
Steganographic Key Leakage Through Payload Metadata

Tomáš Pevný
Agent Technology Group

CTU in Prague
Prague 16627, Czech Republic

pevnak@gmail.com

Andrew D. Ker
Department of Computer Science

University of Oxford
Oxford OX1 3QD, UK
adk@cs.ox.ac.uk

ABSTRACT
The only steganalysis attack which can provide absolute cer-
tainty about the presence of payload is one which finds the
embedding key. In this paper we consider refined versions of
the key exhaustion attack exploiting metadata such as mes-
sage length or decoding matrix size, which must be stored
along with the payload. We show simple errors of imple-
mentation lead to leakage of key information and powerful
inference attacks; furthermore, complete absence of infor-
mation leakage seems difficult to avoid. This topic has been
somewhat neglected in the literature for the last ten years,
but must be considered in real-world implementations.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Information hiding ; H.1.1 [Models and Principles]: Sys-
tems and Information Theory—Information theory

Keywords
Steganographic Security; Key Leakage; Brute-force Attack;
Bayesian Inference

1. INTRODUCTION
A steganographic object does not only contain its covert

payload: it will also contain a small amount of metadata
about the payload. Typically this will be the length of the
payload and/or some parameters that tell the recipient how
to decode it: otherwise, the embedder is forced to use a fixed
coding method which cannot exploit better embedding effi-
ciency available for lower payloads, or adapt the embedding
method to the cover. Does this metadata leak information
about the embedding key? In this paper we consider details
of implementation which are typically elided in the litera-
ture, and this paper is aimed at real-world practitioners [12].
We show how easy it is to make mistakes, with examples
of a historic steganography scheme that does make obvious

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IH&MMSec’14, June 11–13, 2014, Salzburg, Austria.
Copyright 2014 ACM 978-1-4503-2647-6/14/06 ...$15.00.
http://dx.doi.org/10.1145/2600918.2600921.

mistakes, and hypothetical implementations where the mis-
takes are more subtle. Indeed, it seems surprisingly difficult
to avoid information leakage altogether.

In this paper we do not consider statistical steganalysis: a
highly-refined discipline (particularly for still, grayscale, im-
ages) which can detect even small payloads with surprising
accuracy. But the level of reliability is never certainty and
never enough, for example, to convince a criminal court. The
authors believe that steganalysis with false positive rates be-
low, say, 10−9 is an important area for research, but no cur-
rent statistical steganalysis method meets such a standard.
(Even if one did, we would have no way to prove it.)

Instead, we turn to the older brute force attack, which
tries all possible embedding keys in turn. Such attacks are
certainly plausible, we argue more so than in traditional
cryptography, and are the only methods by which one could
truly pronounce guilt with certainty. The brute force attack
is not, of course, new, but we suggest that the embedding
metadata provides a way to speed up and refine exhaustion
attacks, which can be mitigated (but perhaps not prevented)
by careful implementation.

1.1 Typical Extraction Procedure
Consider a typical steganographic extraction process:

(i) The embedding key is derived from a password, using
a key derivation function (KDF): k = KDF(p).

(ii) The embedding key locates and decodes a small block
of metadata, the decoding parameters.

(iii) The decoding parameters and the embedding key are
used to extract the payload.

In step (i) we distinguish a password p, the secret shared
between the sender and receiver which we expect to have
only a moderate amount of entropy (e.g. one of a few mil-
lion possible words and modified words), from the quasi-
cryptographic key k that parameterizes the extraction. In
contemporary security systems, the relatively small entropy
of passwords is often a weakness because it permits a brute-
force attack [8]. Ideally, the sender and receiver would share
a 64- or 128-bit secret key, but the practicalities of covert
communication make this unlikely: if they can share such
keys at will, they may have no need for steganography at
all. Perhaps a protocol could be used to exchange embed-
ding keys, but at the moment public-key steganography pro-
tocols have enormous computational costs [12].

By (de)coding parameters we mean the information nec-
essary to en/decode the payload: it might simply be the

payload length; in syndrome coding methods it will deter-
mine the parity-check matrix size [3] (the contents of the
matrix will probably derive from the embedding key); in
adaptive embedding methods it may determine the param-
eters of the trellis [4]. Most research literature assumes that
decoding parameters are somehow already known to the re-
ceiver, e.g. YASS [22], or provide only simulators that do not
encode a real message, e.g. UNIWARD [9] and HUGO [17].

