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Abstract
Any serious steganography system should make use of cod-

ing. Here, we investigate the performance of our prior linguis-
tic steganographic method for tweets, combined with perfect cod-
ing. We propose distortion measures for linguistic steganography,
the first of their kind, and investigate the best embedding strat-
egy for the steganographer. These distortion measures are tested
with fully automatically generated stego objects, as well as stego
tweets filtered by a human operator. We also observed a square
root law of capacity in this linguistic stegosystem.

Introduction
The area of linguistic steganography has encountered little

resistance in the form of steganalytic attacks. Of the attacks that
have been published, the vast majority have focussed on attacking
cover generation systems; an arguably unnecessary task, given
these systems are fatally weak to human judges [1].

As for cover modification, a scant five papers (see ‘Related
Work’) have attacked this type of system, and most system pub-
lications themselves have at best a passing reference to security,
choosing instead to focus on the accuracy of the linguistic trans-
formation (perhaps conflating syntactic and semantic correctness
of the transformed sentence for security: see [2] for an example).

We attempted to address this with the CoverTweet system
[3]. Designed to hide in tweets (140 character messages published
on the so-called micro-blogging website Twitter), we employed
human judges to verify its security; these judges were unable to
distinguish genuine covers from manipulated stego objects.

Having established security against humans, we subse-
quently developed a statistical attack [4]. Individually, the gen-
erated tweets were hard to detect, but by adopting the pooled ste-
ganalysis paradigm, we found that looking at sequences of tweets
vastly improved detection rates.

Steganography can be improved by employing source cod-
ing [5]. This technology, not previously deployed in linguistic
steganography, solves the selection channel problem (not all sen-
tences/tweets are suitable for hiding), improves efficiency (fewer
changes are made), and allows us to quantify and minimize total
distortion. In previous work we noted that the selection channel
problem was significant for linguistic steganography.

Here, we follow up on our prior work [3, 4], introducing the
first linguistic distortion measures. We examine how the attack
performs when minimizing distortion through coding, and look at
embedding strategies for the steganographer.

Related Work
The oldest available cover modification based linguistic

stegosystem is T-Lex [6]. It uses a dictionary containing a num-

ber of disjoint synonym sets (extracted from WordNet [7]) to hide
information. The synonyms in each set are unambiguously num-
bered, and payload embedded by changing cover words for the
synonyms with numbers that convey the desired payload. In the
domain of interest to this paper (tweets), T-Lex has a capacity of
approximately 0.14 bits per tweet.

Subsequent systems have used a range of transformations to
hide information (e.g.: adjective deletion [2], word order [8], and
anaphora resolution [9]). Their implementations are not available
or make use of annotated data sets that are not available.

There have also been attempts to build upon the synonym
substitution method of T-Lex, such as [10], which uses a graph
labelling technique to assign unambiguous values; this allows for
non-disjoint synonym sets. CoverTweet [3] is another modern
evolution of T-Lex, and generalises synonym substitution to para-
phrasing, allowing for multi-word substitutions. The payload is
conveyed through a keyed hash of the entire tweet, again allow-
ing non-disjoint synonym sets, and can use a human operator to
filter the transformed cover for fluency. This system is described
in detail in the next section.

As mentioned, before our recent work there had been only
five prior attempts at cover modification based linguistic steganal-
ysis. Four of the attacks were against T-Lex, and the other an
equivalent proprietary system [11].

The first such attack [12] used language models to extract
features from stego text, before training a support vector machine
(SVM) on the features. Its features are similar to some of those
we use later. On generated stego sentences containing an average
of 0.67 bits per sentence, this attack achieved an average error rate
of 0.38 (0.15 false negative rate, and 0.61 false positive).

Subsequent work [13, 14, 15, 11] has used smaller models:
they have all designed a single feature to exploit a particular weak-
ness, and used this (or the mean and variance of it) to train a
classifier for attack. Analysis of results, especially the effect of
embedding rate on detection, has been lacking or non-existent.
This focus on individual features echoes the early work on image
steganalysis, which has since shifted towards feature-rich models.

