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ABSTRACT

The model mismatch problem occurs in steganalysis when a binary classifier is trained on objects from one cover
source and tested on another: an example of domain adaptation. It is highly realistic because a steganalyst would
rarely have access to much or any training data from their opponent, and its consequences can be devastating
to classifier accuracy. This paper presents an in-depth study of one particular instance of model mismatch,
in a set of images from Flickr using one fixed steganography and steganalysis method, attempting to separate
different effects of mismatch in feature space and find methods of mitigation where possible. We also propose
new benchmarks for accuracy, which are more appropriate than mean error rates when there are multiple actors
and multiple images, and consider the case of 3-valued detectors which also output ‘don’t know’. This pilot
study demonstrates that some simple feature-centering and ensemble methods can reduce the mismatch penalty
considerably, but not completely remove it.

1. INTRODUCTION

Treating steganalysis as a problem of binary classification has been very successful,1,2 but such a scenario assumes
that the detector has access to the steganographic embedding method and, crucially, the cover source used by
the sender. In reality one cannot normally obtain the exact cover source, and in practice it is necessary to train
the classifier on a different one with hopefully-similar characteristics (an example of domain adaptation3). This
induces the model mismatch problem, which has been demonstrated to reduce steganalysis accuracy4–6 by very
significant, and unpredictable, amounts. The unpredictability is particularly troublesome, and the reason why
model mismatch is a mess for the practitioner: it is difficult to trust the output of steganalysis if the accuracy
is unpredictable.

In this paper we distinguish two degrees of mismatch: total mismatch, in which the steganalyst must train
on a source disjoint with the testing source (known as conservative domain adaptation in the machine learning
literature), and partial mismatch where a small amount of training data is available for the target but which is
insufficient to train a classifier (adaptive domain adaptation).

This is a timely research topic if steganalysis is to be applied in real-world circumstances.7 There has, so far,
been only a small amount of literature attempting to reduce the classification errors due to model mismatch. One
approach was clustering, followed by a special steganalyzer well-suited to that cluster6 apart from computational
cost and the need to train many classifiers, it also does not help in the case when a sample is far from all
clusters. An early spatial-domain method was adapted for more robustness,6 but this could not be used for
modern steganalysis, and mismatch was measured but not mitigated in Ref. 4. Recently, Ref. 5 used simpler
classifiers trained on large amounts of data, attempting to avoid overfitting a particular training source (this
requires a large amount of training data from a number of actors, but can attack total mismatch), and Ref. 9
accepted mismatch as a fact and used a hierarchical model to share information between personalized classifiers
(this only works for partial mismatch). In neither case were the misclassification errors reduced by very much.
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Camera model
Image resolution (Kpix)

minimum mean maximum

Actor 1 Fujifilm FinePix S5Pro 1516 2733 4159
Actor 2 Canon EOS REBEL T3 1707 2479 3379
Actor 3 Sony DSC-W110 263 1063 6697
Actor 4 Canon EOS DIGITAL REBEL XTi 1704 2196 3908
Actor 5 PENTAX *ist DL 286 2771 4903
Actor 6 Sony DSLR-A200 167 544 1097
Actor 7 Canon EOS DIGITAL REBEL XTi 2329 2795 3320
Actor 8 Casio EX-Z100 693 1231 7078
Actor 9 Canon EOS 450D 426 990 1135

Table 1: Camera models used by individual actors.

This paper is an exploration of the model mismatch problem. We fix on a particular set of mismatched
steganographers – actors using nine different camera sources, and plain nsF5 steganography – and attempt to
measure how mismatch arises in steganographic features, finding mitigation for the mismatch if possible. A
number of different techniques will be attempted and benchmarked, but we do not attempt to determine the
best ‘solution’ to the mismatch problem. Our approach is quite geometric: we will try to isolate shifts of location
and changes of direction and ‘speed’ of change (with payload) in feature space, along with false certainty arising
from making decisions in sparsely-populated regions. We do not, at this stage, attempt to determine why the
mismatch has a particular form, or whether this is due to the design of the features or particular differences
between the cameras; that is research for another day.

The paper is structured as follows. In section 2 we discuss how overall detector accuracy should be measured,
when there are many actors and potentially many images each. We argue that a ‘mean accuracy’ measure does
not properly capture the value of stability, and define two other aggregate metrics based on simple models of
pooled steganalysis. In the following three sections we examine three potential sources of error in mismatched
steganalysis: shift in the center of cover features between sources (sect. 3), different direction and/or rate of
change of features as steganography is embedded (sect. 4), and false certainty by classifiers which make decisions
in regions of particularly sparse training (sect. 5). In each case we attempt first to measure the effect, and then
to mitigate it, if possible. Finally, in section 6 we summarise the results of the entire paper and draw some
conclusions. This is only a pilot study and much further work is needed.

1.1 Experimental setup

Throughout this paper we use a database of real-world images: 9000 images, taken with the same camera, from
each of nine uploaders (actors) on the popular image sharing site Flickr. The camera model was identified from
EXIF data, and the images were downloaded in ‘original’ size. We cannot know the exact processing chain before
the images were uploaded, and the images are not all the same size suggesting some resampling or (more likely
in most cases here) cropping, and potentially double-compression; although they make steganalysis difficult,
these are exactly the sorts of artifacts we expect to see in real world sources. We selected these particular nine
uploaders because, although they use 8 different models from 4 manufacturers, they all produced images with
the same JPEG quality factor (85). The camera models used by the actors, and some information about the
image sizes, are displayed in Table 1.