In the real world, decoding parameters must be embedded
in step (ii), using a fixed code, and stored securely using
the embedding key (for example as a cryptographic key),
otherwise the system does not survive Kerckhoffs’ Principle.
For example, OutGuess [19] has a header containing a 16-
bit field storing payload length (in bytes); F5 [23] uses 8 bits
to store the dimension of the Hamming code used in matrix
embedding [3] and 23 bits to store payload length (in bytes);
JpHide&Seek [15] stores the message length (in bytes) in 24
bits encrypted by the same password as the payload.

The distinction between steps (ii) and (iii) is important.
Having step (iii) depend on the output of (ii) allows the
embedder to vary the encoding parameters according to the
payload size or cover characteristics. For example, using ran-
dom linear codes, smaller relative payloads can be embed-
ded with higher embedding efficiency by choosing codes with
higher dimension [7]. Or in the paradigm of distortion mini-
mization using syndrome trellis codes, the width of the gen-
erator matrix must be adjusted according to the inverse pay-
load size, to approach the rate-distortion bound [9]. With-
out transmitting decoding parameters, the encoder would
be unable to adjust their embedding to make the best use
of the particular cover and payload combination.

In this paper, in sections 2–4, we examine increasingly re-
fined versions of exhaustion attacks attempting to use step
(ii) to determine the embedding key. We will assume that
the embedder has created multiple stego images using the
same key (with different payloads); this seems highly realis-
tic in a covert communication scenario.

1.2 Prior Art on Brute Force
Recovering the embedding key seems to have received rel-

atively little attention in the literature. Probably the first
work was [20], which tried to detect the use of steganogra-
phy on the internet. Downloaded images were first scruti-
nised by statistical steganalysis based on the χ2-test, and
if deemed suspicious the hidden content was further veri-
fied by guessing the embedding key from a dictionary. A
key was deemed possible if it extracted a header compatible
with known embedding algorithms. The approach resembles
the Intersection Attack we present in section 3, but it only
uses one stego image; contrary to this prior art, we can often
determine the embedding key uniquely.

Ref. [6] used a statistical approach, generating the em-
bedding path from each stego key. The attack, targeting
OutGuess and F5, assumed that pixels/coefficients carrying
the payload have different statistical properties from those
that do not. A χ2-test is used to measure this difference.
Such an attack will not work directly with modern content-
adaptive embedding schemes, which use all pixels with some
probability, but could perhaps be adapted to them: it was
demonstrated in [21] that knowledge of the embedding path
makes them more vulnerable to modified weighted stego-
image steganalysis [13] in the limited case of LSB Replace-
ment.

2. RECOGNISABLE PLAINTEXT
An important concept in cryptography is the recognisable

plaintext : the assumption that an attacker can tell when
they have found the correct decryption key, by verifying the
decoded plaintext in some way. Ciphertext-only attacks (as
opposed to those with a known plaintext-ciphertext pair) are
impossible without this assumption. The same assumption
is plausible in steganography, for much the same reasons: if
the payload has meaning, it most likely also has redundancy
or structure, for which an attacker can look. Given this
assumption, the simplest attack on steganography is:

The Exhaustion Attack. The attacker tests every pos-
sible key k, or alternatively every possible password p, de-
coding the plaintext and checking for known structure.

2.1 Countermeasures
Recognisable plaintext is a genuine problem for stegano-

graphy, particularly if it is more difficult to convey good
passwords in a covert communication setting than in tradi-
tional cryptography. Compressing redundancy, or encrypt-
ing plaintext with the embedding key, provides no additional
security because a Kerckhoffs’ attacker can reverse it.

One countermeasure is to ensure that the keyspace is at
least 64 bits: in modern times, there is no excuse for using
a 32-bit embedding key, because 32-bit keyspaces can be ex-
hausted. Unfortunately this still allows an attacker possess-
ing a suitably generous dictionary to attack the passwords
instead. Increases in computational power were supposed
to benefit cryptographers (who can increase key sizes with
polynomially more work) more than cryptanalysts (who are
forced into near-exponentially more work), but humans’ abil-
ity to remember passwords has not kept pace [8].