CoverTweet
CoverTweet embeds information by using lexical and phrasal

substitution rules taken from the Paraphrase Database (PPDB)
[16]. The PPDB is a set of 169M paraphrase rules, automatically
extracted from a number of bilingual corpora. Each pair of cor-
pora were searched for non-English phrases that translate to two
or more English ones; these English phrases are assumed to be
paraphrases of each other. A rule in the PPDB contains a source
string, a target string, and the estimated probability of the tar-
get being an appropriate substitution for the source (based on the
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Figure 1. The steps of CoverTweet.
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i don’t want my night to end.

i don't want my night to end.
i just don't want my night to end.
i just don't want my night to ending.
i do not want my night to end.
i really don't want my night to end...
i just don't want my night to be over.
i do not want my night to end...
i really don't want my night to be over.
i really do not want my night to end.
i don't wanna my night to be over.
i really don't want my night to stop.
i just do not want my night to end...
i really do not want my night to be over.
i just do not want my night to be over.
i just do not want my night to stop.

i do not want my night to end...
i just do not want my night to be over.
i just do not want my night to stop.
i don't wanna my night to be over.
i just don't want my night to ending.

(a) (b)

hash

Figure 2. Example of a tweet being transformed. The paraphrase database generates all possible stego objects for a given cover (a). These are then filtered

according to hash value, and ordered by language model (b). The final list is filtered by a human, who goes on to choose the stego tweet to transmit. In this

example the desired payload is 1100.

number of times the pair is observed).
To use CoverTweet, the steganographer generates a cover ob-

ject (a tweet), which is canonicalized and tokenized, then the sys-
tem generates all possible stego sentences by applying all applica-
ble PPDB rules. These possible stego objects are assigned values
of a fixed number of bits with a hash function, then ranked by
probability Pr(s|c), where s is the stego object and c is the cover
object. See Figure 1 for a diagram of the system. This probability
is derived using Bayes’ rule:

Pr(s|c) ∝ Pr(c|s)Pr(s)

where Pr(c|s) is taken from the PPDB, and Pr(s) is provided by
an n-gram language model for English text.

In computational linguistics, an n-gram is a sequence of n
words, w1, . . . ,wn. An n-gram language model provides estimates
for the probability of these sequences, often trained by counting
instances of each n-gram in a large corpus (applying a smoothing
method to the counts to avoid overfitting). The probability of a
sentence, made up of a sequence of words w1, . . . ,wT , is approxi-
mated as:

Pr(w1, . . . ,wT )≈ Pr(w1)
T

∏
i=2

Pr(wi|wi−n, . . . ,wi−1)

To the reader familiar with steganographic literature, n-gram lan-
guage models might be better recognised as n−1th order Markov
models.

A fully automatic stegosystem could, at this point, rank all
possible stego tweets (that have the correct hash) and transmit

the most probable. However, this system often creates non-fluent
tweets, and therefore the CoverTweet system uses a human oper-
ator to select the best option. An example of the embedding on a
short tweet is shown in Figure 2.

In the original work [3] we found individual stego tweets,
containing 4 bits of payload, were secure against human judges.
However, those experiments required the removal of all tweets
where the operator found no fluent option with the correct hash.
The overall payload rate was much lower than 4 bits per tweet. In
this paper we will address the selection channel problem.

Coding and Distortion
Assigning values with a hash function means that Cover-

Tweet attempts to hide the same length of payload in every tweet.
However, some sentences have more fluent paraphrases than oth-
ers, so the true capacity should vary from tweet to tweet.

Furthermore, when the system could not embed a desired
payload in a given tweet (if the tweet does not have any stego
options with that hash value), the system discarded it and moved
onto the next. In the initial attack on steganographic tweets, we
made the assumption that such tweets could be recognised by the
system, and therefore also by the detector (by Kerckhoffs’ princi-
ple); the discarded tweets were excluded from any experiments.

