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ABSTRACT

This paper considers the research goal of dependable steganalysis: where false positives occur once in a million or
less, and this rate is known with high precision. Despite its importance for real-world application, there has been
almost no study of steganalysis which produces very low false positives. We test existing and novel classifiers for
their low false-positive performance, using millions of images from Flickr. Experiments on such a scale require
considerable engineering. Standard steganalysis classifiers do not perform well in a low false-positive regime, and
we make new proposals to penalise false positives more than false negatives.

1. INTRODUCTION

This paper considers the research goal of dependable steganalysis. By this we mean steganalysis that could
potentially be suitable for forensic analysis, which requires two properties:

(a) The false positive rate of the detector should be known with high precision.

(b) The false positive rate of the detector should be very low (10−6, or even 10−9).

The aim is to move steganalysis more towards real-world applications.1 Note that we focus on false positive
rates because false negative rates can only be defined when there is a simple alternative hypothesis (for example
that a steganographer uses a known embedding algorithm with a known length of payload, or payload with
exactly known distribution) which is not likely to fit real-world scenarios. Furthermore, in a real world where
true positives are very scarce, the false positives dominate the failure cases.

Both aims are challenging. (a) is difficult because steganalysis is highly dependent on context: the cover
source,2 scene content, and potentially unknown other factors all influence accuracy. There has been some
research aimed in this direction3 but empirical evidence suggests that false alarm rates are not robust in practice.
(b) has been relatively little studied: practically every piece of steganalysis literature focuses on error rates under
equal priors, or area under an ROC curve, metrics little affected by low false positive performance. One difficulty
with (b) is that empirical tests of very low false alarm rates are simply impossible unless the evidence base is
enormous.

This paper is an initial move towards (b). Using standard steganalysis features, we modify classifiers to
optimize low false positive rates, and provide a very large real-world evidence base (millions of images) to
evaluate the results. To do so, we examine the low false-positive region of the ROC directly, and also use a new
metric.

In the following subsections we discuss the benchmarking metrics for steganalysis and establish notation.
In Sect. 2 we discuss literature on classification that prioritizes one class over another. We propose new linear
classifiers in Sect. 3, and adapt ensemble classification to the low false-positive regime in Sect. 4. We measure
the performance of the new classifiers, single and in ensembles, in Sect. 5, and draw conclusions in Sect. 6.
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1.1 Benchmarks for steganalysis
Early steganalysis literature struggled to reduce the performance envelope of a detector (false positive and false
negative rates as the payload size varies) to simple benchmarks. See Ref. 4 for a survey, which includes some of
the popular options from the literature at the time, and a more recent discussion in Ref. 5. For at least the last
five years, however, by far the most popular benchmark is the minimal misclassification rate under equal priors
(assuming that the payload size is fixed). This can be defined by

PE = 1
2 min(PFP + PFN)

where PFP and PFN represent the false positive and false negative rate and the minimum ranges over the ROC
curve. If, in application, the detector expects to see equal numbers of true positive and negative classes, and
the costs of misclassification are symmetrical, then this is indeed the threshold that should be chosen and PE

represents the error rate of such a detector.

The PE benchmark is useful for demonstrating advances in steganalysis feature design or classification, but
as a measure of practical performance it seems rather far from reality. In almost any realistic problem domain,
the vast majority of images transmitted will be covers, because most transmissions are not covert. Even if each
false positive result costs the detector the same as a false negative (which itself is a dubious assumption), that
does not imply an equal weighting between PFP and PFN. When positives are observed rarely, false negatives
have fewer opportunities to happen, compared with false positives.

There is no perfect benchmark, and every problem application will have a slightly different preference for
the classifier’s performance envelope. However, dependable steganalysis requires low false positive rates, and in
practice the cost of a false negative is likely to be relatively low (an enemy steganographer will probably act
more than once). So we propose a metric which we call FP-50, the false positive rate when the false negative
rate is 50%. This benchmark is not new, and indeed it was advocated in Ref. 4, but it has not been used much
in steganalysis before now.

We also need to make more clear separation of training and testing sets. Following the gold standard of
machine learning, we will use three sets of data: training data to learn a classifier, validation data to optimize
hyperparameters and thresholds, and testing data to measure a final single (PFP, PFN) pair. Training and
validation sets are selected repeatedly from the same pool, but testing is completely disjoint. If detection
thresholds were set using results from the testing data (which is typical for the steganalysis literature, when
drawing a ROC curve) this would be considered a form of cheating. We will still draw ROC curves, using a
semi-log plot to display the low false-positive region directly, but they will be from the validation set. Our true
benchmark is the final false positive/negative rate on the never-before-seen testing set.

