A Two-Factor Error Model for Quantitative Steganalysis

Security, Steganography and Watermarking of Multimedia Contents SPIE 2006 · San José · California · USA

Rainer Böhme

rainer.boehme@inf.tu-dresden.de Technische Universität Dresden, Institute for System Architecture 01062 Dresden, Germany

Andrew D. Ker <u>adk@comlab.ox.ac.uk</u> Oxford University Computing Laboratory Parks Road, Oxford OX1 3QD, United Kingdom

The first authors has received a "Windows on Science" travel stipend from the European Office of Aerospace Research and Development (EOARD). The second author is a Royal Society Research Fellow.

Recall Quantitative Steganalysis

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

A number of different estimators has been proposed for LSB embedding. Ker, 2004

Typical Results from Secret Message Length Estimation

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

Results from 7200 attacks on 800 never-compressed grayscale images

Error Distribution of Estimates

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

Error distribution has previously been modelled as Cauchy distribution.

Boehme, 2005

A Two-Factor Error Model

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

 $\mathsf{e} \sim \mathsf{D}(X) \mathrel{\circ} \mathsf{D}(Z)$

Symbols

- *i* .. cover image index
- .. message index
- \hat{p} .. estimation result
- p .. actual embedding rate

Random variables

- X ... within-image error
- Z .. between-image error
- $D(\cdot)$.. distribution function operator
 - .. convolution operator

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

Relative magnitude

Re-examine influencing factors for error components

Similarities and differences between different quantitative steganalysis methods

We use a large-scale experiment to explore the relationship for LSB detectors/estimators empirically.

Experimental Setup

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

RS	WS	SPA	SPA/LSM	Triples
Fridrich, Goljan &	Fridrich & Goljan	Dumitrescu, Wu &	Lu, Luo, Tang &	Ker, 2005
Du, 2001	2004	Wang 2002	Shen, 2004	

- 800 .. never-compressed images 640 x 458
- **200** ... secret messages per image
 - 5 .. detectors

Experimental Setup

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

	RS	WS	SPA	SPA/LSM	Triples
	emb. ratio 0 - 1 bpp				
grayscale					
red channel					

- 800 .. never-compressed images 640 x 458
- **200** ... secret messages per image
 - 5 .. detectors
 - 8 .. embedding ratios (+carriers)
 - 2 .. colour channels: grayscale and red

Experimental Setup A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

		RS			W	S	S	PA		SPA	VLS	М		Tri	ples	5
	100%	emb. ratio 0 - 1	брр	emb	. ratio	0 - 1 bpp	emb. rat	10 0 - 1 bp	p	emb. rat	10 0 - 1	брр	e	mb. rat	10 0 - 1	брр
cale	75%															
rayso	50%															
g	25%															
_	100%															
anne	75%															
d cha	50%															
rec	25%															

- 800 .. never-compressed images 640 x 458
- 200 .. secret messages per image
 - 5 .. detectors
 - 8 .. embedding ratios (+carriers)
 - 2 .. colour channels: grayscale and red
 - 4 .. image sizes

Experimental Setup A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

			RS emb. ratio 0 - 1 bpp			e	emb ra	WS	boo		emb	SP/	A	opp	S	PA/L	SM)	e	Tri	ples	bpp
	100%																					595
ale	75%	scale																				
ysc	50%	scale																				
Jra		crop								_												
0,	מ 25%	scale																				
	100%	стор																				
e	10070	scale																				
nn	75%	crop																				
ha	50%	scale																				
d c	50 %	crop																				
re	25%	scale crop																				

- 800 .. never-compressed images 640 x 458
- 200 .. secret messages per image
 - 5 .. detectors
 - 8 .. embedding ratios (+carriers)
 - 2 .. colour channels: grayscale and red
 - 4 .. image sizes
 - 2 .. downsizing methods (scale and crop)