In practice this assumption is unrealistic and impractical;
some tweets without any options will be able to transmit payload,
and some with many options might not have exactly the right op-
tion for the desired message. In addition, a tweet may have all its
options filtered out by the human, which would be undetectable
to the proposed system.
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Figure 3. Capacity of 1000 manually filtered cover tweets.

0 1 2 3 4 5 6 7 8

Capacity (bits)
0

5

10

15

20

25

30

35

40

P
e
rc

e
n
ta

g
e

Figure 4. Capacity of unfiltered cover tweets, capped at 8 bits.

In a lossless communication system, the theoretical capacity
of a tweet with k paraphrases (including itself) is log2k bits. We
examined the distribution of this capacity in 1000 tweets, with
paraphrases both before and after human filtering. The results are
shown in Figures 3 and 4; for the fully automatic paraphrases we
capped the number of options at 256 (it could grows into the mil-
lions for some tweets, most of which were completely unusable).
On average the capacity for manually filtered tweets is 2.8 bits
and 21% of tweets cannot carry any payload; the average capacity
for unfiltered tweets is 5.4 bits, with 13% unable to carry payload.

The proper solution is source coding. With this, we spread
the payload across a number of tweets, treating the unusable
tweets as noise. When we embed data in a cover object, any
changes to the cover have a cost, or distortion; embedding a sym-
bol in a tweet that does not have an option for it is defined as
having an infinite distortion. Coding aims to minimise an additive
distortion measure, enabling us to avoid these ‘missing’ symbols.
Note that, due to the low capacity per tweet, spreading the payload

across multiple tweets is already essential.
We denote the cost of embedding symbol j in cover i as di j,

and pi j the probability of this change being made by the steganog-
rapher. The average capacity of object i is the entropy of pi

H(pi) =−∑
j

pi j log2 pi j

and the average cost is

E(di) = ∑
j

di j pi j.

There are two ways to frame the task of minimising the em-
bedding distortion:

• Payload Limited Sender (PLS): embedding a fixed average
payload m while minimising average distortion, minE(d)
s.t. ∑i H(pi) = m.

• Distortion Limited Sender (DLS): fixing the average dis-
tortion to a value D while maximising average payload,
maxH(p) s.t. ∑i E(di) = D.

Both options have the same solution for pi j:

pi j =
e−λdi j

∑ j e
−λdi j

for some constant λ , determined by either m or D. In practice we
could use syndrome trellis coding to perform this embedding, but
for our purposes we need only simulate it [17].

To simulate the embedding of a fixed payload across all
tweets by one user, we find the value of λ that makes the total
payload ∑i H(pi) equal to our desired message size m. H(pi) is
monotonic with respect to λ , so we can find it with binary search.
For each object, we then change it to option j with probability pi j.

The task of measuring and minimising distortion has never
before been applied to linguistic steganography. We use four lin-
guistic distortion measures, of which three are novel.

1. Binary A very basic distortion measure: 0 if the cover is
unchanged, 1 otherwise.

2. Probability The log likelihood ratio of the cover object
probability Pr(c) and the stego object probability Pr(s).
Probabilities are estimated using an n-gram language model.
The distortion is

ds =−(logPr(s)− logPr(c)).
3. Edit distance The minimum number of word-level edits

(deletions, insertions and substitutions) required to turn the
cover object into the stego object. For example, turning
“those are nice socks” into “those are not nice

gloves” has an edit distance of 2: one insertion (not) and
one substitution (socks for gloves)

4. Feature distortion The Euclidean distance between the fea-
ture vector for the stego object and the cover object. This
distortion measure is inspired by the HUGO image stegosys-
tem which minimizes change to pixel co-occurrences [18].
Some of our features cannot be extracted for every stego ob-
ject in reasonable time. Instead, we approximate these. The
features (and approximations when necessary) are described
in the following section.



