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Abstract
A recent version of the “Vawtrak” malware used steganog-

raphy to hide the addresses of the command and control channels
in favicons: small images automatically downloaded by the web
browser. Since almost all research in steganalysis focuses on nat-
ural images, we study how well these methods can detect secret
messages in favicons. The study is performed on a large corpus
of favicons downloaded from the internet and applies a number
of state-of-art steganalysis techniques, as well as proposing very
simple novel features that exploit flat areas in favicons. The ulti-
mate question is whether we can detect Vawtrak’s steganographic
favicons with a sufficiently low false positive rate.

Motivation
The term botnet refers to a group of computers infected by

the same malicious software with a communication channel to
the bot-master, which can instruct the infected computers (further
called bots) to execute various tasks that make profit for the bot-
master. Examples of such tasks include sending spam e-mails,
participating in distributed denial of service attacks, collecting
banking or other login credentials [13, 14], copying credit card
numbers, stealing business or private documents and exfiltrating
them to the bot-master, recording voice or video through con-
nected capturing devices, or using bots as a proxy or relay to
conceal bot-master’s illegal operations. Botnets are therefore dan-
gerous, as they not only directly damage the user of the infected
computer, but also can make them participants in illegal activity.
Operating botnets is now multi-billion dollar [18, 21] industry,
with dedicated programmers refining the software to make infec-
tion as invisible as possible and evade detection.

The detection of bots and botnets is done on many fronts.
The traditional approach, taken by antivirus systems, is to search
for a sequence of bytes unique to known threats. The effectiveness
of this solution is decreasing, since malware authors employ eva-
sion techniques such as polymorphism and encryption. Comple-
mentary methods focus on identification of behaviour character-
istics of botnets, either using logs provided by operating systems
or extensions, or using logs of network devices such as routers or
proxy servers. The latter is particularly interesting, since installa-
tion of other software is not needed on individual computers and
the detection system has a global view of the protected system.

The botnet has a value to its bot-master if bots and bot-
master can communicate with each other. Therefore many in-
trusion detection systems focus on detecting this communication
link called the command and control (C&C) channel. Conse-
quently malware authors try to make this communication as in-

visible as possible, and adoption of stenographic techniques is a
logical step [20, 13, 15]. The use of stenography in botnets does
not need to be limited to avoiding detection of the C&C channels:
it can be used to conceal exfiltration of stolen data [22] or to down-
load the initial bot’s configuration, for example with addresses of
the C&C servers.

The motivation for this work comes from a recent report [13]
about a banking trojan called Vawtrak.1 Vawtrak has sophisti-
cated functionality: it disables installed antivirus, can steal cre-
dentials, records voice and video, provides remote access to the
desktop of infected computers, and acts as a SOCKS proxy.
Moreover, Vawtrak regularly checks for updates and can be ex-
tended by downloading modules, adding new functionality. Vaw-
trak encrypts all its communication with C&C servers by a vari-
ation of the one-time pad with a pseudo-randomly generated key.
The list of C&C servers is regularly updated by downloading
a favicon (a small image automatically downloaded by a web
browser, to be displayed in the left part of the address bar) from
the last known C&C servers, and the new addresses of C&C
servers are hidden inside using a steganographic algorithm. Us-
ing favicons is ingenious, because their download rarely raises
suspicion: they are commonly download and their content is
rarely inspected. Moreover, Vawtrak downloads them only dur-
ing the user’s browsing activity.

This work experimentally assesses the capability of state of
the art steganalysis to detect Vawtrak’s stego favicons. We will
see that its embedding method is naive and unsophisticated, but it
is not obvious that the methods from the steganographic literature
will work well, since they focus on natural images (usually repre-
sented by BossBase [2]) and the methods may be overfitted to this
type of image rather than icons, and to the adaptive steganography
that is nowadays targeted by the literature. Furthermore, their so-
phistication may be unnecessary against simple embedding such
as Vawtrak’s. The paper demonstrates this by showing a very sim-
ple set of features with negligible computational complexity, but
surprisingly good accuracy on favicons. The experimental sec-
tion also considers structural detectors, to investigate if they have
advantage on noiseless images.

