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ABSTRACT

This work proposes a natural language stegosystem for Twitter, modifying tweets as they are written to hide
4 bits of payload per tweet, which is a greater payload than previous systems have achieved. The system,
CoverTweet, includes novel components, as well as some already developed in the literature. We believe that
the task of transforming covers during embedding is equivalent to unilingual machine translation (paraphrasing),
and we use this equivalence to define a distortion measure based on statistical machine translation methods. The
system incorporates this measure of distortion to rank possible tweet paraphrases, using a hierarchical language
model; we use human interaction as a second distortion measure to pick the best. The hierarchical language
model is designed to model the specific language of the covers, which in this setting is the language of the Twitter
user who is embedding. This is a change from previous work, where general-purpose language models have been
used. We evaluate our system by testing the output against human judges, and show that humans are unable
to distinguish stego tweets from cover tweets any better than random guessing.

1. INTRODUCTION

This paper is concerned with the problem of hiding data (steganographic content usually called payload) inside
a cover consisting of English language. More specifically, our system is tailored towards hiding in fweets, short
social media messages of up to 140 characters; these are typically heavily abbreviated, and have features such as
usernames and hashtags.

Hiding in language is dissimilar to hiding in digital media such as pictures and video. In the latter, adding
small amounts of noise — incrementing pixel values or quantized transform-domain coeflicients, for example — is
typically invisible in most cases. As long as one takes care not to add high-frequency noise into low-frequency
parts of a cover, visual imperceptibility is easy and contemporary digital media steganography can focus on
evading statistical detection. The opposite is true of language: even slight changes to a sentence often produce
clearly incorrect results (grammatically, semantically, or violating consistency), and the literature has had to use
powerful models of language while making very limited changes to the text. There is also an unsolved problem
of coding and synchronization. Statistical steganalysis of language is underdeveloped but has not proven very
powerful; it is currently more difficult to evade a human Warden than a statistical one.

We propose a natural language stegosystem for tweets, modifying them as they are written to hide 4 bits of
payload per tweet. This work includes some novel components as well as some already developed in the litera-
ture. In particular, the system incorporates two measures of distortion: an automatically-computed hierachical
language model to rank possible tweet paraphrases, and human interaction to pick the best. Experiments, testing
the output against human judges, show that humans are unable to distinguish stego tweets from cover tweets
any better than random guessing.

The paper is structured as follows. In subsection 1.1 we briefly describe the Twitter social media platform.
In section 2 we survey existing methods for natural language steganography and outline the main components
of our stegosystem. In section 3 we describe how the components are combined and applied to the particular
domain, including some examples of language transformation and their results in tweets. In section 4 we describe
the evaluation of our system by human Wardens, and analyse their ability to discriminate cover and stego tweets.
Finally, we give directions for further research.
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1.1 Twitter

Twitter is a social networking platform, launched in 2006. Users of the service post short messages of up to
140 characters (tweets); this type of messaging is known as microblogging. By default, these tweets are publicly
visible: it is not even necessary to have a Twitter account to read them. FEach user has a username, and tweets
can be directed at another user by placing ‘Q’ in front of their username somewhere in the tweet. A unique
feature to Twitter is the ability to re-tweet a message; re-posting another user’s message to spread the message,
echo the sentiment, or add a comment. Such tweets are usually marked as such with ‘RT’ placed at the start of
the tweet.

Tweets can be categorised using a special word called a hashtag; these are words prepended by the ‘#’ (hash)
symbol, usually — but not exclusively — placed at the end of a tweet. It is possible to search Twitter according
to these hashtags. A commonly used example is ‘#fail’, placed at the end of a tweet indicating the message is
discussing a failure of some sort.

Twitter is currently one of the ten most visited websites in the world.! The company announced in October
2012 that 500M tweets are sent each day, from 200M regular users.? A study on usage of social networking sites®
found that 18% of internet users in America claimed to use Twitter in some way.

The average number of tweets per user is 307. Until their account was suspended in late 2013, the user
with the greatest number of tweets was ‘Yougakudan_00’ (36,307,144 tweets as of May 2013): the majority were
apparently-random binary strings, which might have been part of an interesting system to transmit data (but
not a form of steganography).

We are interested in using Twitter as a channel for covert communication, so we analysed a collection of
tweets provided by the Harvard TweetMap? to estimate certain statistics of tweet contents: average number of
words used per tweet, range of vocabulary per user, etc. The corpus consists of tweets posted throughout the
month of May in 2013, and contains 72M tweets from 1.8M users in America, Canada, the United Kingdom,
Australia and New Zealand (chosen to limit the tweets primarily to English language). Figure 1 shows our
findings.

Ideally we should like to know the entropy of a tweet (since, if perfect embedding were possible, the payload
size would be bounded above by it®), but we are not aware of any previous work providing such an estimate.
From our corpus we estimate that the trigram entropy of tweets is approximately 7.45 bits per word. We estimate
that the average number of words per tweet is 12.9, and the average size of a user’s vocabulary is 8.6 words per
tweet.

2. NATURAL LANGUAGE STEGANOGRAPHY

This section introduces the main aspects of, and problems facing, natural language steganography; it also gives
a description of language modelling. We propose a distortion measure for natural language stego, using aspects
of statistical machine translation.