Cover ok but i doubt you’ll be able to carry me

Edit ok but i doubt you will be able to carry me

Prob. ok but i don’t think you’ll be able to carry me

Feature okay but i doubt you will be able to carry me

Figure 5. A cover tweet with the best stego versions, according to the edit

distance, probabiity and feature distortion measures

A more ideal distortion measure might be the posterior likeli-
hood, based on language model and paraphrase probabilities, that
a given tweet is from an active steganographer: Pr(x|active). Let-
ting C be the set of all possible covers, this would be calculated
as: Pr(x|active) = ∑c∈C Pr(c)Pr(x|c). The subset of C for which
Pr(x|c) is not zero can be produced by using the PPDB. Unfor-
tunately this is expensive to calculate, and infeasible to do so for
every possible stego tweet arising from a given cover.

Figure 5 shows an example tweet where the best substitution
is different for two of the distortion measures.

Linguistic Steganalysis
We follow the main paradigm of steganalysis and train a

model on features extracted from individual tweets. For the at-
tack we use four classes of features, used to train a linear classi-
fier ensemble [19]. These are the same features proposed in our
previous work [4]. Descriptions of the features follow, along with
the reasoning behind them.

Basic features. Simple statistical features, including word
count, mean and variance of the number of characters in each
word, and statistics for stop word usage. Stop words are com-
mon function words such as the, as and just; we use a list of
127 such words, and include features of individual counts for each
stop word, along with a total count. The PPDB contains many
rules that insert or remove these words, and these features are in-
tended to capture that.

n-gram features. Features based on probabilities of n-grams
in the tweet, provided by a language model. For n from 1 to 5, the
mean, variance and total log likelihood of each n-gram. Words
will often be changed for less likely options during embedding;
these features (inspired by the features in [12]) are designed to
capitalize on this fact.

Word length features. We trained a 10-gram model of
word length on the same data used to train the 5-gram language
model. This allowed us to estimate probabilities of word length
sequences. Using this model, we extract features equivalent to
the n-gram features: for n from 1 to 10, the mean, variance and
total log likelihood of each word length sequence of length n in
the tweet. The distribution of word lengths is likely to be changed
during embedding, due to the addition of stop words and the sub-
stitution of common short words for less common longer alterna-
tives.

PPDB features. Justified by Kerckhoffs’ principle, the at-
tacker has access to the PPDB, CoverTweet’s source of paraphrase
rules. The PPDB is used to extract a number of features from
each tweet: the mean, variance and total log likelihood of n-grams
(again for n from 1 to 5) that contain at least one word that has an
entry in the PPDB; the mean and variance of character counts for
words in the PPDB; the proportion of words in the tweet that have

entries in the PPDB. We apply CoverTweet’s transformation to
each stego object, extracting the likelihood of the most probable
paraphrased sentence. Finally, a substitution score: each word or
phrase in the tweet, with an entry in the PPDB, is replaced by its
most likely substitute, according to the language model; the max,
min, mean and variance of the log likelihoods for the resulting
sentences are used.

When calculating the feature distortion it is infeasible to cal-
culate the substitution score, and the likelihood of the most prob-
able paraphrased sentence for each possible stego tweet. For our
experiments we approximated the latter by using the likelihood of
the most probable stego option for each cover tweet, meaning that
each stego object for a given cover has the same value for this.

Although the PPDB features are squarely aimed at Cover-
Tweet, we found that they were still viable for attacking T-Lex,
a system with an entirely different paraphrase source. This may
be in part due to the T-Lex source (a very small subset of the
WordNet resource [7]) likely being subsumed by the much larger
PPDB; indeed, overlap between large enough paraphrase sources
is to be expected, meaning that these features might in general be
useful against substitution based stegosystems. It is also worth
noting that the PPDB features could be easily adapted to use any
paraphrase source, should a different system be the target.