Experimental Setup A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

						R	S				WS	6			SP	4		S	SPA/	LSN	Λ			Triple	es	
					emb	. ratio	0 - 1	bpp		emb. ra	itio C) - 1 bp	р	emb	. ratio C) - 1	bpp	em	b. ratio	0 - 1	bpp		emb	. ratio 0	- 1 bp	р
		100%																								
	e	75%	scale																							
bé	ca	1070	crop																							
ŝ	ys	50%	scale																							
es	ra	0070	crop																							
) L	g	25%	scale																							
Ξ		2070	crop																							
ō	_	100%																								
Y	Je	75%	scale																							
er	IU	1070	crop																							
e<	ĥê	50%	scale																							
Ž	red c	50 /8	crop																							
		250/	scale																							
	_	2370	crop																							
		100%																								
с	ð		scale																							
0	al	75%	crop																							
S	sc		scale																							
e,	ay	50%	crop																							
pr	gr		scale																							
E		25%	cron																							
8		100%	0.00																							
e.	е		scale																							
pr	uu	75%	crop																							
G	าลเ		scale																							
Ш	C	50%	crop	-																						
L L	ed		scale																							
	Ē	25%	crop																							
							1																			

2 .. pre-compression methods (raw and JPEG)

• 800 x 200 attacks per "cell" totalling up to about 200 M attacks

Error Components for RS Analysis

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

Data from 800 never-compressed grayscale images with embedding ratio p = 0.2

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

Within-image error

Empirical evidence for Normality from a series of Shapiro-Wilk tests (see paper).

Robust Comparison of Distribution Spread

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

Is it inappropriate to compare short- and heavy-tailed distributions with moment statistics.

Comparison of Error Magnitudes

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

Data from 2 M attacks on 800 never-compressed grayscale images.

Comparison of Error Magnitudes (cont'd)

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

Regression Models for Between-Image Bias

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

Default model

Estimate detector specific constant and scale bias for between-image errors.

 $\overline{p}_i = a_0 + a_1 \cdot p + e$ with $\overline{p}_i = \frac{1}{200} \sum_j \hat{p}_{i,j}$

Absolute bias model

Assume that an image-specific bias can be approximated from the detector result if nothing is embedded.

$$\overline{p}_i = a_1 \cdot p + a_2 \cdot \hat{p}_i^{(0)} + e$$

Relative bias model

Test hypothesis that
$$(\hat{p}_i - p) = \hat{p}_i^{(0)} + p \cdot (1 - \hat{p}_i^{(0)})$$

 $\overline{p}_i = \underset{1}{a_1} \cdot p + \underset{1}{a_2} \cdot (\hat{p}_i^{(0)} - p \cdot \hat{p}_i^{(0)}) + e$

Assumed residual distribution: $e \sim t_2(0,\lambda)$

Fitted Coefficients for Between-Image Bias

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

Dependent v	ariable \overline{p}_{i} with	predictors	p and $\hat{p}_{i}^{(0)}$						
				Detector					
Model	Parameter	RS	WS	SPA	SPA/LSM	Triples			
Default	a ₀	0.01	0.01	0.00	0.00	0.00			
	a ₁	0.98	1.00	0.99	0.99	0.99			
F	Residual IQR	2.98	2.30	1.99	1.65	2.03			
Absolute bia	as a ₁	1.01	1.01	1.00	1.00	0.99			
	a ₂	0.79	0.83	0.82	0.89	0.95			
F	Residual IQR	1.00	1.65	0.48	0.25	0.14			
Relative bias	s a ₁	1.01	1.01	1.00	1.00	0.99			
	a ₂	0.99	0.99	1.00	1.00	1.00			
F	Residual IQR	0.49	1.55	0.06	0.06	0.08			
All coefficients significant on the 84% el. 33% 97% 96% 96% 96% Data from 27 k attacks on never-compressed grayscale images.									

Data fitted with heteroscedastic *t* regression methods. (see Taylor & Verbyla, 2005)

Correlation of	Correlation coefficients of $\hat{p}_i^{(0)}$ between detectors over images.									
			Detector							
	RS	WS	SPA	SPA/LSM	Triples					
RS	1.00									
WS	0.64	1.00								
SPA	0.76	0.86	1.00							
SPA/LSM	0.60	0.86	0.89	1.00						
Triples	0.45	0.66	0.64	0.70	1.00					

Data from 4000 attacks on never-compressed grayscale images.

Correlation coefficients for JPEG images are somewhat lower. All correlation matrices have only one eigenvalue larger than 1.

Correlation coefficients estimated with the *t*-copula method.

