both cases NA = NI = 100, and the detector parameters are: centroid ‘kernel’,
whitened features, k = 10.

B. Comparison With Prior Art

As mentioned above, no other literature addresses the large-
scale steganalysis problem, so there is no direct prior art that
we can compare to. The only method we can identify, for
ranking guilty actors without knowledge of the embedding
algorithm, is a combination of the universal detector proposed
in [30] and pooling strategies described in [14] (which aggre-
gate the scores for each actor).

The universal steganalyzer, here implemented as a one-class
support machine (1-SVM) [34], assigns to each image a score
f (x) = 〈w, x〉H − b, where x is a feature vector of a given
image and (w, b) defines a hyperplane in a Hilbert space H,
which is determined from the training data. Following [14],
we implemented two pooling strategies to rank the guiltiness
of each actor from the scores of their images: (i) we calculated
the average score

1

n

n∑

i=1

f (xi ),

or (ii) we calculated the number of positive scores (number of
images classified as outliers)

#{xi | f (xi ) > 0}.
There may well be better methods for aggregation, but the
literature does not yet contain them.

The 1-SVMs were trained on 6000 cover images from
60 actors; the pool of actors used for this training was
disjoint from, but from the same social media source as,
all the other experiments in the paper. To avoid bias from
picking a particularly good or poor set of training images, we
trained 20 different 1-SVMs, on different cover examples, and
picked one of the machines at random for each experiment.
The 1-SVM hyperparameters were ν = 0.01 (proportion of
outliers) and γ (width of Gaussian kernel) using the follow-
ing common heuristic: inverse median of squared distances
between cover images (features) in the training set. The
features were normalised to have zero mean and unit variance.
Note the distinction between the method presented in this

paper, which is completely untrained, and the use of 1-SVMs,
which do require cover training data.

The average rank of the guilty actor, hiding payloads
p ∈ {0.025, 0.05, . . . , 0.25} using only the nsF5 algorithm and
greedy/linear strategies, is shown in Figure 2. The steganalyst
used the two aggregations of 1-SVM scores, or the proposed
detector with the same settings as in the previous subsection.
Here NA = 100 and NI = 100 (similar results are observed,
but not included here, with other combinations of parameter).
The graphs clearly show that the proposed solution is substan-
tially more accurate than prior art (except for tiny payloads
when both are guessing randomly), which is not aggregating
effectively the evidence from the multiple images.

VI. SUPPLEMENTAL EXPERIMENTS

The detector described in Section III has several hyperpa-
rameters, which influence its performance. In the previous
section, we used parameters based on our previous experi-
ments published in [16] and [18]. Here, we re-examine the
choices one-by-one.

Unless otherwise indicated, all experiments in this section
share the same setting of one guilty actor emitting a payload
of 0.1 bpnc, using nsF5 algorithm and the greedy or linear
strategy. The steganalyst uses the proposed detector with
whitened features, the centroid ‘kernel’, and LOF parameter
k = 10. NI = 100 and NA ∈ {100, 400, 1600}.

A. Pre-Processing

The pre-processing of features has a significant impact
on the accuracy of detection. In steganalysis literature a
common pre-processing is normalisation, where each feature
is individually scaled to have zero mean and unit variance
(usually across the cover training set). The goal is to prevent
features with high variance from dominating other, perhaps
more informative, features of low variance. In this application
it is essential, so that the MMD distances are meaningful and
not dominated by noisy components.

For additional stabilization, one can also apply whitening
(principal component transform), to decorrelate the features
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Fig. 3. The effect of different feature pre-processing. From left to right, different numbers of actors NA (NI = 100 in each case); lines in each chart denote
different pre-processing options and embedding strategy; each x-axis represents total payload (bpnc) and each y-axis represents the average rank of the truly
guilty actor. The embedder uses nsF5 embedding. The other detector parameters are: centroid ‘kernel’, k = 10.

Fig. 4. The effect of the number of components retained after whitening. From left to right, different numbers of actors NA (NI = 100 in each case); lines
in each chart denote different embedding strategy; each x-axis denotes the number of components kept for the LOF analysis, and each y-axis represents the
average rank of the truly guilty actor. The embedder uses nsF5 embedding with total payload 0.2 bpnc. The other detector parameters are: centroid ‘kernel’,
k = 10.

(again, usually on the cover training set); in this application,
because equally-scaled components are essential, we further
apply normalization after whitening.