Mismatch due to differences in JPEG quality factor is certainly an important (and under-researched) topic,
but we wanted to isolate it for the purposes of this study. Because different quality factors imply different DCT
quantization bin widths, the features extracted from images with different quality factors are effectively different
features altogether (they are counting different things).

We simulated steganography using the nsF5 embedding operation without adaptive matrix embedding, with a
fixed embedding efficiency of 2 bits per change. For benchmarking the accuracy of (matched, partially-matched,
and totally-mismatched) detectors we always tested the fixed payload of 0.05 bits per nonzero coefficient (bpnc),



but for exploration of the mismatch phenomenon we also embedded random-length payloads. We used this
embedding method because it is well understood and, being non-adaptive, the rate of embedding changes does
not vary with the cover image: this is another factor we wished to isolate from our study.

For detection we used the CF∗ features.10 These are moderately recent and fit the ‘rich model’ paradigm
used by the very state-of-art steganalysis (they are 7850 dimensional), but can be extracted rather faster than
the latest but expensive JRM1 or PSRM11 features. After the results of this pilot study are understood, further
research can verify its application to other feature sets and other embedding algorithms, but we expect that the
conclusions will hold rather widely because steganalysis features are all doing rather similar things: counting
occurrences of (possibly filtered) coefficients.

Exploratory data analysis was conducted on all 81000 images, but when we benchmark detection accuracy we
always use a Fisher Linear Discriminant (except in section 5) trained on 6000 of each actors’ images, and tested
on the other 3000: thus the training and testing sets are disjoint. The accuracy of each classifier is measured by
the minimum equal-prior error rate

PE = 1
2 min(PFP + PFN)

where PFP and PFN represent the false positive and false negative rate and the minimum is taken over parallel
decision boundaries. We used a simple FLD (rather than the nonlinear classifiers used in most literature) because
it has a simple geometric intuition, and because our experience is that linear classifiers5 and regressors12 can
still provide good performance. This is particularly so when the size of the training data is small, relative to the
number of features. For future work it would be straightforward to extend the testing to nonlinear classifiers
such as the ensemble FLD used in Ref. 1.

We display the accuracy of these classifiers, and the effect of complete mismatch, in Table. 2: nine classifiers
were trained (one per actor) and then tested on each actor’s images. Aggregation of these numbers is explained
in the following section, but the mismatch penalty is easily apparent with the off-diagonal error rates being
approximately five times higher than the diagonal (the matched case), and in the worst case hardly better than
random guessing (an error rate of 39%). This motivates the investigations of this paper.

It is interesting that the worst mismatched error occurs for actor three, who used a Sony camera with rather
small average image size. The best mismatched error of this actor was with an actor six, who also used Sony
camera, but with even smaller images. Notice that actor nine also posted images with a small resolution, similar
on average to those of actor three, but they were unable to classify each others’ images well (error rates 31% and
19%, depending on which was trained and which tested), suggesting that the mismatch is probably not primarily
due to image size.

2. METRICS IN A MULTI-ACTOR, MULTI-IMAGE WORLD

We want to measure the success of methods for mitigating model mismatch. How should we do this? This
requires a reconsideration of the very benchmarks we use for steganalysis. In the literature, when mismatched
covers are tested at all their results are either displayed without aggregation, or the mean error rate (equivalently,
mean accuracy) are displayed. The former is fine but does not allow for easy comparison. The latter, we argue,
is somewhat flawed.

First, consider the following situation. As steganalysts, we are given two detectors. One is always 80%
accurate and the other is 70% accurate or 90% accurate, equally likely but depending on some facets of the
target that you cannot measure. Which detector do we prefer? Clearly, the detector with a stable error rate is
better, but they both have the same average. Stability of error rate, between match and mismatch and between
different cases of mismatch, is valuable because it implies reliability.

The problem runs deeper. We perform a second thought experiment. Suppose that the world consists of k
actors, and that we have trained one or more classifiers (which might be matched or mismatched, perhaps even as
many as one classifier for each actor) with false positive/negative rates of P 1

FP/P 2
FN, . . ., P k

FP/P k
FN when applied

to images from actor 1, . . . , k, respectively. Now suppose that we have to apply the classifier(s) to a target who
is, let us say, uniformly randomly picked from the k actors. What is our error rate?



Testing actor

1 2 3 4 5 6 7 8 9

T
ra

in
in

g
ac

to
r

1 0.0029 0.0157 0.1330 0.2368 0.0169 0.1095 0.0592 0.0470 0.0823

2 0.0218 0.0052 0.1662 0.1011 0.0270 0.1077 0.0482 0.0463 0.0629

3 0.3648 0.3341 0.0273 0.3887 0.2450 0.2373 0.3692 0.2953 0.3142

4 0.0340 0.0132 0.1848 0.0043 0.0141 0.0913 0.0338 0.0415 0.0637

5 0.0414 0.0108 0.1141 0.0780 0.0031 0.0938 0.0310 0.0248 0.0629

6 0.0694 0.0298 0.1697 0.0427 0.0357 0.0663 0.0730 0.0303 0.0718

7 0.0177 0.0099 0.2149 0.1000 0.0090 0.1174 0.0101 0.0228 0.0647

8 0.0504 0.0343 0.1202 0.0944 0.0143 0.0943 0.0495 0.0108 0.0842

9 0.0357 0.0113 0.1941 0.1742 0.0179 0.1175 0.0829 0.0459 0.0540

matched cases mismatched cases

µ1 µ2 µ∞ µ1 µ2 µ∞

Aggregate error rates 0.0204 0.0315 0.0663 0.0981 0.1369 0.3887

Table 2: Error rate (PE) of FLD classifiers using CF∗ features, tested against cover and 0.05bpnc nsF5 stego
images. Each classifier was trained on 6000 of one actor’s images, and tested against 3000 of another. The
aggregate benchmarks are explained in section 2.