2.1 Transformations

Steganography in digital media works by identifying components which are irrelevant to the semantics of the
content, typically low-level noise. Similarly, natural language (NL) steganography aims to hide information in
natural language by applying a transformation to a cover text that does not alter its meaning*. This transforma-
tion is required to preserve the meaning and grammatical correctness of the original sentence. Previous natural
language stegosystems have used synonym substitution,” paraphrase substitution,® and sentence structure ma-
nipulation.? 10

A number of these transformation techniques are available thanks to research into natural language water-
marking; any transformation that is appropriate for watermarking is almost certainly appropriate for steganogra-
phy. Given this close relationship between the two areas of research, there is a notable tendency for steganographic
schemes to be mislabelled as watermarking (e.g. Ref. 11), or for the aims of watermarking (namely robustness)

*Although it might be possible to perform pure cover generation steganography, this is likely to be as difficult for
natural language as any other medium, except in particular domains,® so the literature focuses on cover modification.
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Figure 1. A selection of tweet statistics extracted from the Twitter corpus.

to leak into steganography (e.g. Ref. 12). The goals of the two topics are quite distinct, and beyond shared
transformations they should not be confused.

NL stegosystems use these transformation techniques to generate a number of possible stego objects from
each cover object; regardless of the technique used, the stegosystem must then assign a value to each of these
possible stego objects, in order to carry the payload. The receiver must be able to determine the value carried by
the stego object, and this is difficult because the cover (or the set of possible transformations of it) is typically
not recoverable from the stego object. Unlike steganography in digital media, for language there is no simple
analogue of the least-significant bit or remainder modulo n: the NL steganography literature has struggled with
this problem, which is essentially one of side information (the cover) not available to the decoder.

Even more difficult is that capacity is typically not constant. Assuming that text has been broken down into
units such as sentences (and that the embedding process does not desynchronize this decomposition!), depending
on the embedding procedure it is typical for some units to have more transformation options — and therefore be
able to carry more payload — than others. Some units may be unable to carry any payload at all, if no suitable
transformations can be found. The latter presents a problem of synchronization, often approached by restricting
the possible substitutions to guarantee that the reverse transformation produces the same set of possibilities as
the original.” '3 Another attempt used a graph colouring scheme to assign values.® Both sacrifice a great deal
of potential capacity.

Here, we will simply carry payload by a keyed hash of the tweet (subsection 3.3). This does not require
the receiver to perform reverse transformation, but it does not solve the synchronization problem. Finding a
proper solution to this was beyond the scope of this work, but is of utmost importance to NL steganography. We
have also sacrificed some capacity, since different stego tweets will not all have distinct hashes. This is famously



related to the so-called coupon collector’s problem: in our case of hiding 4 bits per tweet, assuming uniform hash
output, the mean number of distinct stego tweets needed to cover all 16 possible payloads is approximately 55.

We view any transformation of cover text as equivalent to the task of unilingual machine translation (also
referred to as paraphrasing). Machine translation (MT) aims to translate text in a source language to text with
equivalent meaning in a target language; unilingual MT is the case where the source and target languages are
the same. In NL steganography, the source text is the cover, and we want to translate it into our target stego
text. The observation of this fact allows us to borrow aspects of MT for use in NL steganography; in the next
section we suggest a possible distortion measure based on statistical machine translation.

2.2 A Natural Language Distortion Measure

The first stegosystems, in both digital media and natural language, treated all changes as equally applicable: they
would embed any change that conveyed the correct payload. Subsequent systems introduceded contextual checks
to filter out the most inappropriate changes (be they visible high-frequency noise in images, or unacceptable
natural language transformations), but treated all other changes as being equally valid.

Modern so-called adaptive steganography refined this idea further, using a measure of distortion: each possible
change is associated with a distortion cost, and a coding method is used to minimize the average distortion. To
date, adaptive steganography only exists for digital images, and developing distortion for NL steganography is a
desirable prerequisite to developing mature coding methods for this domain.

We build a distortion function for NL steganography by borrowing the fundamental probability from statistical
machine translation: Pr(e|f), the probability that a target sentence e is a translation of a source sentence f. By
regarding the stego text (s) as the target sentence, and the cover text as the source sentence (c¢), we write this
as Pr(s|c).

We can use the negative log likelihood of translating ¢ to s as our distortion function, which gives us a suitable
value of infinity when the probability of translation is 0 (and therefore that the stego text is not a translation
of the cover text). We also need the distortion to be 0 when no change is made: we get this by adding the log
likelihood of Pr(c|c), i.e. the log probability of the cover text translating to itself. Note that this is only suitable
if Pr(c|c) > Pr(s|c) for all possible values of s, but this should normally be the case. Thus our distortion measure
= Pr(s|ec)

d(c,s) = —lo Pr(clo)

When using this to rank possible stego objects, we don’t have to divide by Pr(c|c), because it is constant.

In order to estimate this distortion, we must model Pr(s | ¢). This is difficult to do directly,'* so instead we
apply Bayes’ law,
Pr(c|s) Pr(s)

Pr(s|c) = Pro)

The denominator is constant for any given cover, so we can ignore it:

Pr(s|c) o< Pr(c|s) Pr(s)

The probability of Pr(c|s) is known as the translation model probability. These probabilities are dependent
on the transformation scheme, and no attempt is made here to discuss methods of estimation. Ideally, the
translation model would be trained dependent on the cover source: the probability of a translation is not likely
to be the same for two arbitrary cover sources. For example: the probability of translating ‘I am’ to ‘I'm’ should
almost certainly be higher when the covers are casual e-mails rather than academic papers, where contraction
is rarely used. For the moment we use a fixed translation model, and investigation of personalized translation
models is left for future work.