This paper is organized as follows. The next section provides
necessary details on how Vawtrak uses steganography, and spec-
ulates about its possible embedding algorithm. We follow with a
brief survey of the steganalysis used in this study, and introduce
simple features tailored to noiseless images. The experiments sec-

1Banking trojans are primarily designed to steal the user’s login cre-
dentials for their bank.



(a) starweltfary.ico (b) otsaa35gxbcwvrqs.ico

Figure 1: Favicons with hidden messages used by Vawtrak.
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Figure 2: Hexadecimal dump of the corners of
starweltfary.ico’s first color plane. All corners exhibit
the small deviations from white caused by embedding changes.

tion compares the methods. The paper closes with a conclusion.

Steganography in Vawtrak
Vawtrak updates its list of Command and Control servers by

downloading a favicon with a steganographic payload. The fav-
icons are always downloaded during the user’s surfing activity,
which complicates detection: modern browsers simultaneously
open multiple connections to download webpage content, pos-
sibly located on different servers belonging to different compa-
nies. Therefore downloading an unrelated favicon in the middle
of a webpage download rarely raises an alert for behaviour-based
intrusion detection systems. From this point of view, favicons
represent a great covert channel. Vawtrak always uses true-color
favicons of size 32×32, and the two we have captured containing
a hidden message are shown in Figure 1.

This study works with limited information, in that we do not
know the entire mode of operation of Vawtrak. Our information
comes from observation of networks on which it is active, and
reverse-engineering of the malware binary (which decodes the
payload). The extraction of an encrypted hidden message can be
summarized as follows:

1. check if the size of the favicon is 4286 bytes (if not, termi-
nate as the favicon is not targeted at Vawtrak);

2. skip the header of the favicon, the first 62 bytes;
3. extract hidden data from the least significant bit of pixels in

sequential order while skipping every fourth byte (this cor-

responds to the alpha channel2.) The extraction is finished
after extracting 288 bytes of the hidden message.

This extracted encrypted message is always 288 bytes long.
The first four bytes forms the cryptographic key for an RC4 ci-
pher. The RC4 cipher [19] is used ten times on the remaining
284 extracted bytes, plus 92 bytes following them in the memory.
These 92 bytes are random (they are not initialized) and they do
not affect the decoding algorithm. The decoded message contains
an MD5 signature in the first 16 bytes to verify that the favicon
is from Vawtrak’s C&C. This is presumably a protection measure
against bot-hijacking, although like the cryptography it must pro-
vide poor protection in practice: a hijacker with knowledge of
the algorithm could choose their own key, and replace the MD5
signature with their own.

The upper-left area of the icon starweltfary.ico should
be plain white, but the hexadecimal dump of the first color plane
in Figure 2 shows the variations caused by embedding algorithm.
We cannot identify the embedding algorithm in Vawtrak’s bi-
nary, because Vawtrak uses the steganography only in the direc-
tion from the bot-master to infected bot; from Google’s image
search we were able to find the original cover icons, but unfor-
tunately they were in other format than .ico, which prevented
direct knowledge of the embedding changes. Nevertheless the ex-
traction procedure reveals that

1. the steganographic algorithm is non-adaptive,
2. it is not protected by a stego-key randomizing the location

of embedding bits,
3. and the message is hidden either by Least Significant Bit

Replacement (LSBR) or Matching (LSBM).

The first two properties come from the fact that the message is
read sequentially without any syndrome coding. The third prop-
erty comes from the fact that the message is read from the least
significant bit. A close inspection of the two seized stego fav-
icons further reveals that, although the extraction algorithm ex-
tracts only 288 bytes, the least significant bitplanes of all three
color channels of the entire image have been modified: all corners
which should have been plain white have embedding artefacts, as
seen in Figure 2. In the experiments below, we have therefore as-
sumed that Vawtrak’s favicons were fully embedded using LSBR
or LSBM.