We could borrow a technique from entity authentication
mechanisms, and ensure that the KDF is slow to compute,
for example by iterating a cryptographic hash at least 105

times [10]. This slows down the embedder, extractor, and
attacker equally. However, slow KDFs can be defeated by
attackers with plenty of parallel computational resources,
and the key dictionary can be derived offline unless the keys
are also salted [16] (and with what? – perhaps a sequence
number, but this is vulnerable to prediction and fragile un-
der desynchronization). Similarly, but less sensibly, we could
try to ensure that the decoding process itself is very slow.

The best that we can suggest is a separate password en-
crypting the payload itself; a similar approach is assumed
in [5]. Although doubling the password requirement, it squares
the brute-force work for an attacker, who must exhaust for
each embedding key and then again to recognise plaintexts.

3. IMPOSSIBLE PARAMETERS
Even a separate encryption password or a completely un-

recognisable plaintext may not protect against exhaustion.
We make the same observation as Provos [20]: that most
embedding keys will imply decoding parameters which are
not possible, and these can be discarded. With multiple
images embedded under the same key, we can use:

The Intersection Attack. The attacker maintains a
list of all possible keys k, or passwords p. For each image
received, they remove all keys which produce impossible de-
coding parameters.

Consider the OutGuess [19] algorithm: it uses 16 bits to
store the length of the payload. Its capacity can be esti-

mated as half the number of non-zero, non-one, non-DC,
discrete cosine transform (DCT) coefficients. It is easy to
compare the message length extracted from the header with
the capacity (which is not changed by embedding) and, if
exceeded, the key can be discarded. For incorrect keys, we
expect to read uniformly distributed lengths of less than 216

bytes, most of which will be too long for the stego image.
For F5 the same attack is slightly more difficult, because

the embedding process reduces the capacity. However, the
capacity can never be less than the number of nonzero AC
coefficients, since if F5 changes a coefficient to zero it re-
embeds using another; thus we obtain an upper bound on the
capacity of the cover from the stego object. Furthermore,
its implementation has even key higher leakage, because it
also stores the parameters of the Hamming code. As well
as discarding impossible message lengths, we can also verify
that the Hamming coding is compatible with the message
length and capacity. A similar mechanism can be expected
for embedding algorithms using syndrome trellis codes.

This attack can be extremely powerful: when proportion α
of all possible keys give rise to possible decoding parameters,
after n images there will be on average only αn possible keys
left. Put another way, we expect the entropy of the keyspace
to decrease linearly with n.

3.1 Experiment
The Intersection Attack is demonstrated using set of ap-

proximately 9000 images, where every image contains a pay-
load of random length (uniformly chosen up to capacity)
embedded using OutGuess with the same password ‘Neil’.
All images were JPEG images downloaded from one user
of the photo-sharing site Flickr. We simulate a steganalyst
with a list of more than 2 million passwords downloaded
from [1] (the searchable keyspace therefore has an entropy
of approximate 21 bits). The experiment was repeated each
time with up to 50 images embedded with the same key,
and after each image the steganalyst removes passwords im-
plying a message length not compatible with capacity. The
average- and worst-case (over 1000 repetitions) entropy of
the remaining keyspace (the binary logarithm of the num-
ber of possible passwords) at each stage is shown in Figure 1.
The results demonstrate key leakage, but not as much as we
had expected: this is because the OutGuess implementation
does not decode all parameter blocks to uniformly random
payloads: some keys imply consistently small payloads, re-
gardless of image, and cannot be eliminated. Thus 50 images
are not sufficient to determine the password uniquely.

3.2 Countermeasures
Implementations which allow the Intersection Attack are

flawed, but it can be tricky to remove the flaw entirely. The
first step is to use the correct length of field: for example, if
payload length can never be more than (say) 223 bits (1 bit
per pixel of an 8 megapixel image) then only 23 bits should
be used to store payload length; if they must be padded to
32 bits, the other nine bits should be random and discarded
by the extractor.

However, this still leaves plenty of impossible parameters
for smaller images, and the exponential power of the In-
tersection Attack can exploit even small gaps. We propose
a simple padding scheme that makes all parameter blocks
possible: if the number to be stored (payload size, matrix
parameters, etc.) lies in the range 0 . . . (N − 1), encrypt us-

0 10 20 30 40 50
0

5

10

15

20

number of stego images

re
m
ai
n
in
g
ke
y
sp
a
ce

en
tr
o
p
y average case

worst case

Figure 1: Entropy of keyspace after the Intersection
Attack.

ing k a uniformly-chosen random integer with the correct
value (mod N).