Figure 3 shows the performance of the detector, when the
steganalyst uses unprocessed (raw), normalised, and whitened
features. In all situations (different embedding strategies of
the guilty actor, different number of actors) the raw features
are near-useless, confirming the importance of equal scaling of
features in the anomaly detector: a different situation may hold
in supervised classifiers, where the training phase can learn to
ignore noisy features. Whitened features are consistently the
best option. Surprisingly, with an increasing number of actors,
the advantage of whitening over normalization decreases.

In image recognition applications, principal component
analysis (PCA) is frequently used as a denoising filter, dis-
carding components corresponding to small eigenvalues in
the correlation matrix. We use the same in our application,
applying it to all feature vectors pooled across all actors in
each experiment, and discarding the components with low
eigenvalue after whitening the features. In the previous exper-
iments we discarded such components with corresponding
eigenvalues lower than 0.01, as we expected them to carry

noise. But is this really a sensible choice? Figure 4 shows
the average rank of the guilty user, as we vary the number
of components retained after whitening: the components were
sorted from those highest eigenvalue (variance) to lowest, and
we kept only the highest. The results show that better accuracy
is acheived when most components are used; for large number
of actors the improvement is very negligible and it looks like
that the optimum is near, but not quite at, the maximum of
retaining all 274 components. Due to the difficulty of finding
this maximum in advance, and for good numerical stability,
we suggest continuing to use the eigenvalue threshold 0.01.

B. Kernel

The kernel function used in the calculation of MMD dis-
tance underpins the entire system. Thus far we have used
the centroid ‘kernel’, which approximates the linear kernel
κ(x, y) = xT y, because it has linear time complexity. Exper-
iments in [18] report its superiority with respect to other
kernels, but only one embedding strategy was examined.

There is reason to believe that alternative kernels
should have advantages against certain embedding strategies.
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Fig. 5. The effect of the MMD kernel. The x-axis denotes strategies
interpolating smoothly between greedy (left) and linear (right), the y-axis the
average rank of the truly guilty actor. The different lines indicate diffeerent
kernels. Here NA = NI = 100, the payload is 0.2 bpnc and the embedding
is by nsF5, the features were whitened, and the LOF parameter k = 10.

To summarise the argument in [17]: because of noisy com-
ponents, steganalysis features per object are distorted by
an amount sublinear in the payload, and the linear kernel
only agglomerates this distortion linearly. Hence the apparent
superiority of the greedy strategy. But consider some of
the theoretical steganography work on small payloads: in
principle, distortion relating to statistical detectability (KL
divergence) is locally quadratic in the payload size [5]. Thus a
kernel which captures such distortion would be more powerful
against the greedy strategy. This motivates us to examine
polynomial kernels k(x, y) = (xT y)2 (quadratic, which should
be powerful against the greedy strategy) and k(x, y) = (xT y)3

(cubic), as well as Gaussian k(x, y) = exp(−γ ‖x − y‖2). The
problem of setting γ is treated in more detail in Appendix A.
We also investigated higher-order polynomials, but the results
were weak and are not included here.

For a more fine-grained analysis of embedding strategy, we
used methods which apply linear embedding to the greatest-
capacity proportion P of the guilty actor’s images. For
small P , this is equivalent to the greedy strategy (maximum
payload in fewest covers); for P = 100% it is the linear
strategy, and in between it exchanges size of payload-per-
image for number of images used. The average rank of the
guilty actor, when testing each kernel against strategies for
various P , is shown in Figure 5. The results validate our
theory that the embedding strategies have a detection counter-
strategy: for low P (greedy) the quadratic kernel is indeed
most accurate, while for high P it is the Gaussian kernel
with best performance. Our use of the centroid ‘kernel’ was
slightly sub-optimal, in that it is dominated by the Gaussian
or quadratic kernels, but the difference between centroid and
Gaussian is not so great as to outweigh the benefits of its linear
time complexity.

As predicted in [14] and [15], we find a two-player game
between the embedder and detector. We could define the

TABLE I

THE AVERAGE RANK OF 1, 2, 4, OR 8 GUILTY ACTORS USING EITHER

LINEAR OR GREEDY STRATEGY. THE DETECTOR VARIES THE NEAREST

NEIGHBOUR PARAMETER k IN THE LOF METHOD. HERE NA =
NI = 100, THE PAYLOAD IS 0.2 BPNC, THE EMBEDDING IS

BY NSF5, AND THE FEATURES WERE WHITENED.