The second factor, Pr(s), is the language model probability. Here we are modelling the language of our stego
objects, which (we hope) should be practically identical to that of the cover source. The use of a language model
in a stegosystem is not a new idea, but using it explicitly as part of a distortion function is. In previous work



the language model has been a general English model (trained on a large non-specific dataset); for any system
with a specific cover source, this is not good enough. The next section gives an overview of how we can build
language models.

2.3 Statistical Language Modelling

We want to model the probability of a sentence s, which is a sequence of words wy, ..., wr (Pr(w;,...,wr)). We
can decompose this probability using the chain rule, giving:

T
Pr(w;,...,wr) = Pr(w:) HPT(wle, e Wie1)

=2

It is not practical to know all the conditional probabilities, so we have to limit the history (the conditioning
context wi,...,w;—1) to only a few words. For example, when the history is limited to a single word, we
approximate:

T
Pr(wy,...,wr) = Pr(w;) H Pr(w;|w;—1)
i=2

This is called an n-gram language model, where n — 1 is the number of words used for the history; these are
(n — 1)*® order Markov models. A general formula for these models is:

n T
Pr(ws,...,wr) =~ Pr(w;) H Pr(w;|w;—1,...,w1) H Pr(w;|wi—1,...,wi—y) (1)
i=2 i=n
In order to approximate the probability of each n-gram (Pr(w; | wi—1,...,w;_(n+1))), We can use a maximum

likelihood estimation (MLE):

count (W —pt1, .-, W;)
Pr(w;|wi—1,...,wi—pns1) =
Count(wi_m_l, . ,wi_l)
where count(wj,...,w;—n41) is the number of times the sequence of words (w;, ..., w;—,+1) has been seen in

some training text. For example, for a bigram (n = 2) model,

count(ws, wa)
Priwzjun) = count(w;)

In order to evaluate how well a language model performs on some test data, we use a measure called perplexity.
This is a measure of how well the language model predicts the data, and is calculated as 27(*) where H (s) =
—% log Pr(s) is the cross-entropy, s is our test data and n is the number of words in s.

2.4 Smoothing

The problem with using the MLE for approximating the probability of an n-gram occurs when the n-gram is
unseen in the training data: it will be assigned a probability of 0. Language models are complex, with lots of
probabilities to estimate (one for every possible n-gram), which means that we need a vast amount of data to
adequately train the model. In practice, we are very unlikely to have enough, and there will always be unseen
n-grams; it is almost certainly not appropriate to say these are all impossible. This is a case of the model
over-fitting to the training data and we use smoothing techniques to adjust the counts of n-grams in order to
better approximate the probabilities of unseen n-grams.

A number of smoothing techniques exist.'®> The simplest approach is add-one or additive smoothing, where
we add 1 (or some other constant 0 to every count). For a bigram model, adding one gives:

1 + count(wy, wa)
|V | + count(wy)

Pr(ws|w;) =



where |V is the size of some given vocab V' (a set of possible words).

In practice this is not a good method.'® A more sophisticated method is that of Good-Turing smoothing.'”
Although this is not the current best, it is the basis upon which some newer methods are built. For an n-gram
seen r times, we adjust the count to r*:

n, +1

r*=(r+1) -

where n,. is the number of n-grams that are seen r times in the training data. The probabilities are then estimated
with:

*

’
Pr(wilwi—1,. .., Wi—nt1) = T
r=0 "'7r

for an n-gram w;_p41,...,w; that has been seen 7 times.

When we have a very small language model (e.g. for a domain where gathering in-domain data is expensive
or difficult), this type of smoothing will be unable to improve the model sufficiently. Instead, it is possible
to combine language models hierarchically to improve performance; in the small model example, it could be
combined with a larger general model. Section 3.2 describes one such construction.

2.5 Human Warden and Manual Interaction

It is a unique aspect of NL steganography that, for the majority of stegosystems, the most powerful attacker
is human.'® This is due to limitations of natural language processing (NLP) algorithms, which have not yet
reached the point where they can compete with humans’ in-built sense of language. Humans are particularly
good at spotting the type of problems that NL stegosystems are most prone to making: mistakes with word sense
(the meaning of a word) and sentence fluency. For applications without security concerns, these are somewhat
acceptable; for steganography, they are not. Their presence would signal to any human reader (Kerckhoff’s
attacker) that the text has been changed by some automatic system. (A human attacker is indeed plausible in
this domain, see subsect. 3.)

There are three ways for a NL stegosystem to avoid making these mistakes. We could solve the problem of
word sense disambiguation (knowing the sense of a word in a given context), but this would require a significant
advance in natural language modelling. We could minimise detectable mistakes by making only very restricted
changes (e.g. Ref. 19), but this sacrifices most of the covers’ capacity. Or we can ask the human steganographer
to intervene during embedding, in order to guide the system toward generating stego text without any word sense
or fluency issues. We take this last approach, which we could express as a second measure of distortion: the first
is given by the language model, and used to rank potential stego objects for the second, the ‘human-in-the-loop’
who selects the most fluent.