1.2 Notation
We use the following notation throughout the paper. P c (respectively, P s) denotes the probability distribution
of all cover images (respectively, stego images, with an implicit embedding method and payload or payload
distribution). Ic (Is) is a finite set of cover (stego) images, typically for training a classifier. {xi}i∈I represents
the matrix of features extracted from images in set I, arranged in rows. The domain of the features is X . µc
and Cc (µs and Cs) denote the empirical mean and covariance of features from Ic (Is).

Throughout, λ will be an optional regularisation parameter (in the experimental results we will always set it
to zero). I[x] denotes the indicator function which is equal to 1 when x is true, 0 otherwise.

2. RELATED WORK

Any classification algorithm on continuous data can be adapted to favour false positives over false negatives, by
moving a decision boundary. This is the traditional way to trace the receiver operating characteristic (ROC)
curve, but it has no guarantee of optimality.

The proper foundation is classification with imbalanced costs,6 which despite its importance has not been
studied in steganalysis. Most practical work in the machine learning literature uses a Bayesian framework, with
known costs of false positives and false negatives, together with prior probabilities of encountering positive and



negative cases in the data. An example of an algorithm for class-imbalanced problems is the cost-sensitive (or
weighted) support vector machine (SVM), optimizing the following cost function

argmin
ρ,w

λ

2
‖w‖22 +

η

|Ic|
∑
i∈Ic

max{0, wTxi − ρ}+
1− η
|Is|

∑
i∈Is

max{0, ρ− wTxi}, (1)

where λ is the regularization parameter (here using L2 regularization, though other options are possible) and η
balances the costs of misclassification of cover and stego samples. ρ is the margin hyperparameter.

Another option is to turn traditional logistic regression into a maximum a posteriori problem with a prior,
optimizing

argmin
ρ,w

λ

2
‖w‖22 +

η

|Ic|
∑
i∈Ic

log
(
1 + exp

(
wTxi − ρ

))
+

1− η
|Is|

∑
i∈Is

log
(
1 + exp

(
ρ− wTxi

))
. (2)

In both cases we have an additional hyperparameter η, balancing the cost of false positives and negatives on
the training set. It is difficult to justify a correct value of η unless the problem domain is very well-understood
(if there is a known cost of error on each class, which is plausible, as well as a known proportion of each class
that will be encountered in the wild, which is not), so it might be optimized using cross-validation along with
the other hyperparameters. Thus it can only indirectly target a benchmark such as FP-50.

In fact, miniziming the FP-50 benchmark corresponds to a different problem: Neyman-Pearson classification
aims to minimize the false negative rate such that the false positive rate is below some threshold. This is more
applicable in security scenarios, as the number of false positives that the user is willing to tolerate can be usually
determined. Surprisingly, few works in machine learning literature deal with Neyman-Pearson classification7,8

and to the best of our knowledge there is no algorithm directly optimizing this error. This is usually swept
under the carpet by claiming that the same classifier can be obtained with an appropriate cost, such as η above.
This approach, where η and λ are optimized on training data to minimize FP-50, is used in experiments in
Subsection 5.2.

3. PROPOSALS FOR LINEAR CLASSIFIERS

In this work, we will try to target the FP-50 benchmark more directly. We will first present methods for
single linear classifiers, and move to ensembles of linear classifiers (in a way that also targets Neyman-Pearson
classification) in the following section.

We present two approaches to this problem: one minimizing upper bounds on the FP-50 benchmark, the
other using convex surrogates for it. It turns out that these approaches are, in some sense, equivalent.

3.1 Probabilistic approach
Consider the FP-50 benchmark. The optimal classifier minimizing it is

argmin
f∈F

Ex∼P c

[
I
[
f(x) > median {f(x)|x ∼ P s}

]]
, (3)

where F is the set of all possible classifiers∗ of the form X 7→ R. Optimizing (3) is impractical, since a) P c and
P s are unknown, and b) median is not a differentiable function so the optimisation is NP-complete. We tackle
these problems by using finite sets of training samples instead of the distributions, and replacing median with
mean.

For further simplicity, we restrict F to be the set of linear classifiers. Due to the well-known kernel trick,9
the linear classifiers below could be adapted to non-linear circumstances, but instead we will follow the present
state-of-art in steganalysis by regaining nonlinearity via an ensemble of linear classifiers.
∗F is called the hypothesis space in the jargon of machine learning literature.