THE LAST ROW CAPTIONED “PERFECT” SHOWS

THE AVERAGE RANK OF A PERFECT DETECTOR

zero-sum payoff to be the average rank of the guilty actor.
In that case we can even, purely for illustration, use standard
linear-programming techniques to compute the equilibrium
strategies from our empirical data. It turns out that both players
should use mixed (randomized) strategies to avoid being
exploited by their opponent: the embedder should pick the
greedy or linear strategy at random, with probability approx-
imately 0.52 and 0.48, respectively (intermediate options are
dominated), while the detector should pick the Gaussian kernel
with probability 0.27, and quadratic with probability 0.73.
The average rank is then approximately 6.9. Of course, these
strategies are only optimal within the narrow confines of this
game, in particular for this embedding algorithm, payload size,
number of images, and number of actors, and other possible
kernels or embedding strategies may change the results. The
game theory of steganography is still in its infancy [36], and
has not reached the batch steganography case.

C. Multiple Guilty Actors, Effect of k

Thus far, our experiments have simulated only one guilty
actor, and the number of nearest neighbours in LOF method
was set to k = 10, as recommended in [2]. If there are
multiple guilty actors in a tight cluster then the optimal choice
of k depends on the size of that cluster: too small a value
k causes the cluster to be deemed ‘normal’, too large will
smooth out its anomaly level. To briefly investigate this, we
vary the number of guilty actors from {1, 2, 4, 8} out of a
total of NA = 100 actors, and tested k ∈ {2, 4, 6, . . . , 20}. We
compute the same metric: average rank of the guilty actor.

The results in Table I reveal that smaller values of k are
slightly more accurate for detecting a single guilty actor, and
larger values better for detecting more actors. This suggests
that the guilty actors indeed form some sort of cluster, which
would probably not happen if the guilty actors used different
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embedding methods or strategies (we postpone such further
experiments to future work). The default value of k = 10,
which we have used in this paper, seems to be a good
compromise, but the optimal k depends also on the embedding
strategy used by the guilty actors, introducing another potential
game between embedder and detector.

VII. CONCLUSION

We have presented a first method for addressing a new
and realistic problem in steganalysis: detecting the guilty
actor, rather than individual image, in the setting of network
monitoring when there are many actors and images to consider.
To our knowledge this is the first work to address this problem
or the pooled steganalysis problem [14], and the first to use
MMD in steganalysis detection. A key element is to turn some
of the difficulties in the problem – the large number of users
and images – to our advantage by calibrating the behaviour
of outliers against that of the majority, allowing completely
unsupervised detection.

Our experiments, which simulated embedding and detection
in 100 − 1600 actors, each transmitting 100 images,3 repeated
thousands of times with different combinations of embedding
parameters, payload size, and detection parameters.

Essential to every modern steganalysis method are the
features that drive it. We used a well-established feature set,
which is not one of the recent “rich model” [7], [13], [20]
feature sets that have been published recently, for two reasons.
First, for experiments on such a scale it is essential that the
features be calculated quickly and the many-thousand dimen-
sional rich model features are not quick to extract. Second,
and a subject of our current work, is that larger feature sets
perform worse when plugged into the same anomaly detection
framework despite being considerably more effective in tradi-
tional binary steganalysis. We have examined this phenomenon
and it is an unavoidable consequence of unsupervised learning:
there is no way to discard or weight down the weaker features
in a training phase, so the anomaly detector is overwhelmed
by noise. It illustrates that the design of good features for
the standard binary-classification steganalysis, where extra
features are essentially free of cost, does not translate well
into an unsupervised case. Our current work involves partially-
supervised dimensionality reduction to focus the power of
large feature sets into a smaller set which is suitable for
unsupervised anomaly detection [31].

We also tested only well-understood embedding algorithms
which have long been known to be detectable by statistical
analysis, and naive embedding strategies with little or no
adaptive allocation of payload between images. Again this
is required for experimental efficiency, but we were also
motivated by simulating a “real-world” steganographer who
uses tools currently easily available on the internet. For the
same reason we used a large image set downloaded from social
media. Our method, however, is applicable to any embedding
method where the features are more sensitive to stego content

3Further experiments with as few as 20 and as many as 200 images were
performed, but the results were so similar to those presented here that we do
not include them.