It is not always easy to choose such an N . If we are storing
a payload size, ideally N should be the maximum capacity
of the cover. But N has to be recoverable by the receiver, so
that they can perform the same modular reduction. Unfor-
tunately, for many embedding schemes the capacity is lower
after embedding (e.g. F5 as we previously stated [5]). The
sender may be forced to predict a lower bound based on the
capacity of the stego object and use that N instead, which
in turns limits their own capacity meaning that maximum-
size payloads cannot be embedded. However, maximum-size
payloads are more vulnerable to statistical steganalysis, so
perhaps this does not matter. Analogous problems may arise
in storing coding parameters such as matrix or trellis sizes.

Even random padding that makes all decoding parameters
possible may leak information, if the parameters are not
equally likely. This is the subject of the following section.

4. PAYLOAD SIZE ESTIMATION
We try to use some techniques from statistical steganal-

ysis to strengthen the brute-force attack. Most embedding
methods are vulnerable to quantitative steganalysis, which
attempts to estimate the payload length (or its proxy, num-
ber of embedding changes) from a stego image: a form of
regression. Most steganalysis classifiers can be converted to
regressors [18]. Even though the estimates are subject to
error, they make certain keys more likely than others.

For now, we will assume that the decoding parameters
simply specify the payload length; we will revisit this in
subsection 4.3. We assume that the regressor outputs an es-
timate of the payload length y and, by empirical simulation,
we can obtain an estimate of the distribution of the estimate
conditional on the true payload length x (typically by fitting
the estimation error to a distribution, preferably one with
heavy tails [2]). We denote this distribution P(y|x). Each
possible embedding key k decodes a parameter block speci-
fying that the payload length is x(k). Now we can perform:

Bayesian Key Inference. If p(k) represents the prior
probability that the key is k, then the posterior p(k|y) after
one observation of a stego image with estimated payload y

is given by

p(k|y) =
P
(
y|x(k)

)
p(k)∑

k′ P
(
y|x(k′)

)
p(k′)

∝ P
(
y|x(k)

)
p(k).

We can ignore the denominator, because it is constant in k,
and rescale the distribution (if necessary) at the end. Iter-
ating for multiple observations y1, . . . , yn, the unscaled pos-
terior can therefore be written

log p(k|y1, . . . , yn) = log p(k) +

n∑
i=1

log P
(
yi|x(k)

)
.

Regardless of the prior, this means that all keys can be
scored by their log-likelihood.

We briefly analyse the performance of this algorithm (proof
omitted). Let S denote the score for the true key k, and S′

the score of an incorrect key k′. Then

E[S] = n

∫
P
(
y|x(k)

)
log P

(
y|x(k)

)
dy,

and if P̃(y) represents the unconditional output of the re-
gressor, the mixture over all true payloads (which may very
well be uniform random) then

E[S′] = n

∫
P
(
y|x(k)

)
log P̃(y) dy.

Thus the separation of the scores of true and false keys is
linear in n, governed by the Kullback-Leibler divergence

DKL

(
P
(
y|x(k)

) ∥∥ P̃(y)
)
, (1)

which is larger when the regressor is more accurate, and
(assuming independent scores between images) its variance
is O(n). This implies that the probability of the correct key
will soon dominate the others.

4.1 Experiment
Bayesian Key Inference was evaluated using the same im-

age set as in subsection 3.1. In each repetition we randomly
picked 10 images (embedding using the same key) over which
to perform Bayesian inference. The remaining 8990 images
were split into two sets: 66% of them were used to train
a linear quantitative steganalyzer by ordinary least-square
regression on Cartesian-calibrated PF-584 features [14] the
remaining 34% were used to estimate the quantitative ste-
ganalyzer’s error, which was fitted to a Gaussian distribution
to create P(y|x).

Figure 2 shows the entropy of the keyspace (the poste-
rior key distribution) after applying the attack. We observe
significantly faster convergence than for the Intersection At-
tack; at most eight images was sufficient to determine the
correct password uniquely. Although the Gaussian model
for regressor error is probably optimistic, it does not seem
to hurt the accuracy of inference unless we care about the
precise posterior probabilities; on the other hand, it could
easily be swapped for a heavier-tailed distribution.