A number of stegosystems have been developed using this method,'? 29722 but most are based around cover-
generation steganography, where the human is allowed to change generated covers so that the payload is preserved
but the object is fluent. These systems have little practical use, because the generated covers make little sense in
context: it is unlikely therefore that they can be used by any steganographer without giving away the presence
of a hidden message.

The literature mainly takes the view that any stego text generated with a ‘human-in-the-loop’ is automatically
undetectable, though there is little evaluation to confirm this. It is our opinion that human interaction does not
guarantee this security. Humans can ensure that word sense and fluency issues are avoided, but leave open the
possibilities of statistical (e.g. word frequency) attack. Evaluation of these types of stegosystem is scant: it is
not even known whether using a ‘human-in-the-loop’ during embedding makes steganography impervious to a
human attacker, something we will investigate in this paper.

3. COVERTWEET

Twitter is an excellent setting for exploring natural language steganography: the covers all come from one
specific source (the steganographer’s Twitter account); stego objects are nicely self contained messages, of a
fixed maximum length; and tweets are posted at the time of writing, so messages have to be embedded at the
time of writing and it is reasonable to make use of the steganographer during embedding.
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Figure 2. The CoverTweet embedding process.

Twitter has been used for steganography before,?3 but this was done by combining a number of existing,
non-natural language techniques (e.g. hiding data in images attached to tweets and in message whitespace).
Steganography on microblogging sites might be desirable to a number of users. In China, the site Sina Weibo
is roughly equivalent to Twitter. There are a number of forbidden words that get messages deleted, and users
banned; users have taken to using code words as a way to discuss banned topics.?* Each message is checked by
a human; the Beijing Times reported that 2M censors are employed by the government.?’ When attempting
steganography, we can consider these censors as being human Wardens, and 2M wardens would be enough to
read every single tweet posted on a given day.

Our formulation of NL Twitter steganography is as follows: the steganographer, Alice, is a Twitter user with
some number of previously posted innocent tweets. Alice wishes to start hiding information in her tweets. Bob,
the receiver, knows Alice’s username, and has access to her tweets. By knowing that the cover source is one
specific user, our language model we use to create our distortion measure must specifically model Alice’s Twitter
language.

Our proposed natural language stegosystem for Twitter is called CoverTweet, and it works as follows:

Alice generates a cover tweet.

The system generates a number of possible stego tweets from the cover.

The system selects only stego tweets that convey the desired payload (have the correct hash).
The selected stego tweets are ranked using a distortion measure.

Alice chooses the best stego tweet from this shortlist.

CU W=

Bob decodes the payload by applying the same keyed hash function. Figure 2 illustrates the embedding
process. Each part of the system is described in greater detail in the following subsections.

3.1 The Translation Model

The system transforms the cover object of these using the recently released Paraphrase Database (PPDB).26
This is a database of paraphrase rules, extracted from a number of parallel bilingual corpora using the approach
detailed in Ref. 27; this uses the assumption that if two english strings translate to the same foreign string, they
share the same meaning. The same technique was used to create a paraphrase dictionary in Ref. 8, though on a
much smaller scale.

Each paraphrase rule contains a source string, a target string, and some features of the rule (including the
translation probability of the rule). The exact format of each line is:

LHS ||| SOURCE ||| TARGET ||| (FEATURE=VALUE )* ||| ALIGNMENT



where LHS is the constituent label for the source and target (e.g. noun phrase, verb phrase), and ALIGNMENT
describes how the words in SOURCE map to words in TARGET (neither of these were required here).

The database comes in multiple sizes, the largest containing a total of 169M rules. For the stegosystem, we
only used a fraction of this total amount, using the middle sized database, and restricting the rules to the lexical
(one word) and phrasal (multiword) paraphrase rules (i.e. not including the syntactic paraphrases that contain
nonterminal symbols — parts-of-speech tags, rather than words); this resulted in a total of 3.4M rules.

The stegosystem transforms cover tweets by searching the database for any rule with a source string that
matches a word or phrase in our cover; the system constructs the possible stego tweets by applying every possible
combination of paraphrase rules. For example, the tweet (taken from our Twitter corpus):

my grandma trevino just asked when she was going to see my beautiful gf again. uhh bad news grams
might result in the following stego tweets:

my grandmother trevino just asked when she was going to see my beautiful gf again. uhh bad news grams
my grandma trevino just asked when she was going to see my beautiful gf again. uhh really bad news grams
my grandmother trevino just asked when she was going to see my beautiful gf again. uhh really bad news grams

The top stego example shows the result of applying the rule that ‘Grandma’ can be substituted for ‘Grand-
mother’, and the subsequent examples both apply the rule that ‘bad news’ can be substituted for ‘really bad
news’. The former rule appears in the PPDB (with some features removed) as:

[NN] ||| grandma ||| grandmother ||| ... p(f|e)=1.24811,p(e|f)=1.42164 ... ||| 0-0

It is common for Twitter users to address tweets to multiple recipients by placing multiple usernames at the
start; likewise to categorise tweets with multiple hashtags at the end. The paraphrase rules were augmented with
twitter specific rules taking advantage of this: any blocks of hashtags or usernames can be reordered without
changing the meaning of the tweet. This is certainly true of usernames, and is often appropriate for hashtags as
well (for example, the common hashtags ‘# fail’ and ‘# lol” are equally valid used together in either order).