Pooled Steganalysis
We employ the pooled steganaylsis paradigm [20]. Instead

of distinguishing individual innocent tweets from guilty, we pool
together multiple pieces of evidence for each user, and distinguish
innocent actors (here, twitter users) from guilty actors. For a set
of tweets (of a fixed batch size), we calculate the maximum, mini-
mum, mean and variance for each feature. The ensemble classifier
is then trained on these features. Although individual stegano-
graphic tweets were difficult to detect in our initial experiments,
pooling tweets caused a dramatic increase in detection rate.

Results
Data

We gathered 72M English language tweets, from 1.2M users,
from the Harvard TweetMap [21]. Each tweet was canonicalised
as follows: split into tokens, where tokens can be single words,
punctuation, or a combination of the two (e.g. this, - and s are
all tokens); made lowercase; usernames replaced by a uniform
token; URLs replaced by a uniform token.

We randomly selected 500 users with 1000-2000 tweets to
form our training and testing set. On the remaining tweets, we
trained a 10-gram word length model and a 5-gram language
model.

For 10 users from the set of 500, we generated every stego
option for 100 cover tweets. The options were produced with
CoverTweet, with a human operator removing non-fluent options.
We refer to this data as Manual CoverTweet (M-CT).

Generating the manual data is very costly, so it was neces-
sary to also generate data automatically. We used CoverTweet to
embed up to 8-bits in each cover (for all 500 users) automatically
selecting the stego object with the highest probability according
to the language model. Finding the paraphrase with highest prob-
ability is an NP-complete problem [22], so we employ a greedy
algorithm working from left to right in the tweet, pruning the sub-
stitutions with the lowest probability (provided by the PPDB) in
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Figure 6. Error rate vs. batch size for different mixes of cover and stego. Payload length: proportional to cover size, proportional to square root of cover size,

constant in cover size.

order to reduce the search space. We refer to this data as Auto-
matic CoverTweet (A-CT).

We will measure capacity of the stegosystem (which includes
coding) in average bits per tweet. For each A-CT user, we simu-
lated the embedding of 1000, 2000 and 4000 bits across the 1000
tweets, corresponding to an average payload of 1, 2 and 4 bits
per tweet. We used each of the four distortion measures we have
described. For each M-CT user, we simulated the embedding of
100 and 200 bits across the 100 tweets; after human filtering, total
capacity was too low to embed with an average payload of 4 bits
per tweet.

We will benchmark the security of the system by the perfor-
mance of the ensemble classifier [19], using default parameters.
The error rate reported is the minimum value of the average false
positive and false negative rates.

Square Root Law
It is known that there is a sublinear relationship between the

total payload and the number of cover objects [23]. The square
root law of steganography states that if a steganographer embeds
a total of M bits into N cover objects, then:

• If M/
√

N → ∞ as N → ∞, then there is a pooled detector
which, for sufficiently large N, comes arbitrarily close to
perfect detection.

• If M/
√

N → 0 as N → ∞, then the performance of any
pooled detector must become arbitrarily close to random for
sufficiently large N.

This is a theoretical result, but it has been observed robustly
in image steganography. As a step toward serious linguistic ste-
ganalytic research, we will show empirically that this holds also
for this linguistic stegosystem, adding to the growing evidence for
the square root law.

We created batches of our data containing a mix of N stego
and cover objects, with a total payload size of M bits. First, we let
M = cN, a linear payload size, and trained our classifier on these
batches, for a range of N. Next, we made M = c, so that the pay-
load size is constant. Finally, we set M = c

√
N. Figure 6 shows

the results, which confirm the theoretical predictions: when the
payload size is proportional to total cover size, the detection rate
increases with the batch size; when the payload is constant, de-
tection rate decreases; finally, when the payload is proportional to

the square root of the total cover size, detection rate stays approx-
imately the same.