If there is just one image to test, then our false negative rate is indeed the mean false negative

PFN =

k∑
i=1

Pr[actor i picked]P i
FN = PFN,

and similar for false positive. But if, as seems very likely in almost any steganalysis application, we are actually
given n > 1 images from this actor and asked whether the actor is guilty (of using steganography), the situation
is more complicated, because this is an example of pooled steganalysis,13 which has not been solved.

First, suppose that P i
FP = 0 for all i. Then there is only one sensible detector given the results on n images:

return a guilty verdict if any of the n images give a positive detection. The false positive rate of this pooled
detector is zero and its false negative rate is

PFN =

k∑
i=1

Pr[actor i picked]Pr[no false negatives in n images] =
1

k

k∑
i=1

(
P i
FN

)n
.

This is not the mean false negative rate; when n = 2 it is the mean squared error rate, and as n → ∞ it tends
to 1

k (maxi P
i
FN)n in the sense that

PFN(
1
k maxi P i

FN

)n → 1.

Thus the worst-case error dominates for large n. (Curiously, if there are l actors tied for worst error rate then
the asymptotic error rate is l times larger.) That makes intuitive sense: if the experiment were repeated many
times with different actors under suspicion, most of the mistakes would be made on the most difficult actor.

The same is true, with additional complication, for arbitrary P i
FP and P i

FN. If we count how many positive
detections arise from n images (a strategy from Ref. 13), and assuming that innocent/guilty actors transmit n
cover/stego objects (no mixtures) where n is large, then making the Gaussian approximation to the Binomial
we approximate the distribution of this count as

N
(
n(1− P i

FN), nP i
FN(1− P i

FN)
)



in the case of guilty actor i, and
N
(
nP i

FP, nP
i
FP(1− P i

FP)
)

for innocent actor i. It can be shown that the decision with minimum PE splits the deflection equally, which for
actor i gives equal false positive and negative rates of

Pr
[
Z >

√
ndi
]
, where di =

1− P i
FP − P i

FN√
P i
FP(1− P i

FP) +
√
P i
FN(1− P i

FN)
(1)

and Z is a standard Gaussian variable. (The deflection di will be adapted to a measure of single-actor accuracy
in section 5.)

Now for a uniformly random actor, because the tails of the Gaussian are exponential, with large n the error
rate converges to

PFP = PFN = 1
kPr

[
Z >

√
nmin

i
di
]

with the worst-case actor again dominating. (Assuming no exact ties in the di).

Similar results exist for other setups as well. The result does not (unlike our first thought experiment) need
the detector to be at all ignorant about the actor they investigating: it is simply because we expect, for large n,
any detector’s error rate to decay (probably exponentially in n), and so for large n the actors with smaller error
rates are dominated by the largest.

In this paper, we will use three summary measures of performance. Given PE error rates P 1
E, . . . , P

k
E from k

different classifiers, and taking matched and mismatched cases separately, we display:

(i) the mean error rate µ1 = 1
k

∑
i P

i
E (to reflect the case n = 1),

(ii) the root mean square (RMS) error rate µ2 =

√
1
k

∑
i

(
P i
E

)2
(to reflect the case n = 2 in the zero-false-

positive thought experiment, or other small values of n; the square root is taken to give a similar scale to
the other aggregate metrics),

(iii) maximum error rate µ∞ = maxi P
i
E (to reflect the case of large n).

These metrics are displayed at the end of Table. 2) for the standard steganalysis classifier. By Jensen’s inequality,
we always have µ1 ≤ µ2 ≤ µ∞, but the numbers will be closer for more stable classifiers.

3. MISMATCH DUE TO COVER FEATURE SHIFT

Our first investigation is whether model mismatch manifests as a simple shift in the cover sources, a situation
shown abstractly in Figure 1. In the figure, different shapes denote different actors, and the solid shapes are
covers: the hypothesis is (i) that the different actors’ sources produce clusters of covers which are differently-
centered, and additionally (ii) that the effect of steganography is the same for all actors. The figure shows a
situation where, as larger payloads are embedded, the stego objects (shown as hollow shapes on a path from
each cover) move in the same direction and at the same speed. This is only an abstraction and we would not
expect the diagram to reflect the true situation, but it illustrates a particular type of model mismatch.

3.1 Measurement

To what extent is it true, that cover sources have different locations, and (more importantly) to what extent
does this affect the accuracy of steganalysis? We might try to answer the question by drawing diagrams like
Figure 1 for real steganalysis data, and indeed the authors have done so, but it is not easy to see what is going
on: the features are strongly colinear, and there are thousands of dimensions. What may be apparent in some
two-dimensional projections may not reflect the true situation.

Instead, we performed two experiments. First, we measured how far ‘apart’ were the centroids of each actors’
cover images. Distance is not easy to measure in such a large-dimensional space, where the features are strongly
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Figure 1: An abstract representation of the situation we examine in section 3. Different shapes represent features
from different actors; filled shapes are cover images and hollow shapes represent the evolution of features as
payload is added. In this case, we imagine that all actors’ features are equally affected by payload, but the actors
have differently-located cover clusters.

Actor’s whose centroid distance is measured...