Incorporating the above into (3), the problem becomes

argmin
w∈Rd

Ex∼P c

[
I
[
wTx > wTµs

]]
= argmin

w∈Rd

Px∼P c

[
wTx > wTµs

]
, (4)

where µs denotes the mean of stego features. By replacing median with mean, we are assuming that about
50% of stego features projected on w lie beyond their mean, which should be true for moderately symmetrical
distributions. Reminiscent of Vapnik’s technique,10 we use probabilitic inequalities to find upper bounds for (4),
which we can optimize efficiently. Different optimization problems arise from different inequalities.

Quadratic Chebyschev Minimizer. Applying the standard Chebychev inequality† to (4), we solve

argmin
w∈Rd

wTCcw

((µs − µc)Tw)2
. (5)

This problem has a close relationship with the Fisher linear discriminant (FLD): the only difference is that it
disregards the shape (covariance) of the stego distribution, which follows because we target the mean of the stego
distribution. It has an analytic solution which, it can be shown, corresponds to finding a single unregularized
projection by the calibrated least squares (CLS) method that we proposed in Ref. 5. (We also tested other
polynomial versions of Chebyschev’s inequality, with no success.)

Exponential Chebyschev Minimizer. Applying the exponential version of Chebychev’s inequality, also
known as the MGF bound‡ to (4), we solve

argmin
w∈Rd

∑
i∈Ic

et(xi−µs)
Tw. (6)

By varying the scalar t, this balances inequalities based on all moments of the cover distribution. In optimization
it is superfluous, since it can be absorbed by w. Equation (6) does not have an analytic solution, but the objective
function is strongly convex and fast-converging numerical optimizers can be used.

3.2 Machine learning approach
Applying Chebyschev’s inequalities can be alternatively viewed as approximating the ideal cost function assigning
1 to cover values projected beyond the stego mean, and zero otherwise. Machine learning algorithms use several
surrogates of this function to make the problem (4) convex and solvable in polynomial time. Popular convex
surrogates for I[y] include: hinge, max{0, 1− y}; truncated square, max{0, 1− y}2; square, (1− y)2; exponential,
e−y; logistic, log(1 + e−y). They are depicted in Figure 1.

For some of these, including I[·] itself, hinge, and truncated square, there may be an infinite number of solutions
to optimizing (4). This is typically solved by using regularization (usually Tikhonov), which corresponds to a
preference for simple solutions. Below, optimization problems with different loss functions are shown and their
properties discussed. All formulations include L2 regularization, controlled by a hyperparameter λ, but in our
experiments we will set λ = 0 to turn off regularization. L2 regularization was chosen as it has a smooth
derivative, which is favourable for optimization; L1 regularization promoting sparse solutions is also possible,
but the optimization would be more difficult and it will require the use of special solvers.

Hinge loss. This has been popularized by its use in SVMs, and it requires regularisation. Putting hinge loss
into (4) yields

argmin
w∈Rd

λ

2
‖w‖22 +

1

|Ic|
∑
i∈Ic

max
{
0, 1− wT(µs − xi)

}
,

which is reminscent of the problem solved in one-class SVM.11,12 Although the same results can be probably
obtained by using weighted SVMs, the proposed formulation has one fewer hyperparameter and it directly
optimizes the FP-50 criterion.
†The following version: P[Y > ε] ≤ E

[
(Y − µY )2

]
/(ε− µY )2, for ε > µY .

‡The following version: P[Y > ε] ≤ E
[
et(Y−ε)

]
, for all t > 0.
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Figure 1: Convex surrogates for the 0-1 loss function.

Truncated square loss. This is also sometimes used with SVMs. Putting truncated squared loss into (4)
(again requiring regularization to avoid infinitely many solutions) yields

argmin
w∈Rd

λ

2
‖w‖22 +

1

|Ic|
∑
i∈Ic

max
{
0, 1− wT(µs − xi)

}2
.

The advantage of square loss over hinge loss is that it is smooth, which simplifies the optimization by allowing
particularly effective stochastic gradient methods.

Square loss. This is advantageous because the optimization has the analytic solution

argmin
w∈Rd

λ

2
‖w‖22 +

1

|Ic|
∑
i∈Ic

(
1− wT(µs − xi)

)2
= (C+ λI)−1(µs − µc), (7)

where where C denotes covariance matrix of cover samples centered at the mean of stego samples, C =
1
|Ic|

∑
i∈Ic(µs − xi)(µs − xi)T.

Note that this is almost identical to the previously-described CLS method (5), if λ = 0, but with the samples
centered differently.

