Fisher Information: Two Approaches

Tomáš Filler & Andrew Ker

tomas.filler@binghamton.edu & adk@comlab.ox.ac.uk

SUNY Binghamton & Oxford University

11th Information Hiding Workshop, Rump Session Darmstadt, 8 June 2009

Fisher Information

Capacity is **the** most important question in empirical steganography.

Capacity of imperfect stego systems follows a square root law: capacity $\sim r\sqrt{\text{coversize}}$

and the root rate r is determined by **Fisher Information**:

 $r \sim 1/\sqrt{I}.$

We have presented two approaches to estimating Fisher Information

- for artificial covers (in Böhme's sense),
- the models have many parameters, estimated from real image corpus.

Applications:

- Fundamental benchmarking of embedding functions,
- Comparison of cover sources,
- Optimization of embedding functions,

Note that all conclusions are specific to the cover corpus tested.

Two approaches

	Filler & Fridrich	Ker
Model	Markov chain • captures true second order • mathematically sophisticated	Independent pixel groups • cannot be true • not very sophisticated • captures high-order dependencies
	Captures all 2nd-order dependencies	Captures only intra-block dependencies
		but can be extended to 3rd-order and higher

Two approaches

	Filler & Fridrich	Ker
Model	Markov chain • captures true second order • mathematically sophisticated	Independent pixel groups • cannot be true • not very sophisticated • captures high-order dependencies
Estimator	fit quasi-GGD to empirical pixel difference	plug in empirical histogram
Properties	consistent	consistent (but danger of overfitting)
Complexity	low	can be very high
LSB vs ±1	±1 > LSB replacement (root rate about 1.5× greater)	±1 > LSB replacement (root rate about 1.5× greater) (less for higher-order evidence)