1 2 3 4 5 6 7 8 9

..
.f

ro
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th

er
ac

to
r’

s
ce

n
tr

oi
d 1 0 0.5914 3.9337 12.5861 0.6679 1.9095 2.8292 0.7221 0.7949

2 1.4019 0 7.2735 3.6786 1.3544 0.3831 1.0779 0.4848 1.0259

3 12.8420 12.4698 0 19.0288 10.5691 9.2591 13.9270 12.0040 12.5879

4 5.0152 0.5052 8.7721 0 0.7035 0.3730 2.0112 1.9772 1.0642

5 0.4989 1.0932 2.5417 5.3951 0 2.1761 2.2975 2.5644 2.0004

6 2.1884 0.8123 5.0924 1.7257 0.5185 0 1.0476 1.0968 2.0817

7 0.2635 0.3514 7.5396 2.9236 0.5322 0.7672 0 0.4999 0.1027

8 1.6527 1.0550 2.0083 5.0935 1.2849 1.3361 1.8654 0 3.6914

9 0.2680 0.6131 4.8203 3.3132 0.4497 0.9585 1.2621 1.3073 0

Correlation with Table 2: ρ = 0.91 τ = 0.51

Table 3: Distances of centroids of each actors’ cover image features, projected on the FLD regression vectors
trained on images from each actor.

colinear and of different scale. One could perform a whitening procedure, but that does not fix the different
scales of the features, and fixing scaling introduces shear which can change the results. We argue that, if the
location mismatch occurs, it does not matter how ‘far’ in the feature space the cover images of different actors
are, but how far they are after being projected in the direction vector of the fisher linear discriminant (hereafter
abbreviated as the regression vector, due to the connection between ordinary least-squares regression and the
FLD). If the features of different actors’ cover images are far apart in the full feature space, but close after being
projected on the regression vector, then the mismatch is irrelevant to steganalysis accuracy.

Table 3 shows the results. The distances are not symmetric because the displacements between two actors’
centroids will be different when projected onto their different regression vectors. Comparing this distance with
errors PE in Table 2 we notice a strong relationship between both quantities: the linear correlation coefficient
between non-diagonal elements of the matrices is ρ = 0.91, and Kendall’s rank correlation coefficient (which is
robust to outliers) is τ = 0.51. These numbers suggests that location plays an important role in the accuracy
penalty induced by this example of model mismatch.

3.2 Mitigation

How can we mitigate the effect of shifted locations, between different actors? One option, only available in the
case of partial mismatch (recall: the detector has a small amount of known cover data from each actor, but



Testing actor

1 2 3 4 5 6 7 8 9

T
ra
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in
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ac
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r

1 0.0029 0.0142 0.1260 0.2332 0.0193 0.1146 0.0369 0.0418 0.0793

2 0.0214 0.0052 0.1135 0.0747 0.0198 0.1082 0.0453 0.0448 0.0612

3 0.0788 0.0758 0.0273 0.2186 0.0209 0.1185 0.0848 0.0296 0.1375

4 0.0331 0.0152 0.1220 0.0043 0.0130 0.0914 0.0361 0.0313 0.0662

5 0.0395 0.0141 0.1061 0.0624 0.0031 0.0897 0.0421 0.0184 0.0733

6 0.1160 0.0417 0.1118 0.0460 0.0347 0.0663 0.0818 0.0337 0.0844

7 0.0173 0.0086 0.1323 0.0732 0.0100 0.1191 0.0101 0.0254 0.0647

8 0.0738 0.0447 0.1104 0.0960 0.0147 0.0936 0.0695 0.0108 0.1059

9 0.0339 0.0086 0.1278 0.1496 0.0194 0.1182 0.0793 0.0537 0.0540

matched cases mismatched cases

µ1 µ2 µ∞ µ1 µ2 µ∞

Aggregate error rates 0.0204 0.0315 0.0663 0.0691 0.0838 0.2332

Table 4: Error rate (PE) of FLD classifiers, when the centroid of the training cover data was subtracted from
each actors’ features.

not enough to train a classifier), is to subtract an estimated centroid of each actor’s cover features, effectively
centering all of their cover clusters at the origin. We do not need much training data for this, because it only
requires estimating a mean, the accuracy of which will be independent of the dimension of the features (the same
is not true for the covariance matrix, which is why we expect insufficient data to train a personalized FLD for
each actor).

When we modify the FLD classifier to subtract the mean, estimated from the 3000 image testing set, we see an
immediate improvement in mismatched accuracy, displayed in Table 4. (There is, of course, no change to matched
classifier accuracy, because the FLD is invariant when the same shift is applied to both classes.) Depending on
which aggregation metric is used, the accuracy of mismatched detectors reduces from approximately five to
approximately three times that of matched accuracy. In this sense, about half of the mismatch accuracy has
been eliminated.

This mitigation does rely on the partial mismatch case, but we will be able to work around this in the
following section.

4. MISMATCH DUE TO DIFFERENT CHANGE IN STEGO FEATURES

With differences in cover mean center removed, are there additional mismatches between actors’ sources? Our
second investigation is whether model mismatch also manifests as different effects of payload. In Figure 2 we
show two scenarios, where the actors’ features move under payload (i) in a different direction, or (ii) at different
rates. Again, we emphasise that this is only an abstract (in reality, all images move in slightly different directions,
and their paths are not straight).

4.1 Measurement

Following similar methodology to section 3, we measure the extent of these two sources of mismatch. We calculate
the FLD regression vector for each actor, denoting them w1, . . . , w9. To test for different payload directions we
computed the cosine of the angles between wi and wj ,

cosαi,j =
wi · wj

‖wi‖‖wj‖
.
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Figure 2: An abstract representation of the situations we examine in section 3. Left, each actors’ features move
in a different direction under embedding; Right, the features’ rate of change with respect to payload is different
for each actor. In both cases the cover mean of the actors may be different.

