
Information Hiding
(complete)

Andrew D. Ker

10 Lectures, Hilary Term 2016

Department of Computer Science, Oxford University

ii

Contents

0 Introduction 1

0.1 Preliminary Material . 1

0.2 Notation . 3

0.3 Probability Primer . 4

Bibliography . 6

1 Steganography 7

1.1 A Very Brief History of Secret Communication 7

1.2 The Prisoners’ Problem . 8

1.3 Types of Steganography . 10

1.3.1 Aims of a Stegosystem . 12

1.3.2 Secret Keys . 13

1.4 Example: LSB Embedding in Uncompressed Images 14

1.4.1 Other Embedding Operations . 18

1.4.2 Palette Images . 19

1.5 Example: Embedding in JPEG Images . 20

1.5.1 JPEG Essentials . 20

1.5.2 Embedding Operation . 23

1.6 Active Wardens . 27

Bibliography . 28

iii

iv CONTENTS

2 Steganalysis 31

2.1 The Warden’s Knowledge . 32

2.1.1 Receiver Operating Characteristic 33

2.2 A Simple Example of Steganalysis . 34

2.3 A Structural Attack on Spatial-Domain LSBR 40

2.3.1 Parity Structure . 40

2.3.2 Structural Steganalysis . 42

2.3.3 Performance of Simplified Couples 45

2.4 General Attacks using Machine Learning 47

2.4.1 Average Perceptron . 48

2.4.2 SPAM Features . 49

2.4.3 Detecting LSBM by Reduced SPAM Features 50

2.4.4 Features for JPEG Steganography 52

2.5 The Wider Picture . 52

Bibliography . 53

3 Countermeasures 57

3.1 Preserving Histograms . 58

3.2 Improving Embedding Efficiency . 59

3.2.1 Decomposing the Stegosystem . 59

3.2.2 Using Syndromes . 61

3.2.3 Hamming Codes . 63

3.2.4 Theoretical Bounds . 64

3.3 Non-Shared Selection Channel . 68

3.3.1 Applications . 70

3.4 Minimizing Distortion . 71

Bibliography . 75

CONTENTS v

4 Theory 77

4.1 Probabilistic Models . 78

4.1.1 Independent Embedding . 78

4.1.2 Cover Models . 79

4.2 A Concept from Information Theory . 80

4.2.1 Example . 82

4.3 The Data Processing Theorem . 83

4.3.1 Detector Bound . 86

4.4 The Square Root Law for IID Covers . 88

4.4.1 Proof of (a) . 88

4.4.2 Proof of (b)(i) . 88

4.4.3 Proof of (b)(ii) . 89

4.4.4 Discussion . 90

4.5 Extensions . 91

4.6 Conclusions . 93

Bibliography . 93

Index 95

vi CONTENTS

Chapter 0

Introduction

0.1 Preliminary Material

Advanced Security is a part C fourth year option for undergraduates in Computer
Science or Mathematics & Computer Science, and a Schedule C option for the taught
Masters in Computer Science. Information Hiding forms the second half of the Ad-
vanced Security course. There are approximately 10 lectures (three per week in weeks
1–3, one in week 4), two classes (weeks 3 & 5) and one practical (sessions in weeks 3–5).

Prerequisites

Basic discrete probability, including conditional probability and random variables. Gen-
eral background knowledge relating to computer security is assumed.

A small amount of basic linear algebra is used in chapter 3.

The practical work is in C; it does not use advanced techniques and all image handling is
done using a standard library, so a basic understanding of the syntax should be sufficient.
Memory management is minimal.

Familiarity with digital image formats would be an advantage, but they are covered
(briefly) in the lecture notes.

1

2 CHAPTER 0. INTRODUCTION

Syllabus

Basic steganography definitions. Examples of hiding in digital images, both spatial and
transform domain. Simple detection, advantages and disadvantages of various embed-
ding operations. Hamming codes and wet paper codes, and their applications to hiding.
Detection of hidden data via feature vectors, countermeasures. Theory of hidden infor-
mation: the square root law in the case of i.i.d. discrete sources. Steganography and
steganalysis with multiple sources.

Synopsis of Lectures

Steganography. Secret communication, the Prisoners’ Problem and the Warden; types
of steganography; aims of a cover-modification stegosystem; raw and JPEG digital im-
ages; examples of steganography in digital images: spatial-domain LSB replacement, LSB
matching, and F5; variations.

Steganalysis. Aims of steganalysis, receiver operating characteristic; examples of struc-
tural attacks and payload size estimators on LSB replacement; attacks based on machine
learning, example using simplified SPAM features; the wider setting.

Countermeasures. Improving embedding efficiency; syndrome codes, with example
based on Hamming codes, theoretical bounds; solving the non-shared selection channel
using syndrome codes, applications; optimal embedding.

Theory. Probabilistic models of covers and embedding; using Kullback-Leibler diver-
gence to bound detector performance; the data processing theorem; the square root law
for IID covers, and (without proof) extensions.