Favicons as steganographic media
Favicons are small images named favicon.ico (regardless

of their format), which a web browser automatically tries to down-
load when a webpage is visited. If the favicon is succesfully
downloaded, and the format is supported, the favicon is displayed
in the left part of the browser’s address bar. Favicons have stan-
dardized sizes of 16×16, 32×32, 48×48 or 64×64 pixels with
1, 2, or 3 color planes and possibly an alpha channel. Most favi-
cons are stored in a spatial (bitmap) format, although some mod-
ern browsers now allow others such as JPEG and SVG. Favicons
are mostly computer generated graphics or icons with many flat
areas, which means that they virtually lack noise. This consid-
erably decreases the steganographic capacity, since these areas

2The .ico container internally stores image data in BMP or PNG for-
mat; in either case, each true-color pixel is stored as four adjacent bytes
with the last one being the alpha channel.



should be avoided (though Vawtrak does not do this). The small
size also means that there is likely to be very little spare capac-
ity, likely allowing no scope for adaptive embedding unless the
payload is tiny.

Given our information about Vawtrak, we believe that the
message will probably be longer than four bytes (the bare min-
imum necessary for an IP address of a C&C server). Malware
usually uses domain names instead of plain IP address, as they
are more robust to blocking; for the same reason, there will be
multiple C&C server addresses. Also, Vawtrak signs the hidden
data to try to prevent botnet hijacking3. All these requirements
increase the length of hidden data.

To summarize the pros and cons of favicons for implement-
ing an innocuous channel, their advantage is that they are unlikely
to be scrutinized and due to their size there is little evidence on
which to build a reliable detector (due to the square root law [6]
a certain relative payload is harder to detect in small covers than
large). On the other hand, they have little noise and their small
capacity prevents the use of advanced adaptive algorithms.

Steganographic detectors
This section first presents algorithms from prior art, and then

describes a set of simple features called Patch that exploit the low
level of noise in favicons. We will compare them in the following
section. Surprisingly, the simple features achieve better accuracy
than the state of the art for color images [8]. As well as accuracy
they have substantially lower computational complexity, which is
a frequently-ignored property and important for practical applica-
tions.

Prior art
Structural detectors are based on manually-discovered statis-

tics that predictably change with the length of the hidden message.
Their biggest advantage is the lack of a training phase, which de-
creases the chance of being over-fitted to the source of covers
used to create a training set, or a particular length of message.
On the other hand, their accuracy is frequently inferior to that of
feature-based detectors. The experimental comparison here in-
cludes the following four structural detectors of LSBR: Sample
Pairs (SP) [4], Triples Analysis (Triples) [10], Weighted-Stego
Image (WS) [11] and Asymptotically Uniformly Most Powerful
(AUMP) [5].

Feature based detectors represent an image by a large and
fairly generic set of features sensitive to embedding changes yet
insensitive to image content. These features are used by machine
learning algorithms to learn a decision statistic to classify images
as cover or stego. The main weakness of this paradigm is that
the classifier is optimized to the particular combination of image
source used for the training set, steganographic algorithm, and the
distribution of payload in stego images of the training set. In the
case of mismatch between any of these quantities, the accuracy

3Botnet hijacking refers to the situation where one bot-master steals
bots controlled by a different bot-master, redirecting C&C traffic to his
own servers, for example by replacing their lists of C&C servers. Since
the same binaries are used by different bot-masters, and the binaries now
offered in a “make your own botnet” [1] fashion, botnet hijacking is sim-
plified and protection measures are therefore needed. Moreover, similar
techniques are used by security researchers to learn details about the struc-
ture of botnets and their C&C commands.

rapidly decreases [12, 16]. From the plethora of available features
for steganalysis, we have chosen the Color Rich Model (CRM)
features [8], because they are designed for true-color images. The
machine learning method used to train the final classifier from
features is discussed in the Experiments section.