Exponential loss. Intuitively, an exponential penalty on misclassified covers is aligned with our goal of re-
ducing false positives to very low rates. Exponential loss is used in Adaboost,13 and it does not neccesarily
require regularization, although this can be added to force the classifier toward simpler or sparser solutions.
Optimization problem (4) with an exponential loss surrogate becomes

argmin
w∈Rd

λ

2
‖w‖22 +

1

|Ic|
∑
i∈Ic

e−w
T(µs−xi). (8)

Turning off the regularization, we have recovered the Exponential Chebyshev Minimizer (6).

Logistic loss. This is used in logistic regression, which can provide a probability estimate of class membership
(more than just a binary classification) under the right conditions. The optimization becomes

argmin
w∈Rd

λ

2
‖w‖22 +

1

|Ic|
∑
i∈Ic

log
(
1 + e−w

T(µs−xi)
)
. (9)



Similarly to exponential, logistic loss does not necessarily require regularization. Its shape is similar to that of
hinge loss, but it has the considerable advantges of being Lipschitz, strongly convex, and infinitely many times
differentiable. These are favorable properties for optimization, particularly online optimization.

4. PROPOSALS FOR ENSEMBLE CLASSIFIERS

The classifier used in state-of-the-art steganalysis is an ensemble of FLDs. It has come to dominate the literature
because of its simplicity, speed of training, and results with rich models.14 Our linear classifiers based on convex
surrogates to (4) can also be used in an ensemble, but the ensemble parameters must be adapted to target the
low false-positive regime.

The ensembles used in Ref. 15 consist of a set of base learners diversified by random subspace sampling, which
means that each base learner classifier operates on a randomly selected subspace of the original feature space.
The subspace sampling makes the training faster, as the complexity of training linear classifiers depends super-
linearly (in the case of FLD cubically) on the dimension of the input space. Another side-effect of subspace
sampling, to our knowledge not discussed so far in the literature, is that the size of the subspace acts as a
regularization parameter controlling the complexity of individual classifiers within the ensemble and preventing
over-fitting. Naturally, smaller subspace dimensions make individual classifiers less over-fitted.

4.1 Fusing classifiers to optimize low false-positives
We stick broadly to the ensemble framework used in Ref. 15 – binary classifiers voting with equal weight – but
adjust various thresholds used in it.

To formalize the problem, we assume the ensemble consists of the set of classifiers
{
fi|fi : Rd 7→ R

}l
i=1

. The
output of the ensemble is equal to

F (x) = sign

[
1

l

l∑
i=1

I
[
fi(x) > ti

]
− te

]
,

where {ti}li=1 are thresholds for the individual classifiers and te is the threshold of the ensemble, the number
of positive votes required for a positive classification. Determination of these is part of the training, because
F : Rd 7→ {−1,+1}.

Kodovsky15 optimizes thresholds ti, separately for each classifier, to optimize PE on the training set, and fixes
te = 0.5. The hyperparameters of the ensemble – the number l of base learners and the subsampling dimension
dsub – are optimized using cross-validation targeting the overall PE metric.

When we switch to the FP-50 criterion, we are once again unable to optimize {ti}li=1 and te collectively,
because the problem is l + 1 dimensional and the I[·] function is discontinuous. We propose to parameterize
all classifier thresholds ti by a fixed quantile of the distribution fi(x), x ∼ P c. Formally, each threshold ti is
determined by a hyperparameter τ ∈ [0, 1] by

tj(τ) = argmax
t

{
1

|Ic|
∑
i∈Ic

I[fj(xi) > t] ≤ τ
}
.

This approach is connected with Neyman-Pearson classification, since as |Ic| → ∞, 1 − τ tends to the false
positive rate of each individual classifier. With this simplification, optimization is only with respect to τ and te.

In our experiments the parameters τ and te are found by direct optimization of te for each value of τ ∈{
10i|i ∈ {−6,−5.9, . . . ,−0.1, 0}

}
, where the objective is the FP-50 metric on the validation set. We also tested

the original ensemble that optimizes PE for each base learner.



5. EXPERIMENTAL RESULTS

Any experiments that want to explore the low-false positive performance of a detector need a huge corpus: to
measure robustly a false positive rate of 10−6 would need a realistic minimum of about 5 × 106 examples from
the negative class (preferably more). In our case this means millions of cover images. Furthermore, the data set
needs to be, in some sense, representative in its diversity and difficulty of classification. Working with data of
such size needs careful engineering.

In Subsection 5.1 we will explain the database that we collected, and our methodology for testing it. In
Subsections 5.2 and 5.3 we will report the results of single linear classifiers and ensembles, respectively. A few
further experiments are described in Subsection 5.4.