First actor First actor

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

S
ec

o
n
d

a
ct

o
r

1 1.000 0.310 0.143 0.265 0.299 0.144 0.326 0.214 0.246 0.000 0.096 0.084 0.039 0.166 0.099 0.297 0.141 0.421

2 0.310 1.000 0.146 0.280 0.283 0.163 0.310 0.207 0.234 0.096 0.000 0.180 0.135 0.262 0.014 0.201 0.237 0.324

3 0.143 0.146 1.000 0.139 0.162 0.107 0.142 0.114 0.117 0.084 0.180 0.000 0.045 0.082 0.183 0.382 0.056 0.507

4 0.265 0.280 0.139 1.000 0.266 0.148 0.299 0.191 0.225 0.039 0.135 0.045 0.000 0.127 0.138 0.336 0.102 0.461

5 0.299 0.283 0.162 0.266 1.000 0.159 0.304 0.215 0.230 0.166 0.262 0.082 0.127 0.000 0.266 0.466 0.028 0.592

6 0.144 0.163 0.107 0.148 0.159 1.000 0.131 0.127 0.126 0.099 0.014 0.183 0.138 0.266 0.000 0.197 0.240 0.320

7 0.326 0.310 0.142 0.299 0.304 0.131 1.000 0.215 0.243 0.297 0.201 0.382 0.336 0.466 0.197 0.000 0.440 0.122

8 0.214 0.207 0.114 0.191 0.215 0.127 0.215 1.000 0.171 0.141 0.237 0.056 0.102 0.028 0.240 0.440 0.000 0.566

9 0.246 0.234 0.117 0.225 0.230 0.126 0.243 0.171 1.000 0.421 0.324 0.507 0.461 0.592 0.320 0.122 0.566 0.000

Correlation with Table 4: ρ = −0.52 τ = −0.44 Correlation with Table 4: ρ = −0.10 τ = −0.09

Table 5: Left, cosines of the angles between regression vectors of different actors, cosαi,j . Right, relative
difference, between different actors, of rate of change of stego features, ri,j .

Values of 1 indicate perfect alignment, which happens only for i = j, and lower values indicate less alignment;
it is difficult to interpret values between 0 and 1 directly, because in high-dimensional space most vectors are
nearly orthogonal, but their relative size is an indication of relative alignment.

To test for different rates of change (in the direction of the regression), we calculated a normalized quantity

ri,j =
|‖wi‖ − ‖wj‖|√
‖wi‖‖wj‖

,

for which higher values indicate more difference.

These values are displayed in Table 5; they are of course symmetric about the diagonal. Following the same
methodology as before we correlate them with the residual error after cover location has been removed, Table 4.
There is a significant correlation in the first case (ρ = −0.52, τ = −0.44: larger angles indicate higher error), and
not the second (ρ = −0.10, τ = −0.09); we conclude that different actors’ features do indeed move in significantly
different directions under embedding, but not at different rates. Furthermore, we observe a significant correlation
between the entries of Table 5 (left) and Table 3 (ρ = −0.39, τ = −0.25). This suggests that detectors with
a similar stego directions have similar intercept as well, and significantly different directions of travel imply
large distances between the centroids. This relationship is important, since the next subsection shows that the
direction of travel can (to some extent) be estimated.



4.2 Mitigation

In this section we realistically assume that the steganalyst has access to images from a number of cover sources
(but not necessarily that of images being classified). Suppose that each cover source is used to train a detector
specialized to it, but during classification, the steganalyst tries to use the detector for ‘best matched’ source.
We will simulate this scenario by using eight detectors to classify images from the remaining ninth actor, and
measure error on that actor. The result of the eight classifiers can be fused by a voting strategy, putting them
into a kind of ensemble. The simplest strategy to pool outputs from multiple detectors is the majority vote; we
consider this the baseline for comparison.

If the picture in Figure 2 were true, it might be possible to estimate the direction (and speed) of a particular
image, and therefore the ‘best matched’ in some sense, by re-embedding. This will work for low embedding rates
where distortion is unlikely to cancel out (when changes are placed on top of changes). Note that this works
even in the totally mismatched case; in the partial mismatch scenario we may also be able to center the features.

We can estimate the direction of change by embedding a small payload (say 0.01bpnc) to the observed image.
The difference this induces in the features will be denoted δ. Two measures to find the best matching detector
were investigated. One is the cosine of the angle between δ and the regression vector wi of the i-th classifier,

cosαi =
wi · δ
‖wi‖‖δ‖

.

The second measure, called sensitivity, is
si = |wi · δ|,

which measures how sensitive is the classifier to this particular embedding effect. The rationale behind the second
measure is that the more closely the regression vector is aligned with the direction δ, the more sensitive it should
be to the embedding. We emphasize that wi was not normalized to have unit norm: in our implementation of
the FLD, the regression vector wi was calculated as

wi = (XT
covXcov +XT

stgXstg)−1(XT
stg1−XT

cov1),

where Xcov, Xstg denote feature matrices from cover and stego images respectively, and 1 a vector of one of the
appropriate length. The scale of the sensitivity measure is determined by the payload in training stego images as
follows: imagine for now that covers are centered at the origin, and all payloads are equal; then a feature vector
x with |wi · x| = 1 is exactly in the middle of stego vectors after being projected on wi. Thus projections onto
wi are normalized with respect to the payload, which is aligned with our goal.