Embedding Strategy
When embedding in tweets, the steganographer can choose

to spread the payload out across all cover objects, or to embed
a higher payload in fewer objects, leaving some unchanged. An
advantage of the former is that the coding efficiency gain is greater
[17], but with the latter there are, in theory, fewer opportunities to
make a non-fluent error. In the context of batch steganography in
images, this was studied in [24]. With our linguistic steganalysis
attack, we wish to study the same question.

Initially just using the data generated with the binary distor-
tion, we randomly mixed stego and cover objects for each A-CT
user to create batches of tweets with three different embedding
strategies, containing the same total payload of 1000 bits in 1000
tweets: 1 average bit per tweet in 100% of the covers; 2 average
bits per tweet in a randomly-chosen 50% of the covers; 4 aver-
age bits per tweet in 25% of the covers. We trained and tested
the classifier on features extracted from batches of the tweets (for
batch sizes up to 200). The results are shown in Figure 7(a).

On individual tweets, detection is near random for all aver-
age payload sizes; this echoes the findings of the original work,
where individual tweets proved difficult to detect by humans. On
all pooled results, concentrating the payload made it slightly eas-
ier to detect: for example at batch size 100, the error rate was
0.28 using 100% of covers, and 0.24 when the same payload is
concentrated into 25% of them.

Distortion
We repeated the previous experiment with the more refined

distortion measures. Figures 7(b)-(d) show the results for the ex-
periment with probability, edit distance, and feature vector distor-
tions.

Using refined distortions makes the system more secure.
In other respects, the classifier behaved similarly: in all cases,
spreading the payload out across all tweets is harder to detect, and
a larger pool of evidence (larger batches) makes for more accurate
detection. The data embedded with the feature vector distortion
is the hardest to detect; this was to be expected, given it works
to explicitly minimise the distance between the feature vector for
stego objects and their corresponding cover object. It therefore
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Figure 7. Error rates for classifiers trained and tested on A-CT data, for each distortion type and range of batch sizes.

assumes knowledge of the enemy’s detector. The next most effec-
tive distortion measure was probability, with edit distance after
that.

When this attack was originally used against un-coded stego,
the error rates were significantly lower. For example, on batches
of 100 tweets each containing exactly 1 bit of payload per tweet,
the classifier achieved an error rate of 0.1. Even with the simple
binary distortion, the coded batches are far more secure: against a
batch of 100 containing an average 1 bit per tweet, the error rate
is 0.28.

Manual data
We have seen how coding can affect detection of au-

tomatically generated tweets, but the A-CT data is flawed:
some automatic tweets are easily detectable to a knowledge-
able human. For example, the A-CT data contains tweets such
as “if i go thereafter she willingness go” (originally
“if i go then she will go”), and “you should try to

come rearward into town...” (rearward originally being
back). Because of this, we are most interested in the M-CT data,

which has been filtered by a human so that only valid substitu-
tions are used; as already noted, we know manually filtered indi-
vidual tweets are secure against humans. When we first presented
these linguistic steganalysis features [4], the attack was signifi-
cantly worse at detecting manually generated tweets (at a batch
size of 100, the classifier achieved an error rate of 0.42 on manual
data vs. 0.1 on automatic).

With the M-CT data for our 10 users, we trained the classifier
on data from 9 users, and tested on the remaining 1. This was
repeated 10 times, holding back a different user for testing each
time, and we calculated the average error rate across the users. We
augmented the testing data with additional covers from other users
that were not seen in the testing set, giving us a good estimate of
false positive rate; however, our false negative rate is based on a
very small number of testing samples.