5.1 Experimental setup
In June 2014, Yahoo! Inc. made available to researchers a data set of 100 million creative-commons licensed
images (including a few videos) from the popular photo-sharing website Flickr.16 We were granted access to
this database, and from it collected a set of images useful for testing low false-positive steganalysis. We began
by selecting only compressed colour images where the full-size original uploaded image (as opposed to Flickr-
downsampled versions) was available, and where the camera model was included in the EXIF data. Then we
selected only images which were JPEGs compressed with quality factor 80 (steganalysis of images with varying
quality factors is a difficult and largely unsolved problem; quality factor 80 was chosen as the most common
choice that did not have very large file sizes). The images were partitioned depending on which actor they belong
to, where an actor is defined to be a username and camera model combination. Thus each actor’s images were
uploaded by the same user and taken with the same camera model. Finally, we discarded actors with fewer than
10 images.

This yielded a total of 4 511 523 images from 47 807 actors, a total of approximately 9 128 115 megapixels of
data taking 1307 GB on disk. The actor with the most images had 16 886, but only about 1% of the actors had
more than 1000 images; the median number of images per actor was 30.

We partitioned this image set into two. The training and validation subset consists of 10% of the actors
(in fact every 10th actor, ranking actors by size, so that a representative subset was taken): this totals 449 395
images from 4781 actors. The rest is the fixed testing subset which contains 4 062 128 images.

In our experiments we are assuming that the ground truth of these images is that they are covers, not used for
steganography. There is no reasonable way to verify this assumption, but we can take comfort from the fact that,
if it is wrong, only a small proportion of the database would be affected. Furthermore, if some of our assumed-
cover images are actually stego images, our empirical estimates of false positive rates will be conservative. There
is also an interesting connection with our presentation in Subsection 3.1: if by any chance some assumed-cover
images are actually stego objects, Chebyshev minimizers should be be unaffected.17

The steganographic algorithm used in all experiments was a simulator of nsF5 embedding with matrix embed-
ding turned off, which means that the number of embedding changes is equal to half the payload. The algorithm
was chosen because of its historic importance in steganography, because we know that it can be detected by
current steganalysis features, and its speed: essential for the number of images processed here. Since our goal
was to measure very reliable classifiers, the payload size simulated was 0.5 bits per nonzero coefficient (bpnc).
Our chosen steganographic features were the 22510-dimensional JPEG rich model (JRM).14 The reference im-
plementation takes approximately 15 seconds per megapixel to extract, on our main computing machine, but we
re-implemented a highly optimized version in C which takes around 0.5 seconds per megapixel. Our benchmarks
are taken from a workstation with two 6-core Xeon processors (Westmere-EP series) running at 3.47Ghz, with
192GB of memory.

We extracted JRM features for every cover image, for every stego image in the training and validation subset,
and for 10% of the stego images of each actor in the testing subset (thus 407 417 stego images in the testing
subset; the entire testing set is approximately 4.5 million images). It is not necessary, for our benchmarks, to
have millions of stego images in the testing set, because we do not need to examine very low false negative rates.
Extracting these features from all 5.4 million cover and stego images took around 120 core-days, spread across
a small cluster.



FLD SVM Square loss Exponential loss Logistic loss

FP-50, training set 1.11 · 10−4 2.18 · 10−5 1.45 · 10−5 0 0
FP-50, validation set 2.52 · 10−4 1.99 · 10−4 5.61 · 10−4 9.87 · 10−4 1.02 · 10−3

Training time 4.8 · 102s 3.3 · 104s 2.4 · 102s 5.5 · 104s 1.0 · 105s

Table 1: Training and validation false positive rates (when false negative is 50%) of classifiers trained on the
whole input space. The last line shows the time needed to train a single classifier on 2× 40 000 samples.

The cover and stego JRM features, in double precision, require 900GB of disk space. The training and
validation features alone are 150GB, which is barely possible to load into memory in one go even on our largest
server, and in fact we will only train on up to 2× 40 000 samples in the experiments for this paper.

The advantage of this data set is that it is from the real world, and it contains all the difficulties that a stegan-
alyst should expect in pratice. In particular, there is cover source mismatch (note that the training/validation
set and testing set are from disjoint actors, and when we split the training and validation set apart we will again
segregate actors) and a variety of image sizes. Some of the images have been resampled prior to uploading, and
it seems likely that image processing operations will have been applied to many of them.

5.2 Single linear classifiers
We begin by training linear classifiers proposed in Subsection 3.2 on the entire 22510-dimensional feature space.
We tested standard FLD, linear weighted SVM optimizing (1), and the following convex surrogates for direct
optimization of FP-50: square loss (7), almost equivalent to the QCM method (5); exponential loss (8), equivalent
to the ECM method (6); and logistic loss (9). We did not test truncated square or hinge loss, after some initial
experiments not reported here, because a) their non-smooth nature makes their numerical optimization on large
data expensive, and b) they demand regularization, so λ would need to be optimised by an expensive grid-search.