We use the measure cosαi or si to weight the votes in the ensemble: either weighting all votes according to
the metric, or picking only the output of the classifier with the best weight. We display the resulting (completely
mismatched, above, and partially mismatched applying centering, below) classification accuracy in Table 6. The
error rates are PE, as well as their aggregates over the nine classifiers.

It seems that using all eight detectors is always better than using only one. In the case of no knowledge
about the mean of cover images, using either sensitivity measure improves the worst-case detection error rate
by about 2.5%, over the baseline of the entire ensemble. Comparing against the aggregate metrics of Tables 2
and 4, we have been able to reduce the mismatch error rates from approximately five times that of matched,
to approximately two times (in the total mismatch case, when we cannot centre, where we use the ensemble of
classifiers for other actors) or 1.5 times (in the case of partial mismatch, when we can both centre and deploy
the ensemble in baseline voting mode).

5. MISMATCH DUE TO FALSE CERTAINTY

One reason that binary classifiers make mistakes in mismatched training/testing cases is that they give a false
certainty: in areas of feature space that were sparsely or not covered by the training data, they still make a
decision even though there is little evidence for it. This is illustrated in the top part of Figure 3, where a binary
support vector machine (SVM) misclassifies, in the mismatched case, some cover objects as stego even though
they are on the opposite side of the stego ‘cluster’ in a region where there was no training data.



Testing actor Aggregate error

Voting 1 2 3 4 5 6 7 8 9 µ1 µ2 µ∞

Equal weight 0.0151 0.0060 0.1366 0.0921 0.0064 0.0586 0.0261 0.0147 0.0394 0.0439 0.0627 0.1366

Weight by cosαi 0.0128 0.0054 0.1160 0.0978 0.0074 0.0630 0.0259 0.0197 0.0416 0.0433 0.0593 0.1160

Weight by si 0.0133 0.0058 0.1109 0.0990 0.0079 0.0631 0.0251 0.0208 0.0419 0.0431 0.0584 0.1109

Only arg max cosαi 0.0277 0.0140 0.1406 0.1156 0.0166 0.1041 0.0526 0.0409 0.0721 0.0649 0.0796 0.1406

Only arg max si 0.0412 0.0115 0.1201 0.0795 0.0160 0.0989 0.0342 0.0338 0.0680 0.0559 0.0675 0.1201

after centering:

Equal weight 0.0274 0.0109 0.0776 0.0744 0.0058 0.0584 0.0344 0.0109 0.0519 0.0391 0.0479 0.0776

Weight by cosαi 0.0201 0.0075 0.0806 0.0718 0.0059 0.0609 0.0289 0.0139 0.0454 0.0372 0.0468 0.0806

Weight by si 0.0235 0.0088 0.0790 0.0697 0.0059 0.0601 0.0285 0.0128 0.0470 0.0373 0.0463 0.0790

Only arg max cosαi 0.0275 0.0135 0.1177 0.1156 0.0173 0.1036 0.0387 0.0352 0.0719 0.0601 0.0737 0.1177

Only arg max si 0.0403 0.0140 0.1101 0.0722 0.0169 0.0958 0.0397 0.0253 0.0754 0.0544 0.0648 0.1101

Table 6: Error, when eight detectors are used to classify images on the remaining ninth actor. The first column
denotes the voting strategy of the ensemble: a baseline method of equal weight, weighting all classifiers according
to cosαi or si, or using the one classifier with best cosαi or si.

We suggest that there could be considerable value in a steganalysis detector which is prepared to admit
to ‘don’t knows’ in regions of the space that were not well-covered by training data. This leads to a form of
3-valued logic. (A more general technique is that of logistic regression, where probabilities are estimated, but
logistic regression has shown rather poor performance on steganalysis tasks.15)

Instead of a single binary classifier, we propose to combine two one-class detectors, one trained on covers and
the other on stego images. This construction was proposed in Ref. 16 for multi-class classification. Here, we use
it for classification and confidence estimation at the same time. Accordingly, there are four cases:

(i) Cover detector returns positive, stego detector returns negative. This is a negative detection, and the
probability of false negative detections is still denoted PFN.

(ii) Cover detector returns positive, stego detector returns negative. This is a positive detection, and the
probability of false positive detections is still denoted PFP.

(iii) Both detectors return negative. This is a ‘don’t know’ arising from a lack of data: the classified object is
in a novel region for which there was not sufficient training data. We denote the probability of this class
as PDN.

(iv) Both detectors return positive. This is also a ‘don’t know’, in this case arising from contradictory evidence:
the classified object would probably have been near the decision boundary of a 2-class classifier. We denote
the probability of this class as PDP.

(For some metrics we might alternatively want to break down the ‘don’t know’ cases into (a) cover objects
classified as ‘don’t know’, and (b) stego objects classified as ‘don’t know’. We will postpone this to further
work.)

As a pilot study, we implemented one-class detectors as one-class support vector machines (1-SVM) with
Gaussian kernel.17 Since they are more effective in low dimensions, we reduced the CF∗ feature space to 20
dimensions, by 10 repetitions of the CLS algorithm.14 In subsection 5.2 we will compare their accuracy with
that of binary support vector machines (2-SVM) with Gaussian kernel on the same features.

Both types of machine require hyper-parameter optimization: both have a kernel width γ, the 1-SVMs have
the fraction of outliers ν, and 2-SVMs have a regularization parameter λ. We used (a) ln 2γ taking five equal
steps between −2lj and −2lm, where lj is the natural log of the average distance of a sample to its nearest
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Figure 3: Depiction of binary (above) and 3-valued (below) classifiers, 2-SVMs and 1-SVMs respectively. The
left figures represent the matched case, and the right figures a mismatched case. For these pictures, the features
have been reduced to 2 dimensions using the CLS method.14

neighbour, and lm the natural logarithm of the median distance between samples, (b) log10 λ ∈ {−4, . . . , 4}, (c)
ν ∈ {0.005, 0.01, 0.02, 0.04, 0.06}.