Patch features
Since favicons are computer generated, they contain very lit-

tle noise and they have relatively large areas of flat colors (see,
for example, the favicons used by Vawtrak in Figure 1). These
areas are completely flat with no variation in the least significant
bitplane of neighbouring pixels. The proposed patch features try
to capture this flatness, and the effect of LSB steganography on
flat areas. The features are a normalized histogram of patches of
size 2× 2, with pixel values reduced modulo 2q; the parameter
q controls how many least significant bits are modelled, and the
number of features. Denoting pixels of, for example, the red color
plane as {ri, j}n,m

1,1 , then the index of one patch is calculated as

mod(ri, j,s)+mod(ri, j+1,s)s+mod(ri+1, j,s)s2+mod(ri+1, j+1,s)s3,

where s = 2q. In the experiments presented below, q = 3, which
leads to 4096 features from one color plane. Calculation of the
indexes of patches, and the feature vector thereof, is very simple
and can be achieved in one line of MATLAB as

x=conv2(mod(r,s),s.^[0,1;2,3],’valid’)+1;4

These within-plane patches are extracted from all three color
planes, and the resulting histograms are averaged.

A similar approach has been used to capture dependency
across the color planes, in which case the square patch is taken
vertically. This has been inspired by the recent work on a Color
Rich Model for steganalysis [8]. Denoting, for example, the green
color plane as {gi, j}n,m

1,1 , the index of one patch between red and
green color planes is calculated as

mod(ri, j,s)+mod(ri, j+1,s)s+mod(gi, j,s)s2+mod(gi, j+1,s)s3.

Again the calculation of indexes can be written in one MATLAB
line as

x = conv2(mod(r,s),s.^[0,1],’valid’)+
+ conv2(mod(g,s),s.^[2,3],’valid’)+1;

Across-plane patches were extracted from all three combinations
of red, green, and blue color planes and resulting histograms were
averaged.

The final number of features is 2s4, which for q = 3 makes
8192 features.

Patch features can be extended using different neighbour-
hoods, as is done in rich models [7], but the goal was to keep
the features simple so that their extraction would be fast. Indeed
our extraction routine takes about 0.001 seconds for one favicon
(on Intel Xeon clocked at 2.40GHz), whereas the extraction of
CRM features takes 0.4 seconds: 400 times longer.

4The calculation of the histogram of indexes in MATLAB can be done
as F=accumarray(x(:),1,[s^4,1]);.



Experiments
Favicon and natural databases

We prepared two databases of images sized 32×32: genuine
favicons, and crops from photographic images. They will allow us
to tell which steganographic techniques are stronger for noiseless
favicons rather than natural images with noise.

To collect genuine favicons of the same type as Vawtrak’s,
we have filtered logs from Cisco’s Cloud Web Security [9]. We
identified and downloaded nearly 2 million favicons, of which
136 039 were of the required format: true-color and of size 32×
32. Because they have been collected from genuine networks, the
favicon database should be representative of such images found
in the real world. It has been assumed that all these favicons are
clean (without hidden message): although there were a few with
the size 4286 bytes used by Vawtrak, running the extraction and
decoding routine on them did not yield a meaningful message.

The database of “natural” small images with noise was pre-
pared from the raw color images in BossBase [2] (the creation had
to start with raw images since the commonly-used BossBase 1.01
is in grayscale). Each image was resized to 256×256 and then 10
random crops of size 32×32 were taken from each. This lead to
a total of 100 000 images.