(see Dematra & McNeil, 2005)

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

Magnitude of within-image error

Ordinary least squares regression to data with p > 0 = const

$$\log \hat{\sigma}_{i} = b_{0} + b_{1} \cdot x + e \qquad e \sim N(0,\sigma_{e})$$

Magnitude of between-image error

Maximum likelihood fit for heteroscedastic *t* regression:

$$\hat{p}_{i}^{(0)} = a_{0} + \sim t_{2}(0,\lambda)$$

 $\log \lambda^{2} = b_{0} + b_{1} \cdot x + e \qquad e \sim t_{2}(0,\cdot)$

Image-specific bias

Maximum likelihood fit for heteroscedastic *t* regression:

$$\hat{p}_{i}^{(0)} = a_{0} + a_{1} \cdot x + \sim t_{2}(0,\lambda)$$

 $\log \lambda^{2} = b_{0} + e e \sim t_{2}(0,\cdot)$

Result Summary: Factors Influencing Detection Accuracy

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

	Within-image error	Between-im	age error
Prodictor	disporsion	disporsion	hiac
	uispersion		DIdS
Embedding ratio			
	increases for all detectors	reduces for all detectors but WS	reduces for all detectors
Local variance	increases for all detectors R ² : 12 (Triples) – 39% (RS)	increases for all detectors R ² : 1 (WS) – 3% (RS)	no direct effects
Saturation % at hist. ends			
	reduces for all detectors R ² : 4 (WS) – 19% (Triples)	increases all but Triples R ² : 1 (RS) – 2% (SPA)	under-estimation for all detectors R ² : 1 (Triples) – 6% (RS)
% at hist. mode			
	reduces for all detectors R ² : 15 (WS) - 36% (Triples)	increases for all detectors R ² : 3 (RS) – 8% (WS)	under-estimation for all detectors R ² : 4 (Triples) – 7% (RS)

Results for local variance and saturation are estimated on data with p = 0.05 bpp.

Rationale and evidence for (at least) two error components in quantitative LSB steganalysis

Separation of components allows for more prudent analysis of the sources for estimation errors

Don't ignore within-image errors, and don't benchmark stego-estimators with moment statistics.

Thanks for your attention!

Rainer Böhme

rainer.boehme@inf.tu-dresden.de Technische Universität Dresden, Institute for System Architecture 01062 Dresden, Germany

Andrew D. Ker

<u>adk@comlab.ox.ac.uk</u> Oxford University Computing Laboratory Parks Road, Oxford OX1 3QD, United Kingdom

Towards Tailored Steganalysis

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

all breakdowns can be tabulated

dimensions covered

influence from dependent predictors is error-prone

Quantitative Steganalysis RS Analysis · WS Analysis · Error Distribution

Methodology

Linear and Nonlinear Regression · Example Models

3

Influence of Image Properties Image Size · Macro Characteristics

4

Concluding Remarks Outlook · Limitations · Summary

Quantitative Steganalysis

RS Analysis · WS Analysis · Error Distribution

Recall: Regular-Singular Analysis (RS)

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

Define two flipping functions Empirical RS diagram: relation between embedding ratio and share of groups F_{+1} : (0 \leftrightarrow 1, 2 \leftrightarrow 3, ...) $\mathsf{F}_{\!\!-1}\!\!:(1\!\leftrightarrow\!\!2,\,3\!\leftrightarrow\!\!4,\,\ldots)$ 60 Relative share of groups by class Cut image in groups of pixels, R_{-M} 50 Solve equation system with compute dual statistics constraints from typical RS diagram for estimated number 40 2 3 of LSB flipped pixels R_M 30 20 2 3 10 S_{-M} Compute sum of absolute differences 20 40 60 80 0 100 Percentage of pixels with flipped LSB f(F(x))f(x) f(F(x))Classify groups per inequation Count as *regular group* R_M and R_M , respectively. \Rightarrow Count as *singular group* S_M and S_M , respectively. < > \Rightarrow

Recall: Weighted Stego Image Analysis (WS)

A TWO-FACTOR ERROR MODEL FOR QUANTITATIVE STEGANALYSIS

Estimate cover image

as arithmetic average $\mu(x)$ of the four closest neighbors of pixel x in the stego image.

Weight influence of pixels

since the accuracy of cover image estimation varies with local variance v(x).

Infer secret message length

from the difference of the observed stego image and an the estimated cover image

$$\hat{q} = -\frac{2}{\sum \mathbf{v}(x)} \sum_{x \in X} \frac{(\mathsf{F}(x) - x) \cdot (x - \boldsymbol{\mu}(x))}{1 + \mathbf{v}(x)^{\alpha}}$$

q : estimated embedding ratio

- a : a constant used to control the influence of weighting
- F: LSB flipping function