4.2 Countermeasures
To our knowledge, such an attack has not previously been

described. It exploits an implementation rather than the
method for putting the bits into the cover, and such topics
have received relatively little attention in the literature.

It seems difficult to prevent this attack in any situation
where the number of possible keys or passwords is exhaustible

0 2 4 6 8 10
0

5

10

15

20

number of stego images

re
m
ai
n
in
g
ke
y
sp
ac
e
en
tr
o
p
y average case

worst case

Figure 2: Entropy of keyspace after Bayesian Key
Inference using message length metadata.

and a quantitative steganalyzer exists, but we suggest that
some countermeasures may be possible. The exponential
power of Bayesian Key Inference relies on the following ob-
servation: if xi(k) the payload size implied by key k in image
i, and if k′ is an incorrect guess for the true embedding key
k then

|xi(k′)− xi(k)| is independent of |xj(k′)− xj(k)| (2)

for i 6= j. In other words, a key which is a ‘near miss’ for
image i is unlikely also to be a ‘near miss’ for other images
j, so the likelihood of incorrect keys diminishes very quickly.

If b(k) specifies some sequence of bits from the stego im-
age, depending on the key k, we have implictly assumed that
x(k) = Dk(b(k)) or x(k) = Dk(b(k)) (mod N), where Dk(−)
is some cryptographic decryption. It is precisely this crypto-
graphic property that gives (2). Is it possible to mitigate the
effect, introducing strong covariance between |xi(k′)−xi(k)|
and |xj(k′)− xj(k)|? One simple proposal to avoid (2) is

x(k) = b+ k (mod N) (3)

for some block b at fixed location.
We can measure the amount of leaked information using

a similar experiment simulating an OutGuess-like embed-
ding. The message length is stored in 16 bits, so the effec-
tive key space for one-time pad is K = {0, 1, . . . , 216 − 1}.
Background bits b are read from some fixed positions. The
inference is done only against K, and it is assumed that the
capacity is 1

16
M bytes, where M is the number of useable co-

efficients (recall that OutGuess reserves approximately 50%
of them for statistical restoration). The number of images
available for key-breaking was increased to 50, since we ex-
pect the inference to be weaker.

The results are summarised in Figure 3. Comparing to the
previous case, the inference is much weaker: the keyspace
was not very large to begin with, but only approximately
half of its entropy is lost.

It is counter-intuitive to use a weak encoding such as (3),
and indeed it does leak information. Although the payload
size is secured by the one-time pad of modular addition,
multiple images with similar payloads and the same embed-
ding key will all have similar values stored in the block: this
allows an attacker an easy target for statistical attacks. It

0 10 20 30 40 50
0

5

10

15

20

number of stego images

re
m
ai
n
in
g
ke
y
sp
a
ce

en
tr
o
p
y average case

worst case

Figure 3: Entropy of keyspace after Bayesian Key
Inference, where message length is protected by a
one-time pad.

would appear that (2) forces such a weakness, because then

xi(k) ≈ xj(k) implies xi(k
′) ≈ xj(k′)

for every k′. We leave open the question as to whether there
is a clever solution which prevents exponential key leakage
from multiple stego images but does not introduce statistical
dependence between those images.

4.3 Extension
Having read the preceding sections, any sensible stegano-

grapher should learn the lesson: do not embed the payload
size at all. There is no absolute need for it, since the end-of-
payload can be marked by an escape code, and the rest dis-
carded after extraction. However, the same inference tech-
nique works even if the decoding parameters do not specify
the payload precisely, as long as they imply some range of
possible payloads. This is usually the case.

For example, take F5, which uses a Hamming syndrome
code to increase embedding efficiency. For any integer m,
it embeds m bits into blocks of size 2m − 1 while making
at most one change. Thus larger m gives higher embedding
efficiency but lower payload rates, and the embedder chooses
the largest m such that the desired payload will fit. The
only embedding parameter that must be communicated to
the receiver is m, which we shall assume is perfectly padded
so that the Intersection Attack is also impossible.