Experimental settings
The structural detectors used default settings of parame-

ters supplied with the reference implementations.5 The detectors
based on CRM and Patch features were trained by linear ridge-
regression, which was preferred over the popular ensemble of
Fisher Linear Discriminants due to its faster training and simi-
lar accuracy [3]. The classifier was trained on 50% of images
and the remaining 50% were used for testing. The regulariza-
tion parameter (tolerance) was found by a line search estimat-
ing the accuracy by 5-fold cross-validation on the set of values
{10−6 ·2m|m ∈ {1,2, . . . ,20}}, and then using the least value for
the final training. Unless stated otherwise, the error was measured
by the usual probability of error under equal prior of observing
cover and stego image, i.e. PE =min 1

2 (PFp+PFn), where PFp/PFn
stands for the probability of false positives / false negatives.

Experimental results
Clairvoyant case

The first experiment compares the chosen detectors in the
unrealistic scenario commonly assumed in the literature: the em-
bedding algorithm and the length of possibly-hidden message are
known. The error PE of all combinations of embedding algorithm
(LSBR vs. LSBM) and source of images (favicons vs. natural)
is shown in Figure 3, where the payload length is varied from
0.2 bits per pixel component (77 bytes) to full embedding (384
bytes). Recall that we believe that Vawtrak is using either LSBR
or LSBM at maximal length.

The structural detectors are targeted only towards LSBR, and
analysis shows that they ought to be completely insensitive to
LSBM. This is indeed the case in natural images (their error rate
is 50%), but in fact their error rates are only around 15% for favi-
cons embedded with LSBM. We can attribute this to the effect of
fully-saturated areas which form the background of the icons: on

5Implementations of all detectors have been downloaded from
http://dde.binghamton.edu/download/structural_lsb_
detectors/.

starweltfary otsaa35gxbcwvrqs

WS 25 17
SP 0 0
Triples 0 0
AUMP 0 0
CRM / LSBM 440 210
CRM / LSBR 14 4
Patch / LSBM 0 0
Patch / LSBR 0 0

Table 1: Number of cover favicons classified incorrectly as stego
(false positives) of structural and feature-based detectors when
their operating point is set such that they just classify Vawtrak’s
favicons. The cover favicons were taken from a fixed testing set
that contained 68019 favicons (even for structural detectors where
there was no training set). There are two variants of the feature-
based detectors, one trained to detect LSBM and the other trained
to detect LSBR.

such pixels, LSBR and LSBM are the same embedding operation.
The AUMP detector, which is based on a model of digital images,
does not perform at all well on favicons: they do not conform to
its model.

The CRM and Patch features perform better (the only struc-
tural detector that could outperform them was Triples, and only
in the case of LSBR in natural images) and indeed the error rates
are close to zero for fully-embedded images. Using the Patch fea-
tures in favicons, the error PE is 0.015% for LSBM and 0.006%
for LSBR. The Patch features achieved lower errors than the more
expensive CRM features in all but three cases; the fact that they
surpassed CRM even in natural images was rather surprising as
they were designed primarily to take the advantage of the noise-
lessness of favicons.

The detectability of the two stego favicons that we know to
be used by Vawtrak was measured by calculating the the number
of cover favicons detected as stego (number of false positives),
when the detector’s threshold is set such that Vawtrak’s favicons
would be just detected as stego. For practical detectors in com-
puter security the false positive rate is a crucial quantity due to the
prevalence of cover samples [17]. The formula for the observed
number of false positives is

PFp = ∑
i∈Ic

I
(

wT(xi− xm)≥ 0
)
,

where Ic denotes the set of cover images, xm is the feature vector
of Vawtrak’s stego favicon, w is the projection vector of the linear
classifier, and I(·) is one if its argument is true, zero otherwise.
The formula for structural detectors is similar if w = 1 and the
features x· are outputs of the decision statistic.