The methodology was as follows. The training and validation subset, consisting of images from 4781 actors,
was partitioned into two subsets of actors so that the number of images in each was approximately half the total
(approximately 225 000 cover images in each half, plus the same number of corresponding stego images); this
breaks the training and validation subsets apart. From the training subset, 2 × 40 000 images (each cover with
its corresponding stego) were selected using maximum diversity: the fewest images per actor necessary to reach
this total. The rest of the training images were discarded. The classifier was trained on the training set, either
by standard FLD or weighted SVM methods,6,18 by solving (7), or by numerical optimization of (8) or (9) using
an iterative Newton method (we used the implementation at Ref. 19). The size of the used part of the training
set was limited by feasibility of this optimization over such large dimension. The trained classifier was tested
on all approximately 2 × 225 000 images in the validation set. Each experiment was repeated ten times using
different splits into training and validation.

Out of these classifiers, only weighted SVM has hyperparameters controlling the solution: the regularization
parameter λ and the class imbalance η. These were optimized by minimizing FP-50 on a full grid λ ∈

{
2 ·10i|i ∈

{−3,−4,−5}
}
and η ∈

{
10i|i ∈ {−5,−4,−3,−2}

}
. For every combination, the weighted SVM was trained on a

randomly selected 75% of training samples and the FP-50 criteria was estimated from the remaining 25%. This
was repeated five times with independent splits. The hyperparameters with the least FP-50 were used to train
the final SVM on all training data.

We then measured the FP-50 metric on both the training and validation set, averaging error rates over the
ten iterations. The results are displayed in Table 1. The results show that the loss functions which include an
exponential penalty for false positives – exponential and logistic loss – have zero false positives on the training
data (out of 40 000 cover samples and 10 repetitions), when the false negative rate is 50%, but also expose
their weakness: they overfit the training data, and their accuracy on the validation set is slightly worse than
the other loss functions. It is unsurprising that an exponential penality encourages overfitting, and it means



that we need some kind of regularisation, which we will supply indirectly in the following subsection with a
dimension-subsampling ensemble.

At first sight, Table 1 suggests that the clear winner should be the weighted SVM. But its optimization
involves tuning hyperparameters, which would be prohibitively expensive in an ensemble. Moreover, we see the
zero false positive results, observed for exponential and logistic loss on the training set, as a positive sign: less a
problem of overfitting than a problem of insufficiently diverse training data. Also the lack of hyperparameters
simplifies their use.

The last line in Table 1 shows the time to train each classifier (for SVM this includes the search for hyperpa-
rameters). Unsurprisingly, training classifiers with algebraic solutions – FLD and square loss – is two orders of
magnitude faster than a linear SVM, and two to three orders of magnitude faster than the methods which require
numerical optimization. Nonetheless, such time is tractable on a fast machine. Furthermore, the time to apply
the trained classifier is the same for all methods, since each classifier simply produces a projection direction.

5.3 Ensembles of classifiers
We now plug the classifiers into the ensemble framework descibed in Sect. 4, although we now exclude the SVM
base learner as being too slow for ensemble settings.

Our first experiments, similarly to the last section, use only the training and validation sets. As before, we
take 2 × 40 000 training images. This time we train a fixed number (300) of FLD base learners, each using
a randomly-selected subset of dsub ∈ {100, 250, 500, 1000} features, and optimize the individual base learner
thresholds ti and the ensemble voting threshold te according to the method of Subsection 4.1 by measuring their
FP-50 benchmark on all approximately 2× 225 000 images in the validation set. We computed the ROC curves
across the data in the validation set for the optimal parameter combination.

We repeated with 10 different splits of training and validation actors, and then the entire procedure (with
the same training data and random subspaces) with base learners optimizing square loss, exponential loss, and
logistic loss. For each false positive rate on the validation data we averaged the corresponding false negative
rate over the ten iterations of the experiment. The ROC curves are displayed in Figure 2, where we have used
a logarithmic scale on the x-axis to highlight the low false-positive region. They show that the loss functions
with an exponential penalty – exponential and logistic loss – carry good true positive detection power into the
low false-positive regime much better than the quadratic penalties in FLD and the square loss surrogate (their
ROC curves have steeper slope on the onset). Observe that this advantage is balanced by decreased detection
accuracy on higher false positive rates, compared with the traditional ensemble of FLDs, but that aligns with
our aim.