Even though the parameter block does not store the pay-
load length, Bayesian inference is still possible. Each key
k implies a value of m, which in turn implies a bound on
the number of embedding changes in the image as follows.
If the image has M usable locations then there can be at
most M/(2m − 1) blocks used, so at most M/(2m − 1) em-
bedding changes. And there cannot be much fewer than
M/(2m+1 − 1) changes, otherwise the payload size is (very
likely) small enough that a larger value of m would have
been used by the embedder. Given an estimator for the
number of changes (e.g. [18]), we can assume a uniformly
random number of changes x between these two limits, and
still compute

P (y|m) =
∑
x

P (y|x)P (x|m).

0 2 4 6 8 10
0

5

10

15

20

number of stego images

re
m
ai
n
in
g
ke
y
sp
ac
e
en
tr
o
p
y average case

worst case

Figure 4: Entropy of keyspace after Bayesian Key
Inference using the dimension of the code.

The conditional distribution P (y|m) is flatter than the plain
output of a regressor P (y|x), so the divergence (1) is smaller,
but inference can still happen and should still converge ex-
ponentially fast (reduce entropy linearly) if different keys
imply independent decodings of m.

4.4 Experiment
We simulated the above scenario, using the estimator of

the message length from subsection 4.1. Assuming Hamming
codes used in F5, the probability of code parameter m, when
the estimated length of the message is ŷ and number of non-
zero DCT coefficients is M is

P (y|m) =

∫ Mm
2m−1

M(m−1)

2m−1−1

N (y | ŷ, σ2) dy, (4)

where σ2 is the estimated variance of the estimator. For
every key, we assumed the most efficient code parameter

m = max

{
m
∣∣y ≤ Mm

2m − 1
,m ∈ 1, 2, . . . , 8

}
. (5)

Figure 4 shows the results, which are surprisingly pow-
erful considering that the payload is only determined very
approximately by the code parameters. At most 10 images
were sufficient to determine the correct password uniquely.

5. CONCLUSION
This paper aims to bring steganography a little further

from the laboratory into the real world [12], by focusing on
the somewhat-neglected topic of key exhaustion, an attack
that is likely to be practical. It is easy to dismiss as an ‘im-
plementation issue’, but we have shown that it is difficult
to include embedding parameters that are not subject to
some kind of inference. Other key attacks [21, 6] could po-
tentially be combined with the ideas presented here, but at
present they are already sufficiently powerful for most pur-
poses, reducing the potential keyspace in our experiments
from 2 million down to a few hundred, or even down to one,
given a few images embedded with the same key.

The entire attack could be avoided if the keyspace were 64
bits, and not derived from any password, because it would
not be exhaustible. Furthermore, no two covers should ever

be embedded using the same key [11]. But the real world
may preclude these good practices. Certainly, steganogra-
phers should avoid including the payload length in any kind
of header, if possible. It is telling that most (perhaps all)
widely-available steganography software makes this mistake.
Any embedding parameters must be properly padded so that
all decoded parameters are possible, but we have shown that
this does not make them equally likely. Storing embedding
parameters cryptographically is the root cause of the expo-
nential power of inference attacks, because it makes incorrect
key guesses independent over different images. Although we
have suggested an alternative, it unlocks statistical attacks.

The alternative is to embed no metadata at all, use an
escape code as an end-of-payload marker, and accept that
embedding parameters must be fixed (or derived solely from
the stego image). This reduces vulnerability to exhaustion,
but probably makes statistical steganalysis more effective
because of the suboptimal codes. Indeed, we conjecture that
the embedder may be forced to choose between more sus-
ceptibility to exhaustion attacks or more susceptibility to
statistical steganalysis.

Acknowledgments
This work was supported by European Office of Aerospace
Research and Development under the research grant num-
bers FA8655-11-3035 and FA8655-13-1-3020. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation there on. The views and conclusions contained
herein are those of the authors and should not be inter-
preted as necessarily representing the official policies, either
expressed or implied, of EOARD or the U.S. Government.

6. REFERENCES
[1] Free list of 2 million popular ASCII passwords. http:

//dazzlepod.com/site_media/txt/passwords.txt.

[2] R. Böhme and A. D. Ker. A two-factor error model for
quantitative steganalysis. In Security, Steganography,
and Watermarking of of Multimedia Contents VIII,
volume 6072 of Proc. SPIE, pages 59–74. SPIE, 2006.