Reading Material

The main course text is

• “Steganography in Digital Media: Principles, Algorithms and Applications” by Jessica
Fridrich (Fridrich, 2010).

A comprehensive presentation with a focus similar to ours: digital media covers, practical
methods for cover modification, and detection. The theory section has been superceded
by recent research, and the steganalysis section is also somewhat outdated now, but still a
good introduction. Contains a lot more material than we can cover in this course. (£50)

Other recommended books are

0.2. NOTATION 3

• “Advanced Statistical Steganalysis” by Rainer Böhme (Böhme, 2010).

An adapted version of his thesis, the specific techniques are now out of date but the
chapter on the principles of steganography and steganalysis is a very clear exposition.
Does not cover the material from chapters 3-4 of these notes. It is, however, quite
expensive. (£80)

• “Machine Learning in Image Steganalysis” by Hans Georg Schaathun (Schaathun,
2012).

Focuses on the steganalysis part, so its relevance is really only to chapter 2 of these
notes, but a readable and comprehensive survey of the state-of-art as of four years ago.
Unfortunately, seriously superceded by recent research. (£65)

I cannot recommend any other textbooks. There are quite a few published, but most
of them are really poor, either covering ancient techniques now known to be insecure or
material which is not really steganography at all. Instead, there will be a bibliography
at the end of each chapter with references to relevant literature. Where possible, links to
freely downloadable copies of the papers have been included.

A note on the literature: this field has matured enormously in the last ten years or
so. Early literature may seem naive and use poor notation. It is easy to see this with
hindsight! Recent papers will give a better view of the standards for contemporary
research.

Course Website

The course page is at http://www.cs.ox.ac.uk/teaching/courses/advsec/. At the appro-
priate time the class exercises, practical manual, lecture slides and lecture notes, will all
appear on the “course materials” page.

It will also contain important corrections. When you find errors in the course materials,
please send corrections to adk@cs.ox.ac.uk.

0.2 Notation

Vectors will be written as boldface lowercase, x, indexed as x[i]. Indices start at zero
or one, depending on which is most convenient. Matrices will be written as boldface
uppercase, M , indexed as M [i, j].

4 CHAPTER 0. INTRODUCTION

Some standard functions will be used: the logarithm log x denotes log to base e and
log2 x to base 2; rounding down to the nearest integer from x (“floor”) is written bxc,
and rounding to the nearest integer [x]; the sign function

sign(x) =

{
1, if x ≥ 0,

−1, if x < 0.

The cardinality (size) of a set S is written #S. Tuples will be written (x, y).

0.3 Probability Primer

In case the reader is not familiar with probability, we survey the (very elementary) pre-
requisite knowledge. We assume that there is a set of events, each of which is assigned
a probability in the range [0, 1]. We write P[A] for the probability of event A. If A and
B are events then the intersection A∧B indicates the event of both A and B, the union
A ∨ B is the event of either A or B (or both), and the conditional probability of A
given by B is

P[A |B] =
P[A ∧B]

P[B]

(which is only defined for P[B] > 0). The events A1, . . . , An are called independent if
P[A1 ∧ · · · ∧An] = P[A1] · · ·P[An].

Probabilities can be broken down using the partition theorem: if events (A1, A2, . . .)
form a partition (precisely one of the events Ai always occurs) then

P[B] =
∑
Ai

P[B |Ai] P[Ai].

A random variable is a function from the set of events to a real number; informally,
it is a random number. A discrete random variable is one which takes only countably
many values, for example the integers; all random variables in this course will be discrete.
A discrete random variable is completely defined by its probability mass function

p(x) = P[X = x], for all possible values of x.

Random variables will usually be given letters like X and Y , while x and y will be used
to represent particular values of the random variables. The mean of a random variable
is

E[X] =
∑
x

xP[X = x],

0.3. PROBABILITY PRIMER 5

where the sum is over all the possible values x of X, a conditional mean can be defined
by

E[X |A] =
∑
x

xP[X = x |A],

and the mean of any function of a random variable is conveniently given by

E[f(X)] =
∑
x

f(x)P[X = x].

The variance of X is Var[X] = E
[(
X − E[X]

)2]
= E

[
X2
]
− E[X]2.

Random variables X, Y are independent if P[X = x ∧ Y = y] = P[X = x] P[Y = y] for
all x and y. This definition can be extended to any set of random variables.

The mean (but not variance!) of a random variable has a partition theorem: if events
(A1, A2, . . .) form a partition then

E[X] =
∑
Ai

E[X |Ai] P[Ai].

A random variable X is uniform over the set X if

P[X = x] =
1

#X
, for all x ∈ X.

A random variable has the binomial distribution with parameters n and p, written
X ∼ Bi(n, p), if

P[X = i] =

(
n

i

)
pi(1− p)n−i

for 0 ≤ i ≤ n. This has the physical interpretation of counting the number of n indepen-
dent events, each of which happens with probability p. In this case the mean of X is np
and its variance is np(1− p). It is useful to note that for any binomial random variable
X,

Var[X] ≤ n
4 (0.1)

because p(1− p) ≤ 1
4 .