But how should we optimize the parameters, in the 1-SVM case? And how should we evaluate their perfor-
mance after optimization? For this, we need a metric which understands the value of ‘don’t know’ results, which
is the subject of the next section.

5.1 Accuracy metrics in the presence of ‘don’t know’

The value of a 3-valued detector depends on how you use it. If the steganalyst can have as much evidence as
they want, they can afford to ignore all the ‘don’t know’ cases and use only the positive and negative classes;
then the appropriate metric is still

PE = 1
2 (PFP + PFN),

which does not penalize ‘don’t know’ cases at all. But if we tune paired 1-SVMs using this metric, they will
almost never return a positive or negative detection, because they can minimize error by conservative output.
The same is true of metrics which consider the conditional probability that the object is truly cover/stego, given
that the detector says so.

On the other hand, if the steganalyst simply guesses ‘cover’ or ‘stego’ whenever the detector responds with
a ‘don’t know’, the appropriate metric is

PE′ = 1
2 (PFP + PFN) + 1

4 (PDP + PDN).



This penalizes ‘don’t know’ cases very heavily, and 1-SVMs trained to optimize it will fall into the same errors
as 2-SVMs in making decisions when they have no evidence to do so (it never hurts to guess).

We find an appropriate middle-ground by returning to a hypothetical pooled steganalysis situation. Suppose
that the steganalyst has n images, and wants to determine whether the actor is guilty (using steganography
in all images) or innocent (using steganography in none). They ignore ‘don’t know’ cases, which reduces their
evidence base, and return a guilty verdict if more than a certain proportion of the remaining decisions are stego.
On average, they will be making a decision based on n(1−PDP−PDN) images, instead of n, and the appropriate
deflection metric (c.f. 1) becomes

d =
(1− PFP − PFN)

√
1− PDP − PDN√

PFP(1− PFP) +
√
PFN(1− PFN)

. (2)

We propose this metric for 3-valued detectors, noting that higher values of d indicate better evidence.

We observe that all of the above formulae use only the sum of PDP and PDN, treating ‘don’t know’ cases
equally. Perhaps further consideration will find different value between the two cases. We should also note
that all the results of this section will be incomparable with those of sections 2-4, because (a) the metrics are
differently-motivated, and (b) a reduced set of features is being used for detection.

We will also want to aggregate sets of deflection values arising from matched and mismatched cases. The
average has no particular meaning in this case, and it is difficult to justify any particular combination other that
the following two:

dp =

(
1− PFP − PFN

)√
1− PDP − PDN√

PFP(1− PFP) +
√
PFN(1− PFN)

where the error rates PFP, etc., are pooled over all subcases (e.g. all matched cases). This is akin to µ1 in that
it refers to average error rates. The second aggregative metric will be

d∞ = max di

where the di are the deflection values for each of the subcases. This is akin to µ∞ in that it represents the worst
case, and is relevant for large values of n.

5.2 Results

An example result from the paired 1-SVMs is displayed in the lower part of Figure 3, in parallel situations to
the 2-SVM case above. The paired one-class detectors are rather conservative, only giving decisions in regions
where there was plenty of training data: this results in many ‘don’t knows’ when tested on mismatched data, in
this case particularly covers, but it makes very few mistakes.

We optimized hyperparameters γ and ν for the 1-SVMs in two different ways:

(a) Targeting the matched case, we chose hyperparameters for each machine to minimize the deflection score
on the matched (but disjoint) testing data.

(b) Targeting the mismatched case, we chose hyperparameters for each machine to minimize the worst-case
deflection score when tested on the eight mismatched training sets.

Table 7 is analogous to Table 2, displaying the deflection scores when paired 1-SVMs trained on each actor
are tested on each other. Optimizing for the mismatched cases seems to reduce the worst cases of mismatch a
little, but not very much. Table 8 aggregates the performance of 1-SVM and 2-SVM detectors in the matched
and mismatched cases, showing error rates and aggregated deflection scores according to subsection 5.1. The
differently-optimized cases of 1-SVM do not in fact perform very differently from each other, but their improve-
ment over the 2-SVM is significant: they make around one fifth of the mistakes, in both matched and mismatched
case, but at the cost of reporting ‘don’t know’ in about 25% of matched cases and 55% of mismatched cases.

According to our simple pooled steganalysis model, the 1-SVMs increase deflection by a factor of approxi-
mately two. The way to interpret deflection scores is via (1): for equivalent performance when classifying an
actor based on n objects, we need n ∝ 1/d2. Therefore increasing average- or worst-case deflection by a factor
of two is equivalent to reducing the necessary number of observations by a factor of four.