Fig. 6. Effect of the Gaussian kernel width. The embedder uses nsF5
embedding with total payload 0.2 bpnc, the features have been whitened,
and the LOF parameter is k = 10.

than payload content, and it would be very surprising if even
the most recent adaptive embedding methods [4], [12] were
not detectable, albeit at higher payloads because of their lower
distortion, than their simpler ancestors tested here.

Although we have investigated good parameters (feature
preprocessing, kernel, LOF parameter) for the detector, this
demonstrated the game at the heart of steganography and
steganalysis: fixed (known) choices by the embedder allows
the detector to tune parameters to enhance accuracy, whereas
fixed (known) choices by the detector allow the embedding to
tune their parameters to reduce detection accuracy. We cannot
solve such games until all the options, for embedder and
detector, are properly understood, but in the future we might
hope to find both equilibria and, more practically usefully,
conservative minimax strategies for each player.

Other future work should be to examine more closely the
cases of multiple guilty actors, as well as the case of zero
guilty actors: throughout this paper we assumed that at least
one actor was guilty, which may not be true in application.
Ideally we would like to estimates the probability of guilt
for each actor, which is a known and difficult problem in
anomaly detection. Another direction might be to use mul-
tiple anomaly detectors instead of a single LOF, hoping that
diversity amongst outlier-detection methods will lead to better
results, but this runs into the known, nontrivial, problem of
aggregating scores [22].

APPENDIX

A. Gaussian Kernel Width

The quality of detection with the Gaussian MMD kernel
κ(x, y) = exp(−γ ‖x − y‖2) depends on the choice of γ ,
and a wrong choice can decrease the performance. With
the recommendation of [35], we investigated γ in a range
around γ0, the latter defined as the inverse of the median
squared distances between (whitened) image features. We set
γ = γ0 · γ1 where γ1 ∈ {10n|n ∈ {−3,−2, . . . , 3}}. Fixing on
a payload of 0.2 bpnc, the nsF5 embedding algorithm, and the
greedy and linear strategies, we tested all such γ and display
the results in Fig. 6.
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Because of the connections between linear and Gaussian
kernel with small γ (see Appendix B), it is not surprising that
small kernel γ does not penalise the performance very much;
large γ causes performance to decrease to random guessing
because the MMD calculations are dominated by outliers in
the feature point clouds of each actor. The optimum is indeed
around the default γ = γ0 in each case.

B. Connections Between Kernels

We have used primarily the centroid ‘kernel’; here we
demonstrate its connection with the true linear kernel, and
also the Gaussian kernel for large kernel width.

First, use symmetry of the kernel to write

MMDlinear(X, Y ) = 1

n(n − 1)

×
∑

1≤i = j≤n

xT
i x j − 2xT

i y j + yT
i y j .

Then we expand

MMDcentroid(X, Y )

=
(1

n

∑

i

xi − 1

n

∑

i

yi

)T(1

n

∑

i

xi − 1

n

∑

i

yi

)

= 1

n2

∑

i, j

xT
i x j − 2xT

i y j + yT
i y j

= n

n − 1
MMDlinear(X, Y ) + 1

n2

∑

i

(xT
i − yi )(xi − yi).

This demonstrates that the centroid ‘kernel’ approximates the
true linear MMD for large n.

Now let k be the Gaussian kernel with inverse width γ , then

k(x, y) = 1 − γ ‖x − y‖2 + O(γ 2),

so that for small γ we have

MMDGaussian(X, Y ) ≈ γ

n(n − 1)

∑

1≤i = j≤n

2‖xi − y j‖2

−‖xi − x j‖2 − ‖yi − y j‖2.

The first term measures average distances between the distrib-
utions X and Y , and the other terms measure average distances
within them. Indeed, if the xi (respectively yi ) are drawn from
any multivariate distribution with mean μx (μy) and finite
covariance matrix �x (�y) then elementary calculations give

E
[‖xi − y j‖2] = Tr(�x + �y) + ‖μx − μy‖2,

E
[‖xi − x j‖2] = 2 Tr(�x ),

E
[‖yi − y j‖2] = 2 Tr(�y),

and hence by the law of large numbers MMDGaussian(X, Y ) →
γ ·MMDcentroid(X, Y )+ O(γ 2) as n → ∞. The LOF method
is scale insensitive, so the factor γ has no effect on it. This
explains the behaviour seen in Fig. 6.