The number of false positives for the clairvoyant detectors is
shown in Table 1. For feature based detectors, they were trained
on images with 3 bits per pixel (full embedding) and either LSBR
or LSBM. These results are encouraging, since all detectors ex-
cept WS and CRM detected Vawtrak’s favicons with zero false
positives, which means that if state of the art steganalyzers were
deployed then they would work with high accuracy. The results of
this experiment also suggest that Vawtrak is more likely to have
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Figure 3: Equal-prior error PE of clairvoyant detectors of least significant bit replacement (LSBR) and least significant bit matching
(LSBM) in true-color favicons of size 32× 32 and small natural true-color images of the same size. The error is shown with respect to
relative payload measured in bits per pixel component. The number in parentheses shows the absolute length of the message in bytes.
The missing point of the Patch detector on LSBR in natural images is caused by the error being zero.



used the LSBR embedding method, since the structural stegana-
lyzers worked flawlessly.

We cannot know exactly the false positive rate of these detec-
tors, or measure it more accurately without an even larger corpus
of cover favicons. But we can gain qualitative data about “how
far” the true stego icons are classified from covers by comparing
their detection values with the cover distribution. Figure 4 shows
the right tails of the distribution of the detectors’ outputs on cover
favicons and on Vawtrak’s two stego favicons. According to this
plot, Patch-based and Sample Pairs detectors have the largest gap
between covers and Vawtrak’s favicons, which means that they
were very certain about their decisions.

Known algorithm
Although in Vawtrak’s case the length of the hidden message

is fixed, in most situations it is an unknown quantity, which can
cause detectors trained on the wrong payload to malfunction; in
that case the structural detectors can be superior to featured based
detector. To decrease this overfitting detectors for CRM and Patch
features, we trained on stego images with payload uniformly cho-
sen from payloads {0.2,0.4,0.6,0.8,1.0}, corresponding to the
solution proposed in [16]. For these experiments it is appropri-
ate to measure the false negative rate (missed detection) at a fixed
false positive rate, here 1%, which ensures that the false positive
rate does not influence the accuracy measure (see [16] for a de-
tailed explanation behind this choice).

The false negative rates of the detectors is shown in Figure 5.
The results for detecting LSBR in natural images demonstrate the
typical advantage of structural detectors, since Triples is the best
detector (except for the smallest payload) and the difference be-
tween CRM and AUMP detectors is negligible. On the other hand
structural detectors did not take advantage of the noiselessness of
favicons, and naturally failed in detecting LSBM for which they
have not been designed.

Conclusions
This paper studied steganography used by the Vawtrak bot-

net, which hides a list of Command and Control servers and other
information inside favicons. The steganographic method is ex-
tremely naive, but since favicons are small and noiseless they are
far from the typical images tested in the steganalysis literature.
We studied experimentally how well steganalysis can detect Vaw-
trak’s steganography in such images. The results were positive,
with many standard methods detecting Vawtrak’s favicons with a
zero observed false positive rate. The fact that favicons are nearly
noiseless has driven the development of new steganalytic features,
called Patch.

The experimental results demonstrated that steganalysis in
favicons is not the same as steganalysis in natural images: the
state of the art features for color images (CRM) were outper-
formed by structural detectors for LSBR and by the Patch fea-
tures, despite the latter being approximately 400 times faster to
extract. This study shows that more work is needed on steganal-
ysis in unusual covers, since they are used in reality. It also
suggests that more work is needed for unsupervised steganaly-
sis, since matched training data is rarely available, and universal
steganalysis, since we do not know what we will face outside the
laboratory.
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Figure 4: Tail-plots for the detectors’ outputs on cover images (blue) and the two Vawtrak favicons (red). Patch and CRM detectors were
trained to detect LSBR. The artefact in plot of Triples detector is caused by the output of the detector on many images being 0.3684.
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Figure 5: False negative rate (missed detection rate) of detectors knowing only the embedding algorithm of least significant bit replace-
ment (LSBR) and least significant bit matching (LSBM) on true-color favicons of size 32×32 and small natural true-color images of the
same size. The error is shown with respect to relative payload measured in bits per pixel component. The number in parentheses shows
the absolute length of the message in bytes.
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