Another reason why the square loss surrogate and FLD classifier may be inferior is because their losses are
symmetric (see Figure 1). This means that they penalize correctly classified samples, or more precisely that the
optimal projection direction w is still influenced by outliers even if they already lie on the correctly-classified
side of the boundary. We can see that this is so for FLDs, because Fisher’s presentation models the two classes
as Gaussian, and outliers in the correctly-classified direction influence the empirical covariance matrix in such a
way that the classifier expects also outliers in the incorrectly-classified direction, whether they exist or not.

The exponential and logistic loss surrogates work best if the dimension of the random subspace in the
ensemble is kept low: we believe dsub acts as an indirect regularizer, limiting the complexity of the base learners
and reducing their propensity to overfit, and overcoming a key weakness in their use as a full-space classifier.
Perhaps this, rather than the potential for nonlinear classification, explains why the ensemble of FLDs has been
so successful with large-dimensional “rich features”; in any case, the advantage is even more evidence for classifiers
with exponential penalties.

Thanks to the reduced dimension, the exponential loss base learner is no longer orders-of-magnitude more
expensive to train than the FLD: in our experiments with dsub = 100, training the ensemble of 300 learners on
2 × 40 000 samples took 136 seconds with the FLD base learner and 286 for the exponential loss base learner.
Both cases required a further 190 seconds to optimize the thresholds.
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Figure 2: ROC curves, on the validation set, for ensembles of FLDs and other base learners. 300 weak classifiers
were trained in random dsub dimensions of the feature space. All classifiers were trained on 2× 40 000 samples.
Note the logarithmic scale of the x-axis.



False positive rate False negative rate

FLD Exp. Loss FLD Exp. Loss

Optimizing PE 9.07 · 10−3 1.88 · 10−3 1.33 · 10−3 1.89 · 10−2
Optimizing FP-50 3.26 · 10−4 5.56 · 10−5 4.58 · 10−1 5.12 · 10−1

Table 2: Error rates on the testing set, after optimization of ensemble parameters on the training and validation
set.

Ideally we would optimize both the number of base learners (currently fixed at 300) and the subspace di-
mension. But the training is too slow to perform a grid search, so we postpone such an investigation for further
work.

Finally, we apply the trained and threshold-optimized ensembles (selecting dsub = 100) to the testing set
of 4 062 128 cover images and 407 417 stego images. The size of this set gives us confidence in measuring false
positive rates into the region of 10−6. We emphasise this procedure, which did not tune any hyperparameters
with respect to the testing set, is the gold standard for machine learning. We also tuned another ensemble, this
time optimizing the PE benchmark for each base learner and fixing te = 0.5, to compare with the prior art.

We display results, only for the FLD and exponential loss base learners, in Table 2. The classification
thresholds were set for 50% false negatives on the validation set, and achieved close to that on the testing set.
The traditional ensemble of FLDs, optimizing for PE, can only manage a false positive rate of approximately 1
in 110 (and a false negative rate much lower than our target of 50%). Using our new ensemble optimization of
thresholds for FP-50, the FLD ensemble reduces its false positive rate to approximately 1 in 3000 (and a false
negative rate close to 50%), but the same ensemble using exponential loss base learners (equivalent to ECM)
achieves a false positive rate of approximately 1 in 18 000. We can have high confidence in these false positive
rates because the testing set is representative of the real world, and very large.

5.4 How many training images is sufficient?
We were not able to train on the potential training set of 2 × 225 000 images because of the time and memory
requirements: our current numerical optimzation method requires calculations over all data points on each
iteration, and the matrix of features, in double precision, would require about 83GB of memory. (This does
suggest further research using online base learners.) We had to limit ourselves to a diverse selection of 40 000
image from the training data.

But do we actually need even 40 000 images? If the training images were not sufficiently diverse, training on
more images would not be reflected by the lower error rates. We note that this question, largely neglected in the
literature, was first raised in Ref. 20 and was also studied in Ref. 21. In experiments for Subsect. 5.3, we also
evaluated ensembles trained on two smaller sizes of training data: 2× 10 000 and 2× 20 000 samples, as well as
2× 40, 000. As before, the images were selected from the training subset to diversify amongst actors as much as
possible. We emphasize the validation set was unchanged in these experiments, as were the selection of random
subspaces for the base learners. The results appear in Table 3.

The most important observation is that FP-50 does not change much with the size of the training set. This
indicates that including more images from the same actors does not increase the diversity of the training set.
This also suggests that the cover mismatch phenomenon2 is at work, and some misclassifications are more likely
due to some actors having non-typical image sources, than than individual outlier images.

