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• Consider some fixed set of statistical ‘features’.
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• Consider some fixed set of statistical ‘features’.



• Consider some fixed set of statistical ‘features’.
• Use spare pixels/locations to try to restore the features to a ‘target’.

1. Which target?
2. How to measure distance?
3. How to achieve the best outcome?



• Consider some fixed set of statistical ‘features’.
• Use spare pixels/locations to try to restore the features to a ‘target’.

Idea first proposed in [Kodovský, 2008].

Not the same as:

Source coding/matrix embedding [Crandall, …]
– reduce the number of embedding changes.

Distortion minimization [Kim, Filler, …]
– during embedding, choose favourable changes.



is a distance metric is the stego object
is a target feature vector is the application of a ‘change’
is the feature map is a set of allowable combinations

of changes



Possible targets

• Original cover image
• Estimated mean cover feature (‘least suspicious’)

Quadratic form distance

• Euclidean distance

• the covariance of cover features: Mahalanobis distance

• the diagonal of : standardized Euclidean distance

Additivity



Take an easy version of the feature restoration problem:

• no disallowed combinations of changes,
• all changes exactly additive.

This reduces to

Theorem The above problem is NP-complete.

We will have to try iterative heuristics to approximate a solution.



Greedy

Test every pixel change and immediately apply all that are beneficial (reduce
distance to the target).

Biased greedy

Try pixel changes in noisy regions first.

Random

Test random batches of pixel changes, and apply whenever beneficial.

Genetic*

Maintain a population of pixel changes and ‘evolve’ the best.

Quadratic Programming*

Approximately solve the NP-complete problem by relaxing the integrality
constraint.

* assumes some form of additivity.



• WAM features (27), 2000 grayscale images, LSB matching 0.5bpp
• Distortion metric: Euclidean distance to cover

# feature calculations

Random (15 changes per test)

Biased greedy

Greedy

Genetic

Quadratic Programming



• WAM features (27), 2000 grayscale images, LSB matching 0.99bpp
• Distortion metric: Mahalanobis distance to mean

# feature calculations



• WAM features (27), 2000 grayscale images, LSB matching 0.9bpp
• Distortion metric: Mahalanobis distance to cover

# feature calculations

Random (15 changes per test)

Biased greedy

Greedy

Genetic

Quadratic Programming



• WAM features (27), 2000 grayscale images, LSB matching 0.9bpp
• Distortion metric: Mahalanobis distance to cover

# feature calculations

Random (15 changes per test)

84.5%

74.6%



• WAM features (27), 2000 grayscale images, LSB matching 0.9bpp
• Distortion metric: Euclidean distance to cover

# feature calculations

Random (15 changes per test)

84.5%

87.6%



• WAM features (27), 2000 grayscale images, LSB matching 0.9bpp
• Distortion metric: standardized Euclidean distance to cover

# feature calculations

Random (15 changes per test)

84.5%

88.6%



• WAM features (27), 2000 grayscale images, LSB matching 0.9bpp
• Distortion metric: Euclidean distance to mean

# feature calculations

Random (15 changes per test)

84.5%

97.0%





With WAM features, correlation so strong that even computing can be
numerically unstable!

Lesson: check the condition number of your features’ covariance matrix.



 Feature restoration should be used with caution.

– If targetting the wrong features, it might be disastrous.

– But can be bolted on to other embedding methods.

– Seems to work well with payloads as high as 90%-99%.

 Randomized algorithms provide a way to approximate solutions to this NP-
complete problem.

 It is critical to use the right distortion metric.

– Euclidean distance, standardized or not, seems to be poor.

– Mahalanobis distance whitens the features, but could be unstable.

– This lesson is important for other areas of steganography.