We rank the possible stego objects using our distortion function:

d(s,c) = — log <P<PI(>|P)<>>

where Pr(c|s) is our probability of translating a stego tweet s to a cover tweet c¢. The probability Pr(c|s) is

approximated by assuming each substitution in a given tweet is independent, allowing us to calculate from the
PPDB:

T
Pr(c|s) ~ H Pr(cilsi)
i=1

where T is the number of phrases in the tweet, and s; is the substitution for the word or phrase ¢; in the original
tweet.

3.2 The Language Model

We have already made the assumption that Alice has a number of innocent tweets that we can use to train a
language model, and in this work we use the trigram model (n = 3 in (1)). For training we used the same corpus
that we used to evaluate user statistics in subsection 1.1. The problem is that Alice alone almost certainly does
not have enough cover data for adequate training, whereas we can get a vast amount of general Twitter data;
this is a problem of domain adaptation.

Our approach is to create a hierarchical language model: a combination of models, where one is given priority
but others help with unseen n-grams. We train a small model on Alice’s tweets (holding back a small tuning set);



and a general one on a large amount of Twitter data from other users. Sophisticated approaches to this problem
exist?® 29 but we take a simple approach of combining the two models by linearly interpolating the probabilities
from both models. For example, the probability of a bigram becomes:

Pr(ws|wy) = (1= A) ar(wg\wl) + )\%r(w2|w1)

where Pr(wz|w) is the bigram probability from a model trained on Alice’s data, and Prg(ws|wy) is the
probability from a general model. When the system comes across a word that Alice hasn’t used before, the
probability can be estimated from the general data. We can tune the system by finding the value of A that
minimises the perplexity of the interpolated language model on the held back tuning set of Alice’s tweets.

3.3 Assigning Values

To ensure that the sender and receive unambiguously agree on the assignment of stego tweets to payload values,
we borrow the method used by translation-based stegosystems.3? 32 We use a keyed hash function, which removes
even the need for the receiver to know the substitution rules available to Alice: only the shared key is required.

Given the large number of possible stego objects for a given cover, it is computationally expensive to generate
every single possibility in order to filter down to the desired options by hashing. Luckily, we do not require the
hash to be cryptographic, which allows for efficient searching. For a given tweet, the value is determined by
getting a keyed hash digest for each individual word (here using 4 bits from a hash generated using the MD5
algorithm), bitwise rotating each value according to its position in the tweet, then exclusive-or-ing these values
together. Partial hash-values are calculated for each index of the tweet. A table is constructed, mapping an
index and a possible hash value to paraphrase substitutions that will result in the given hash value up to this
index in the tweet; these substitutions are paired with the partial hash value required up to the previous index
in the tweet. Using this table, it is possible to construct only the stego sentences that provide a desired hash
value in linear time.

Though simple, assigning values using a hash function is not without its own problems. The payload size must
be a fixed number of bits, regardless of the number of options available for a particular cover. As well as wasting
potential capacity, it may fail to embed certain payloads in certain covers that have only a few appropriate
translations.

3.4 Human Interaction: A Secondary Distortion Measure

There may usually be multiple possible stego tweets that convey a desired payload; we rank these using our
distortion measure. If the quality of the measure were sufficient we could select the stego tweet with the lowest
distortion, but limitations of NPL suggest that this will not capture all aspects of detectability. Specifically, the
lowest-distortion option is not guaranteed to be fluent or without word sense mistakes. The final selection of the
stego tweet is instead made by Alice: they are shown a ranked list of options, and choose which stego object to
send.

We view this ‘human-in-the-loop’ as a secondary distortion measure, attenuating the shortcomings of the
first. But the use of a human exacerbates the problem of not being able to use every cover, if they rule out all
possible substitutions. When the translation engine finds substitutions with the correct hash, it is often because
the original tweet is too short, or contains phrases that do not have associated rules in the PPDB; the receiver
could conceivably create a rule to ignore any tweets with these properties. This would not be possible when the
failure to embed is only because the human ruled out all substitutions.

This is another synchronization problem and beyond the scope of this work: for now, we simply assume that
Bob can determine which tweets were used for steganography, or that Alice re-words any cover tweet that would
have failed to embed. But essentially the problem is one of side information not available at the decoder, which
should be amenable to coding methods.



Original: If I never hear Ignition by RKelly again it wouldn’t bother me

1 if i never hear powerup by rkelly again it would n’t bother me -44.531
2 well , if i ever hear ignition by rkelly again it would n’t mind me -46.163
3 maybe if i ever hear contact by rkelly again it would n’t bother me -46.611
4 well , if i never hear ignition by rkelly again it would n’t matter to me -46.657
5 if i ever hear ignition by rkelly again it would not bother me -46.850
6 well , if i never hear 1lit by rkelly again it would n’t mind me -47.146
7 look , if i never hear ignition by rkelly again it would n’t mind me -47.150
8 maybe if i ever hear powerup by rkelly again it would n’t mind me -47.180
9 well , if i never hear power-up by rkelly again it would n’t bother me -47.343
10 though i ’d never hear ignition by rkelly again it would n’t bother me -47.387
11 well , if i ever hear ignition per rkelly again it would n’t bother me -47.555
12 maybe if i ever hear powerup per rkelly again it would n’t bother me -47.609
13 maybe if i never hear powerup by rkelly again it would n’t matter to me -47.674
14 if i never listen ignition by rkelly again it would n’t bother me -47.794
156 if i never hear 1it by rkelly again it would not bother me -47.833
16 unless i never hear ignition by rkelly again it would n’t disturb me -48.390
17 well , if i ever hear lit by rkelly again it would n’t matter to me -48.392
18 well , if i never hear lit per rkelly again it would n’t bother me -48.396
19 look , if i ever hear ignition by rkelly again it would n’t matter to me -48.396
20 ... if i ever hear contact by rkelly again it would n’t bother me -48.418

Figure 3. Some example output of the system. The 20 possible stego tweets with the lowest distortion; the log probability
of each stego tweet is included. In total the system generated 71407 options for this cover tweet.