[3] R. Crandall. Some notes on steganography.
Steganography Mailing List, 1998. available from
http://os.inf.tu-dresden.de/~westfeld/

crandall.pdf.

[4] T. Filler, J. Judas, and J. Fridrich. Minimizing
additive distortion in steganography using
syndrome-trellis codes. IEEE Trans. Information
Forensics and Security, 6(3):920–935, 2011.

[5] J. Fridrich, M. Goljan, and D. Hogea. Steganalysis of
JPEG images: Breaking the F5 algorithm. In Proc.
5th Information Hiding Workshop, volume 2578 of
LNCS, pages 310–323. Springer, 2002.

[6] J. Fridrich, M. Goljan, and D. Soukal. Searching for
the stego key. In Security, Steganography, and
Watermarking of Multimedia Contents VI, volume
5306 of Proc. SPIE, pages 70–82, 2004.

[7] J. Fridrich, M. Goljan, and D. Soukal. Wet paper
codes with improved embedding efficiency. IEEE
Trans. Information Forensics and Security,
1(1):102–110, 2006.

[8] D. Goodin. Why passwords have never been weaker
and crackers have never been stronger.

http://arstechnica.com/security/2012/08/

passwords-under-assault/, 2012.

[9] V. Holub and J. Fridrich. Digital image steganography
using universal distortion. In Proc. 1st ACM
Workshop on Information Hiding and Multimedia
Security, pages 59–68. ACM, 2013.

[10] B. Kaliski. PKCS #5: Password-Based Cryptography
Specification Version 2.0. Request for Comments 2898.
Internet Engineering Task Force, 2000.
http://www.ietf.org/rfc/rfc2898.txt.

[11] A. D. Ker. Locating steganographic payload via WS
residuals. In Proc. 10th ACM Workshop on
Multimedia and Security, pages 27–32. ACM, 2008.

[12] A. D. Ker, P. Bas, R. Böhme, R. Cogranne, S. Craver,
T. Filler, J. Fridrich, and T. Pevný. Moving
steganography and steganalysis from the laboratory
into the real world. In Proc. 1st ACM Workshop on
Information Hiding and Multimedia Security, pages
45–58. ACM, 2013.

[13] A. D. Ker and R. Böhme. Revisiting weighted
stego-image steganalysis. In Security, Forensics,
Steganography, and Watermarking of Multimedia
Contents X, volume 6819 of Proc. SPIE, pages
0501–0517. SPIE, 2008.

[14] J. Kodovský and J. Fridrich. Calibration revisited. In
Proc. 11th ACM Workshop on Multimedia and
Security, pages 63–74. ACM, 2009.

[15] A. Latham. Implementation of the JPHide and
JPSeek algorithms ver 0.3 (released August 1999).
http://linux01.gwdg.de/~alatham/stego.html.

[16] R. Morris and K. Thompson. Password security: A
case history. Communications of the ACM,
22:594–597, 1979.

[17] T. Pevný, T. Filler, and P. Bas. Using
high-dimensional image models to perform highly
undetectable steganography. In Proc. 12th Information
Hiding Conference, volume 6387 of LNCS, pages
161–177. Springer, 2010.

[18] T. Pevný, J. Fridrich, and A. D. Ker. From blind to
quantitative steganalysis. IEEE Trans. Information
Forensics and Security, 7(2):445–454, 2012.

[19] N. Provos. Defending against statistical steganalysis.
In Proc. 10th Conference on USENIX Security
Symposium - Volume 10, SSYM, pages 323–335.
USENIX Association, 2001.

[20] N. Provos and P. Honeyman. Detecting steganographic
content on the internet. Technical Report CITI
Technical Report 01-11, University of Michigan, 2001.

[21] P. Schottle, S. Korff, and R. Böhme. Weighted
stego-image steganalysis for naive content-adaptive
embedding. In IEEE International Workshop on
Information Forensics and Security (WIFS 2012),
pages 193–198, 2012.

[22] K. Solanki, A. Sarkar, and B. Manjunath. YASS: Yet
another steganographic scheme that resists blind
steganalysis. In Proc. 9th Information Hiding
Conference, volume 4567 of LNCS, pages 16–31.
Springer, 2007.

[23] A. Westfeld. F5 – a steganographic algorithm. In Proc.
4th Information Hiding Workshop, volume 2137 of
LNCS, pages 289–302. Springer, 2001.