Notice that FP-50 of the ensemble of FLDs slightly increases as the size of the training set increases to
40 000, in contrast to the general mantra of machine learning that increasing the size of the training set should
not degrade performance. This seems likely to be due to the inherent loss function in FLDs, since we observed
the same phenomenon with the traditional FLD ensemble from Ref. 15, perhaps making them more prone to
outliers.



dsub Training set FLD Square loss Exponential loss Logistic loss

10
0

2× 10 000 1.69 · 10−4 1.63 · 10−4 7.55 · 10−6 8.91 · 10−6
2× 20 000 1.69 · 10−4 1.63 · 10−4 7.55 · 10−6 8.91 · 10−6
2× 40 000 1.78 · 10−4 1.70 · 10−4 7.56 · 10−6 8.02 · 10−6

25
0

2× 10 000 1.72 · 10−4 2.43 · 10−4 4.57 · 10−5 4.61 · 10−5
2× 20 000 1.72 · 10−4 2.43 · 10−4 4.57 · 10−5 4.61 · 10−5
2× 40 000 1.80 · 10−4 2.12 · 10−4 4.40 · 10−5 4.49 · 10−5

50
0

2× 10 000 1.86 · 10−4 2.88 · 10−4 8.53 · 10−5 8.18 · 10−5
2× 20 000 1.86 · 10−4 2.88 · 10−4 8.53 · 10−5 8.18 · 10−5
2× 40 000 1.91 · 10−4 3.02 · 10−4 7.27 · 10−5 7.19 · 10−5

10
00

2× 10 000 2.45 · 10−4 3.10 · 10−4 1.51 · 10−4 1.51 · 10−4
2× 20 000 2.45 · 10−4 3.10 · 10−4 1.51 · 10−4 1.51 · 10−4
2× 40 000 2.50 · 10−4 3.14 · 10−4 1.45 · 10−4 1.43 · 10−4

Table 3: The FP-50 benchmark on the validation set. 300 weak classifiers were trained in random dsub dimensions
of the feature space, using 2× 10 000, 2× 20 000, or 2× 40 000 maximally-diverse samples from the training set.

6. CONCLUSION AND FUTURE WORK

Low probability of false alarm would be crucial for steganalyzers to be used in the real world. Yet there has been
no serious study of how to achieve it. We admit that such a study is not simple: to estimate detection accuracy
at a false positive rate of 10−6, the number of validation samples has to be considerably greater then 1 million.
Compare with contemporary practice, where the most frequently used data set (BOSSBase) has 10 000 images.
We gathered 4.5 million images from Flickr, which has the realistic challenges of a real-world database, but even
this would be insufficient if we wanted to examine false-positive rates below 10−6.

We have advocated measuring the reliability of steganalyzers for real world applications by the false positive
rate at 50% detection accuracy (FP-50 error) and proposed a family of classifiers optimizing it. Although our
experiments demonstrated the advantage of the proposed classifiers over the current state of the art, we believe
the questions and new directions revealed are more important still.

It appears that evaluating how a steganalyzer would perform in the real world is impossible if one possesses
only a few thousand images from a few sources (e.g. BOSSBase). It should be done on millions of images, and
it is unlikely that a database of such size can be acquired with a known ground truth. So it is timely to consider
the literature on learning from positive and unlabelled data, as we move towards public databases. We note that
the proposed family of classifiers is an embodiment of recently proposed methods for this problem.17

Our experiments also revealed that classifiers with symmetric loss functions, of which FLD is a popular exam-
ple, have the undesirable property of penalizing correctly classified samples. This may be the cause of increased
FP-50 error when the size of training data increases. Our experiments demonstrated that the FLD ensemble,
which currently dominates the steganalysis literature, may benefit from indirect regularization controlled by the
size of the random subspaces on which the base learners operate. This suggests a study comparing symmetric
and asymmetric loss functions and regularizations. Such a study needs many sources and a large database, and
to include cover source mismatch.

We conclude with a return to Section 1, and the definition of dependable steganalysis. Is it achievable? In this
study we used a non-adaptive method of steganography that is well known to be detectable (nsF5), a very high
payload (0.5 bits per nonzero coefficient), images typically much larger than the 512×512 in BOSSBase, and our
best detectors managed a false positive rate of about 1 in 18 000. Even accounting for progress in steganalysis
features and new classifiers optimizing the FP-50 criterion, a false positive rate of 1 in a million, or lower, seems



out of reach. If a steganalyst wants to make fewer errors, it seems the only option is pooled steganalysis,22 where
evidence is aggregated from many images instead of one alone.
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