3.5 Parsing

We processed the tweets from the Harvard TweetMap? before using them for training the language models, and
applied similar processing to the cover tweets input by Alice.

Each tweet was canonicalised to lowercase, because the PPDB does not distinguish cases in any of the
paraphrase rules. Our hash function was designed to be case independent, so if required Alice could reintroduce
capitals when choosing the final stego tweet. In principle the system could attempt to reintroduce capitals to
the stego tweet, so that it mirrors the cover, but this was not attempted at this stage.

Tweets were also tokenised (using a tokeniser provided by the Natural Language Toolkit (NLTK)33), which
separates punctuation from words; such tokenisation is required to use the PPDB, and for training the language
model. This step also separates contracted forms of words (e.g. separating ‘shouldn’t’ into the two tokens
‘should’ and ‘n’t’). For transmission, we reversed this by removing the spaces that were added during the
tokenisation. As for cases, the hash function was designed to be space independent, so Alice could add or remove
spaces if necessary. For the special case of hashtags, we separated the hash symbol from the categorising word,
so that the language model could learn which words are likely to appear before a hashtag, and which words are
likely to occur as hashtags.

For training the language model, all usernames and URLs were replaced by general tokens (‘USER’ and ‘URL’).
Effort was made to remove retweets, by ignoring all tweets containing the token ‘RT’; this was necessary to
ensure that the language model was not training twice on the same content.

3.6 Sample Output

Figure 3 shows some of the output presented to Alice by the prototype CoverTweet system, during embedding.
Each tokenised stego tweet (for a specific payload) is displayed, along with its log translation probability according
to the hierarchical language model. This example highlights the need for the secondary distortion measure: the
best substitution is probably the one ranked 4th, as the first three are inappropriate for various reasons: fluency
issues and words used in incorrect senses.

Figure 4 contains some examples of cover and stego tweets, with the changes highlighted.



people still wash there air force 1s shoes, i take it some people didnt learn the lesson.... if you
wash air force 1s they will turn yellow!! 1lol
people still wash there air force 1s shoes, i guess some people didnt learn the lesson. if you wash
air force 1s they will turn yellow!! 1lol
Figure 4. An example of a steganographic tweet with the unmodified cover

4. EXPERIMENTAL RESULTS

We began by selecting ten users from the corpus, on which to perform experimental evaluation. We selected
users at random meeting the following criteria:

1. They had posted (during the month for which the corpus was collected) between 500 and 1000 tweets. This
was sufficient to train a language model and few enough to filter spam accounts.

2. Their average number of words per tweet was at least 9. This removed users who frequently posted messages
too short to contain payload.

3. The size of their vocabulary per tweet was approximately equal to 8.5. This also removed spam accounts
and collected ‘typical’ users.

Removing the data for these users from the corpus, we trained the general language model on the rest (which
consisted of approximately 75M tweets). For each user, we split their tweets up into three sets: the cover
set, containing the most recent 100 tweets; the set for training the language model, containing 90% of the other
tweets; and a tuning set, containing the remaining 10%. We used the SRI Language Modelling Toolkit (SRILM )34
to train each model, and find the optimal interpolation weights: the weight for interpolating each individual’s
language model with the general model was chosen so that it minimised the perplexity of the language model on
the tuning set. Stego tweets were then generated from the tweets in the cover set.

4.1 Evaluation of Language Model

Our first task is to check that the hierarchical language model is working properly. We calculated the perplexity
of the combined language model on the cover set for each user, while changing the interpolation weight, and
show the mean of the results in Figure 5. The interpolated models had better fit (lower perplexity on the tuning
set) than the baseline model, though the average interpolation weight that gave the lowest perplexity was higher
than expected. We attribute this to the number of tweets we had for each user; the user models are very small,
and had an extremely high perplexity on the test set (the average perplexity was8803.45). We would expect the
optimal weight to be lower for users with significantly more tweets (which might be the case if the tweets in our
corpus were not collected over the course of a single month). Further work is required in this area: there is scope
to apply more sophisticated approaches to domain adaptation. When the distortion measure is defined using the
language model probabilities, the estimated probabilities need to be as accurate as possible, to ensure that an
attacker does not have a better measure of distortion.

4.2 Evaluation of Stegosystem Security

One of the main goals of our system was to be secure against human Wardens, while still embedding a reasonable
amount of data. In order to evaluate how successfully the system achieved this goal, we designed an experiment
that used human judges to attempt to spot stego tweets.