Testing actor Testing actor

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
T
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1 15.99 3.45 1.56 2.90 4.40 2.17 2.32 2.13 1.64 8.90 3.25 1.53 2.76 4.27 3.10 2.34 2.27 1.57

2 5.15 13.76 1.75 3.35 5.79 2.13 2.66 3.50 2.41 5.46 10.60 1.78 3.43 4.83 2.01 1.86 2.68 2.54

3 2.28 1.57 6.50 1.19 2.12 0.99 0.98 0.93 0.95 4.06 2.36 4.54 1.83 2.74 1.39 1.12 1.02 1.35

4 5.70 5.85 1.47 11.99 5.36 1.91 3.34 2.82 2.43 4.94 3.70 1.43 5.80 4.09 1.96 2.50 2.33 2.03

5 4.44 6.87 2.11 2.41 35.71 1.94 3.24 2.88 2.12 4.30 5.62 3.82 3.51 8.19 1.86 3.48 2.95 1.96

6 2.56 6.68 2.31 2.58 4.21 6.08 1.83 3.75 3.56 3.06 8.10 1.92 3.28 4.83 5.02 2.16 4.03 3.23

7 7.35 6.77 1.55 2.86 7.17 1.66 8.01 3.69 2.16 7.69 5.96 1.58 2.94 8.38 1.87 6.13 3.73 1.78

8 4.21 4.20 2.38 2.84 8.22 1.95 3.51 22.08 2.15 3.77 3.14 2.19 3.37 6.08 2.47 2.86 7.99 2.25

9 5.12 18.48 1.64 1.89 7.98 2.95 5.24 5.23 4.79 4.97 14.46 1.50 1.24 7.64 2.82 4.70 4.75 4.56

Table 7: Deflection scores (d) of paired 1-SVM classifiers, using CF∗ features reduced to 20 dimensions by the
CLS method.14 Left, the 1-SVM hyperparameters were optimized on matched data. Right, on mismatched data.

matched cases mismatched cases

pooled error rates
dp d∞

pooled error rates
dp d∞PFP PFN PDP PDN PFP PFN PDP PDN

2-SVMs 0.020 0.022 0.000 0.000 3.345 1.940 0.165 0.059 0.000 0.000 1.279 0.465

1-SVMs (a) 0.004 0.002 0.192 0.046 8.176 4.785 0.041 0.008 0.186 0.356 2.258 0.926

1-SVMs (b) 0.006 0.006 0.116 0.082 5.814 4.542 0.028 0.010 0.114 0.425 2.472 1.017

(a) optimized for matched data

(b) optimized for mismatched data

Table 8: Comparison of 2-SVMs and 1-SVMs by pooled error rates and aggregated deflection metrics which
appropriately value ‘don’t know’ cases.

6. SUMMARY

This paper has presented some in-depth experiments to measure different types of cover mismatch in steganalysis,
focusing on a particular set of nine image sources and a single type of steganography and detector. Our findings
can be summarised as follows:

· The mean error rate, across different mismatched cases, is probably an incorrect benchmark (sect. 2); scores
weighted more towards the worst case better value a detector’s stability and in the case of large numbers
of images from the same actor.

· In the case of mismatch investigated here (different uploaders to Flickr, no differences in JPEG quantization
tables), model mismatch can cause an enormous penalty and error rates increase approximately fivefold
(Tab. 2). This experiment mimics realistic steganalysis conditions.

· A significant amount of this mismatch penalty is due to actors’ cover features being located at different
centers in feature space (Tab. 3). If a small amount of matched training data is available, the features can
be centered at the origin and the accuracy penalty is reduced by around a half (Tab. 4).

· A further penalty can be ascribed to stego features moving in different directions, but not at different rates
(Tab. 5). An ensemble of classifiers, which weights votes according to the location direction of travel of
stego features, further mitigates model mismatch without the need for any matched training data (Tab. 6).
In the case of partial mismatch, the error rate in mismatch cases is reduced down to only approximately
1.5 times that of matched cases.

· It is difficult to produce a good accuracy benchmark for 3-valued detectors which can output ‘don’t know’;
we proposed the modified deflection score (2).



· 3-valued detectors made up of paired one-class SVMs can be used to reduce false certainty; according to a
simple pooled steganalysis model, they improve deflection by a factor of approximately two (Tab. 8), which
is equivalent to reducing by a factor of four the number of images required for particular accuracy.

Overall, some out of this mishmash of methods should be valuable for further development of steganalysis,
mitigating model mismatch.

6.1 Directions for further work

Some additional research can extend and confirm the results of this pilot study: we envisage larger studies of the
same questions using more actors, different embedding methods, different embedding rates (though this might
be a distraction), different feature sets, and nonlinear classifiers. A more interesting question is to determine
the cause of the mismatch effects: is it difference in camera model, image content, or post-processing? Can
differently-designed features be invariant (or ‘less variant’) to these differences?

We have not addressed the significant question of model mismatch due to different JPEG quantization tables.
For the practice of steganalysis in the real world7 we would prefer not to have to rely on a bank of different
classifiers for different JPEG types.8 It is likely to be easier to adapt for JPEG quality factors which are close
rather than those which are far apart: in the former, the histogram bins driving the features substantially overlap.

More abstractly, we can treat the problem as one of domain adaptation and apply methods from the machine
learning literature.3,18 (It may be valuable to identify and remove simple large factors such as centering first.)
Both conservative and adaptive methods should be considered.

Finally, we stress the importance of using good metrics for steganalysis accuracy. We have suggested some
metrics for mismatched cases, and also which incorporate ‘don’t knows’, but there may be others equally com-
pelling. For false certainty, perhaps logistic regression holds the answer.

Perhaps one reason that steganalysis has refined the matched, homogenous, case is that typical benchmarks
for steganalysis accuracy (detection error in one data set, often BOSSBase19) only consider it. The authors are
reminded of the ubiquity of ‘Lena’ in image processing articles from the 1970s to 1990s, and the Editor-in-Chief
who wrote ‘Who knows? We may even devise image compression schemes that work well across a broader class
of images, instead of being tuned to Lena.’20 Perhaps steganalysis researchers should similarly broaden their
experimental base, and include mismatched metrics.
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