The results are shown in Table 1. Due to the small amount
of training and testing data, it is difficult to draw any conclusions.
We are hesitant to make any claims based on these noisy results,
other than: we do not have enough manually filtered training data.
However, we do have vast amounts of automatic data.
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Batch Size

5 10 20

Binary
1 bit in 100% 0.498 0.461 0.413
2 bits in 100% 0.492 0.463 0.442

Edit distance
1 bit in 100% 0.462 0.486 0.395
2 bits in 100% 0.498 0.469 0.462

Probability
1 bit in 100% 0.436 0.470 0.425
2 bits in 100% 0.485 0.471 0.497

Feature
1 bit in 100% 0.470 0.461 0.492
2 bits in 100% 0.492 0.471 0.458

Error rates for classifiers trained and tested on M-CT data, with
a range of batch sizes, distortions and average payloads.

We trained the classifier on all the A-CT data, minus the A-
CT data for the users for whom we had manual data. The testing
set was made from all M-CT data, with the addition of all cover
instances from the same users; this gives 10000 cover tweets and
1000 stego tweets for testing. For each average payload and dis-
tortion type for the M-CT data, we used the same for the A-CT
training data (so we were training with tweets embedded with the
same distortion that we were testing with).

Figure 9 shows the results of these experiments. Note that
we do not include results for an average of 2 bits in 50% of the
tweets. Seemingly due to the distribution of distortion on the man-
ual data, and the presence of a small number of very high capacity
tweets, manual data with an average of 1 bit embedded in every
tweet contains a very high percentage of unchanged tweets; rais-
ing the average number of bits to 2, and hiding in only 50% of the
data actually increases the number of changes made by a small
amount. The strategy is no longer a viable one, as the entire point
of it is to require fewer changes overall.

The manual data is far more secure than its A-CT counter-
part, in all cases. It is difficult to differentiate between the distor-
tion measures, or indeed between the batches coded to contain an
average of 1 bit per tweet and those containing an average of 2
bits per tweet. With a few exceptions (mostly at the highest batch
size), the classifier performs not much better than random guess-
ing; it is unknown whether this is entirely due to the lack of data,

or from the distortion minimization effect of coding.
It is possible that the distortion measure of the training data

has an effect, and M-CT could be better detected by training on
A-CT data embedded with a different measure (after all, the hu-
man filter is itself a kind of distortion measure). We explored
this option but did not find anything significant to report. The
main problem here is, of course, one of domain adaptation or
model mismatch [25, 26]. In-domain (manually filtered) data is
prohibitively expensive to produce, for any Warden who wishes
to deploy linguistic steganalysis, but we have an abundance of au-
tomatic data. This is a problem well known to the steganographic
community, and finding a solution in this instance is beyond the
scope of the work here. The key to improving detection of manual
data may lie in the generation of better quality automatic data.

Conclusions
Prior work on linguistic steganography has suffered from the

non-shared selection channel problem. It resulted in loss of ca-
pacity or artificial experimental results. However, it can be solved
by source coding, which we have employed here.

With human-filtered data, we found that the perfectly-coded
capacity of tweets was approximately 2.8 bits (disregarding secu-
rity for the moment). This is favourable quantity compared with
the 4 bits per tweet reported in [3], which could only use approx-
imately 48% of tweets. The gain is due to coding.

We hope this work acts as a starting point for serious lin-
guistic steganalysis. Here, we proposed three linguistic distor-
tion measures; the first of their kind. Minimising these distor-
tions through the simulation of perfect coding let us evaluate them
against a previously developed attack. For automatically gener-
ated stego objects, the effect of the distortion measures was clear,
but the performance of each measure on manually filtered stego
was difficult to judge. The creation of better automatic data for
training, and additional manual data for testing is vital to allow
for further work on these, and additional, distortion measures.

The features we proposed in [4] are only a first step to lin-
guistic steganalysis. One could imagine rich features based on
diverse language models, combinations of n-gram models for dif-
ferent n (and trained on different sources), different paraphrase
sources, domain-adapted models for each user, and we hope that
these advances will be forthcoming. In addition, further evalua-
tion is needed. The performance of the attack on systems other
than CoverTweet, and on non-tweet domains, is of interest: at
present the security of new systems is not satisfactorily evaluated,
in part due to there being no available attack designed for more
than one stegosystem.
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