We used the CoverTweet system to generate 20 stego tweets for each of the 10 users. On average it took 50
tweets from the set of covers to find 20 usable tweets, with each tweet containing 4 bits of randomly generated
payload. Note that this does not necessarily mean each cover is only capable of embedding an average of 1.6
bits; it only means that 60% of the covers are not capable of embedding 4 bits, and we do not know exactly how
many bits could be embedded. Of the 20 cover tweets that were changed successfully, it is possible some of these
would actually have been capable of embedding more than 4 bits.

For the evaluation, we gathered twenty human judges, who were each given an exercise: having been shown
40 known ‘innocent’ tweets (taken from the training and tuning sets), they were presented with 20 unclassified
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Figure 5. Averaged perplexity of the language model on the testing data for each actor, as the interpolation weight
changes. The dotted line shows the average perplexity for the general model. At weight 0, the general model is unused,
and the average perplexity is 8803.45.

tweets from a particular user. Of these unclassified tweets, 10 are stego (picked at random from the 20 stego
tweets generated), and 10 are innocent: the task was for each judge to identify the 10 stego tweets. They were
asked to do this by assigning a score (1-10, to denote how sure they were about a particular tweet being stego)
to 10 of the 20 tweets. By ensuring that all the tweets were capable of embedding the 4 bit payload, judges were
not able to simply choose the longer tweets, or tweets containing particular features that allow for easy changes
(such as multiple usernames).

After assigning 10 scores, the judges were given another 40 innocent tweets, and were asked whether this
affected their scores at all: this was to test whether having more history would affect the judge’s ability to detect
steganography. Each judge repeated this task for 5 of the users; the users were divided up so that each was seen
by the same number of judges. We then measured the ability of the judges to distinguish cover and stego tweets,
and whether this ability differed significantly between judges and between twitter users. Figure 6 shows part of
a task presented to a judge.

The judges were recruited from students and staff at Oxford University. Not all were computer scientists,
and none were computational linguistics experts. They were aware of the general steganographic aim of the
CoverTweet system, but not its exact mode of operation. This mimics a real-world scenario where a human
censor monitors Twitter traffic without targetting a specific stegosystem.

4.3 Evaluation Results

It turned out that the judges’ performance was in no (statistically significant) way affected by seeing only 40 or
the full 80 innocent tweet history of the users they were scoring. Therefore we include only the results for the
latter, which is the more stringent testing environment for the security of our stegosystem.

The accuracy of each identification of the stego tweets, for each user individually, is displayed in Fig. 7 (left).
The same results broken down by judge are in Fig. 7 (right). Overall, out of 2000 classifications, 1037 were
correct and 963 were incorrect.

Overall accuracy of human judges

These 2000 answers are not entirely independent because the judges were told to identify exactly 10 guilty tweets
out of 20 from each actor: we can account for this dependence by measuring their accuracy only on true guilty
tweets (of necessity their true negative rate equals their true positive rate). Our judges collectively identified 515
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your avi Quser4l >>>>

middle finger up to my competition

im gone download me some emojis #thestruggle 1lml

Quser67 the one you wore lastnight to the fashion show thing? 1ml.
i got the jokes tonight

phone sticky <<<.

she on time to get off.

tssk, the struggle is real she was not gone talk to her until she seen me tweeting her smh.
but anywayssssss ..

get of my tl please ya.

fake? haha lets not go there hun.

. you change alot i dont even no who you is anymore.
. don’t start something you can’t finish.

i don’t argue over petty stuff ill just start to distance myself away from you ..
"""Quser84: fake girls <<<<<<LLCLCLCLCLLLLLCLCLCLLLLLKLL no can do" "
i need to call daija asap.

. modeling classes ova the summer >>>

leave me alone ..... lol.
Iml.
i no she telling my other cousin a whole different story but i could careless.

. my circle geting smaller everyday, this thing is geting worse. im cuting em’ off.

im going to get off that case and im gone dismiss it, anit nobody got time for that. it is what
it is.

you must care lol .. hold up? why am i even talking to you or responding to you?
from what i heard today i dont even wanna talk to her no more!
i shall return .. bbl.

10 steganographic and 10 innocent tweets:
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)]

© 00

10.

13.

14.
15.

16.
17.
18.

soon as i got home im gone eat than go sleep i had a long day!!
i need to buy me some new headphones..
would beilive me if i said im inlove? baby ..

my mama bout me another new pair of beats but... it’s not the headphones it the ear omes..
people still wash there air force 1s shoes, i take it some people didnt learn the lesson.... if
you wash air force 1s they will turn yellow!! 1lol

yall must have 11:11 set 1 minute early before yall tweet it, because soon as 11:11 hit yall
don’t wastes no time. 1lol

i sleep with my earings on but tonight i can’t

#oomf toes is ugly .... woooo jesus everytime i see them things i run, i sweaaa!

Quser270 lol.

Quser341 i’m remembering that time in 7th grade when ashley b made us get that f on that project
in science class, lmao we been to mad!

. most of the people who got mouth can’t beat you .
12.

#weallknowthatonepersonwho hate on you, don’t like you, envy you, laugh in ya face and then talk
about you!!! i know em’

why my family choose to come my house this late at night? i can’t deal with all that laughing
right now .. 1lol

feel like going with my cousin today .. i need a laugh .

"""@user163: that awesome moment when you say something really funny and everyone laughs, so you
just sit there like a boss."""

you can tell when somebody hating on you!

mfs be thinking i gaf about whatever they think, when really i don’t

people say ice not good thing for you, yet little do they no ice is just frozen water. people
need to think before they speak.