REFERENCES

[1] P. Bas, T. Filler, and T. Pevný, “‘Break our steganographic system’: The
ins and outs of organizing BOSS,” in Proc. 13th Inf. Hiding Conf., 2011,
pp. 59–70.

[2] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2000, pp. 93–104.

[3] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, 2009.

[4] T. Filler and J. Fridrich, “Design of adaptive steganographic schemes
for digital images,” Proc. SPIE, Media Watermark., Security, Forensics
XIV, vol. 7880, p. 78800F, Feb. 2011.

[5] T. Filler, A. D. Ker, and J. Fridrich, “The square root law of stegano-
graphic capacity for Markov covers,” Proc. SPIE, Media Forensics
Security XI, vol. 7254, pp. 801–811, Feb. 2009.

[6] J. Fridrich, M. Goljan, and D. Soukal, “Wet paper codes with improved
embedding efficiency,” IEEE Trans. Inf. Forensics Security, vol. 1, no. 1,
pp. 102–110, Mar. 2006.

[7] J. Fridrich and J. Kodovský, “Rich models for steganalysis of digital
images,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 3, pp. 868–882,
Jun. 2012.

[8] J. Fridrich, J. Kodovský, V. Holub, and M. Goljan, “Steganalysis of
content-adaptive steganography in spatial domain,” in Proc. 13th Inf.
Hiding Conf., 2011, pp. 102–117.

[9] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and
A. J. Smola, “A kernel method for the two-sample problem,” in Advances
in Neural Information Processing Systems 19. Cambridge, MA, USA:
MIT Press, 2007, pp. 513–520.

[10] S. Hetzl. (2003, Oct.). Implementation of the Steghide Algorithm
ver. 0.5.1 [Online]. Available: http://steghide.sourceforge.net/

[11] S. Hetzl and P. Mutzel, “A graph–theoretic approach to steganogra-
phy,” in Proc. 9th Int. Conf. Commun. Multimedia Security, 2005,
pp. 119–128.

[12] V. Holub and J. Fridrich, “Digital image steganography using universal
distortion,” in Proc. 1st ACM Workshop Inf. Hiding Multimedia Security
(IH&MMSec), New York, NY, USA, 2013, pp. 59–68.

[13] V. Holub and J. Fridrich, “Random projections of residuals for digital
image steganalysis,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 12,
pp. 1996–2006, Dec. 2013.

[14] A. D. Ker, “Batch steganography and pooled steganalysis,” in Proc. 8th
Inf. Hiding Workshop, vol. 4437. 2006, pp. 265–281.

[15] A. D. Ker, “Batch steganography and the threshold game,” Proc. SPIE,
Security, Steganography, Watermark. Multimedia Contents IX, vol. 6505,
pp. 401–413, Mar. 2007.

[16] A. D. Ker and T. Pevný, “A new paradigm for steganalysis via
clustering,” Proc. SPIE, Media Watermark., Security, Forensics III,
vol. 7880, pp. U01–U13, Feb. 2011.

[17] A. D. Ker and T. Pevný, “Batch steganography in the real world,”
in Proc. 14th ACM Workshop Multimedia Security (MM&Sec), 2012,
pp. 1–10.

[18] A. D. Ker and T. Pevný, “Identifying a steganographer in realistic
and heterogeneous data sets,” Proc. SPIE, Media Watermark., Security,
Forensics XIV, vol. 8303, pp. N01–N13, May 2012.

[19] J. Kodovský and J. Fridrich, “Steganalysis in high dimensions: Fusing
classifiers built on random subspaces,” Proc. IS&T/SPIE Electron. Imag.,
vol. 7880, p. 78800L, 2011.

[20] J. Kodovský and J. Fridrich, “Steganalysis of JPEG images using
rich models,” Proc. SPIE, Media Watermark., Security, Forensics XIV,
vol. 8303, p. 83030A, Feb. 2012.

[21] J. Kodovský, J. Fridrich, and V. Holub, “Ensemble classifiers for
steganalysis of digital media,” IEEE Trans. Inf. Forensics Security, vol. 7,
no. 2, pp. 432–444, Apr. 2012.

[22] H. P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “Interpreting and
unifying outlier scores,” in Proc. 11th SIAM Int. Conf. Data Mining,
2011, pp. 13–24.