Figure 6. An example of the tweets shown to the judges. The steganographic tweets have been highlighted.
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Figure 7. Accuracy of detection of stego tweets by human judges. Each judge scored a total of 100 tweets; each user was
scored on 200 tweets. Left, accuracy for each user; right, accuracy of each judge.

out of 1000 guilty tweets correctly. A simple Z-test allows to test the null hypothesis that judges are guessing
randomly, verses a one-sided alternative that they are answering correctly more often. There is insufficient
evidence to reject the null hypothesis of random guessing (p = 0.180).

When we designed the system, we were not expecting it to be so secure! Part of the security stems from the
frequency of spelling and grammar mistakes in the cover tweets: Twitter seems a good candidate for steganog-
raphy because its users already inject a lot of randomness into it.

Effects on accuracy

We wish to know whether some judges were (statistically significantly) more accurate than others, whether some
users’ tweets were more or less difficult to classify, and also whether identification with higher confidence scores
tended to be more accurate. All of these can be accomplished in one go using an analysis of variance, the results
of which are displayed in the following table:

Factor ‘ d.f. deviance p-value
Judge 19 14.1707  0.7737
User 8 19.6039  0.0112*

Confidence 1 0.5431 0.4612

We conclude that neither the identity of the judge, nor the confidence with which they make judgements,
significantly effects the accuracy of classification. We also tested separately whether higher confidence was
associated with correct answers, using a Wilcoxon rank sum test. This is makes no assumptions about the
distribution of the scores, but does use their ranking. Again no association was found. (p = 0.621).

To investigate further the effect of user, we performed a multivariate logistic regression, modelling the log
odds of a correct judgement in terms of user and judge. We omit the regression table because only one factor
was significantly different from 0: user 5, it turns out, was significantly more difficult to classify correctly than
the rest (but no other actors differed significantly). We attribute this to the particular selection of unclassified
tweets for this actor, though potentially exacerbated by a noticeable lack of consistency in the user’s language.

Two of actor 5’s innocent tweets had features that a number of judges took as clear signs of guilt, but were
just a product of this unpredictable nature: one tweet was part of a group of three tweets to the same two users,
but the usernames of the recipients were in reverse order; the other tweet used both ‘you’ and 'u’ in the same
sentence (rather than just using one form). In addition, two of the stego tweets had the sort of changes that
were difficult to spot by humans (e.g. substituting ‘..” with ‘...").



5. CONCLUSION

We have presented a method for hiding information in tweets. It involves two types of distortion in a novel combi-
nation: a language model, which can be computed automatically, and human involvement to select the ‘optimal’
stego tweet from a list of possibile paraphrases of the cover. We found the NL transformations via unilingual
translation, applying a large (multi-word) paraphrase database. This combination is more sophisticated than
previously found in the NL steganography literature, allowing us to hide 4 bits in usable tweets, where usable
tweets represented approximately 40% of our corpus: a very small amount of information, but comparable to
other NL steganography methods which typically manage one or two bits per sentence.'® 35 It is likely that the
capacity of our system can be increased in future work, by the addition of more domain-specific paraphrase rules
and also by finding coding methods that can adapt better to the different capacities of covers.

We should perhaps note that, if the estimate of 500M tweets per day? is accurate, and even if every tweet
can and is used to hide steganographic payload of, say, 4 bits, the total global covert bandwidth of Twitter is still
only an average of 2.83KB/s. This is not a high-capacity covert channel, but it has the potential to be a very
secure one.

In future work we hope to attack the coding and synchronization problems. Whether an individual tweet is
usable at all is an example of side information at the encoder, and it is an application of “wet paper codes”3°
(where the symbols are the bits embedded in each tweet) to avoid changing unusable tweets without that
information being required at the decoder. The main challenge is to avoid using the human oracle too often
during the embedding process. However we could do much better, in terms of overall capacity per tweet, if we
were able to embed a different number of symbols in each tweet: more in tweets with more potential paraphrases.
This will require a novel coding approach.

The NL steganography literature has often failed to measure the security (undetectability) of proposed sys-
tems, particularly when steganography is mis-labeled as NL watermarking. In this work we recruited human
judges to test the detectability of CoverTweet output, with a string of negative results: they did not detect
CoverTweet significantly better than random guessing, and there is nothing to indicate that any factor (except
for one particularly difficult actor) changes this. This is excellent news for the security of our stegosystem. It
suggests that there is indeed room for higher capacity, but also that we should perhaps re-visit our assertion
that human judges are the most accurate detectors of NL steganography. However, the literature on statistical
steganalysis of NL stegosystems is extremely sparse, with most detectors targeted at very old steganographic
methods,?"38 so there is nothing practical to test against. In principle the steganalysis literature could imple-
ment a similar hierarchical language model to subsection 3.2 and use average perplexity as a simple detection
metric. The availability of training data from matched sources is, most likely, even more essential here than in
image steganalysis.

Finally, we note the difficulty of performing large-scale experiments when human judges are involved. It
is quite simple to run millions of steganalysis tests on a computer, but the two thousand scores gathered for
this study relied on considerable goodwill by a number of volunteers. One option is to crowdsource the judges,
via a marketplace such as Amazon’s Mechanical Turk, something recently used by researchers in computational
linguistics.3?>40
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