[23] A. Latham. (1999, Aug.). Implementation of the JPHide and
JPSeek Algorithms ver 0.3 [Online]. Available: http://linux01.gwdg.de/
∼alatham/stego.html

[24] I. Lubenko and A. D. Ker, “Going from small to large data in steganaly-
sis,” Proc. IS&T/SPIE Electron. Imag., vol. 8303, p. 83030M, Feb. 2012.

[25] S. Lyu and H. Farid, “Steganalysis using higher-order image statis-
tics,” IEEE Trans. Inf. Forensics Security, vol. 1, no. 1, pp. 111–119,
Mar. 2006.

[26] T. Pevný, “Detecting messages of unknown length,” Proc. SPIE, Elec-
tron. Imag., Media Watermark., Security Forensics Multimedia XIII,
vol. 7880, pp. 23–26, Jan. 2011.



KER AND PEVNÝ: STEGANOGRAPHER IS THE OUTLIER 1435

[27] T. Pevný, P. Bas, and J. Fridrich, “Steganalysis by subtractive pixel
adjacency matrix,” IEEE Trans. Inf. Forensics Security, vol. 5, no. 2,
pp. 215–224, Jun. 2010.

[28] T. Pevný and J. Fridrich, “Merging Markov and DCT features for
multi-class JPEG steganalysis,” Proc. SPIE, Media Watermark., Security,
Forensics IX, vol. 6505, pp. 3–14, Feb. 2007.

[29] T. Pevný and J. Fridrich, “Multiclass detector of current steganographic
methods for JPEG format,” IEEE Trans. Inf. Forensics Security, vol. 3,
no. 4, pp. 635–650, Dec. 2008.

[30] T. Pevný and J. Fridrich, “Novelty detection in blind steganalysis,” in
Proc. 10th Workshop Multimedia Security, 2008.

[31] T. Pevný and A. D. Ker, “The challenges of rich features in univer-
sal steganalysis,” Proc. SPIE, Media Watermark., Security, Forensics,
vol. 8665, pp. M01–M15, Mar. 2013.

[32] N. Provos, “Defending against statistical steganalysis,” in Proc. 10th
Conf. USENIX Security Symp., vol. 10. 2001, pp. 323–335.

[33] N. Provos. (2001, Oct.). Implementation of the OutGuess Algorithm
ver. 2.0 [Online]. Available: http://www.outguess.org/

[34] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-dimensional distri-
bution,” Neural Comput., vol. 13, no. 7, pp. 1443–1471, 2001.

[35] B. Schölkopf and A. J. Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[36] P. Schöttle, S. Korff, and R. Böhme, “Weighted stego-image steganalysis
for naive content-adaptive embedding,” in Proc. 4th IEEE Int. Workshop
Inf. Forensics Security (WIFS), Dec. 2012, pp. 193–198.

[37] D. Upham. (2012, Apr.). Implementation of the JSteg Steganographic
Algorithm [Online]. Available: http://zooid.org/∼paul/crypto/jsteg/

[38] A. Westfeld, “F5—A steganographic algorithm,” in Proc. 4th Inf. Hiding
Workshop, vol. 2137. 2001, pp. 289–302.

[39] A. Westfeld. (2012, Apr.). Implementation of the F5 Steganographic
Algorithm [Online]. Available: http://code.google.com/p/
f5-steganography/

Andrew D. Ker (M’06) was born in Birmingham,
U.K., in 1976. He received the B.A. degree in
mathematics and computer science and the D.Phil.
degree in computer science from Oxford University,
Oxford, U.K., in 1997 and 2001, respectively.

He is a fellow and Praelector in Computer Science
with University College, Oxford, and a University
Lecturer with the Department of Computer Sci-
ence, Oxford University. He has published widely
on steganography and steganalysis, in practice and
theory.

Dr. Ker is also a member of the Association for Computing Machinery.

Tomáš Pevný is a Researcher with the Czech Tech-
nical University of Prague, Prague, Czech Republic.
He received the Ph.D. degree in computer science
from the State University of New York, Bingham-
ton, NY, USA, in 2008, and the M.S. degree in
computer science from the Czech Technical Uni-
versity of Prague in 2003. From 2008 to 2009, he
was with Gipsa-Lab, Grenoble, France, as a Post-
Doctoral Researcher. His main research interests are
in nonparametric statistics with a focus on steganog-
raphy, steganalysis, network security, and intrusion

detection.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