6 BIBLIOGRAPHY

Often we need to prove that a random variable X is unlikely to take a very large, or very
small, value. There are many tail inequalities for doing this, the simplest of which is
Chebyschev’s inequality:

P
[
|X − E[X]| ≥ a

]
≤ Var[X]

a2
(0.2)

for any a > 0.

Bibliography

Böhme, R. (2010). Advanced Statistical Steganalysis. Springer.

Fridrich, J. (2010). Steganography in Digital Media: Principles, Algorithms, and Ap-
plications. Cambridge University Press.

Schaathun, H. G. (2012). Machine Learning in Image Steganalysis. Wiley.

Chapter 1

Steganography

Reading (course text): Fridrich, chapters 1, 2, 4, §5.1

Alternatives &
further depth:

Böhme, §2.1, 2.3–2.6, 2.7.1, 2.7.2
Schaathun, §2.1–2.2, 8.1

This chapter is about the art of hiding information, what we now call steganography1.
We will briefly survey its history, and then provide a moderately formal definition, focus-
ing on a particular case that is active in the literature and usable in practice: steganog-
raphy by cover modification in digital media, against a passive Warden.

We will give a couple of simple cases of data hiding in images. They will function as
running examples: in chapter 2 we will see how easily they can be detected, and in the
following chapter show how they can be improved.

1.1 A Very Brief History of Secret Communication

Humans have needed to communicate securely for thousands of years, and until recently
this tended to mean the same thing as communicating in secret. Early ciphers were
completely insecure to an opponent who knew the cipher – even if they did not know

1
στεγανός is Greek for covered, and γράφειν means to write.

7

8 CHAPTER 1. STEGANOGRAPHY

the key, they could soon work it out – and so there are examples of hidden communica-
tion from very early history. The 4th century BC writer using the name Aeneas “The
Tactician” Tacticus devotes a chapter of his book How to Survive Under Siege to secret
communication, including:

A message was once sent in the following manner. A book or some other
document, of any size and age, was packed in a bundle or other baggage. In
this book the message was written by the process of marking certain letters of
the first line, or the second, or the third, with tiny dots, practically invisible
to all but the man to whom it was sent: then, when the book reached its
destination, the recipient transcribed the dotted letters, and placing together
in order those in the first line, and so on with the second line and the rest,
was able to read the message.2

Similar techniques based on selecting and decoding letters from a text designed to include
the hidden message – acrostics, indicator dots, a physical mask, italic letters in early print,
encoding of information in musical notation, etc. – were predominant for approximately
the next two thousand years. In the 20th century scientific advances allowed invisible
inks with specific chemical revealers, microdots, and ways of hiding the message so that
it was not physically detectable at all.

We will not say more about the history of the subject here; see (Fridrich, 2010, §1.1)
for some more historical examples, and David Kahn’s keynote speech at the inaugural
Information Hiding Workshop (Kahn, 1996).

1.2 The Prisoners’ Problem

One might say that steganography officially entered the realm of computer science in
1983, when a paper by Simmons was published (Simmons, 1983). Simmons introduced
the Prisoners’ Problem, in which two separated prisoners – typically called Alice and
Bob – wish to discuss an escape plan through a medium which is monitored by their
enemy, the prison Warden. Simmons did not mention the word “steganography”, but
instead described a subliminal channel in which the secret information is undetectable
amongst some apparently-innocent cover. In his paper the subliminal channel occurs in

2Translation taken from http://www.aeneastacticus.net, credited to L.W. Hunter and
S.A. Handford, 1927.

1.2. THE PRISONERS’ PROBLEM 9

square roots modulo large composite integers, and the undetectability is based on the
difficulty, for the Warden, of determining that multiple possible square roots exist.

The Prisoners’ Problem has become the classic analogy for steganography: we suppose
that the Warden will take additional security measures (perhaps cutting off Alice’s com-
munications) if he detects that secret communication is taking place. We now use the
terminology stego objects for the communications sent by Alice and payload for the
hidden information that she wants to communicate. Like Simmons, we assume that Alice
and Bob have been able to share a secret key before they were imprisoned. And we must
adapt Kerckhoffs’ Principle, which in cryptography states that the enemy should be
assumed to know the system, by saying that the Warden is aware of Alice and Bob’s com-
munication algorithms3. But note that Kerckhoffs’ Principle does not necessarily apply to
the whole steganographic system. (Does the Warden know that, out of all the prisoners,
only Alice might be using steganography? Do they know exactly which messages Alice
might be using for payload, and which were simply genuine innocent communications?
Do they have a complete and accurate model of her cover source?).

In fact, Simmons’ problem is a long way from what we now call steganography. In his
original paper, Alice and Bob wanted to authenticate each others’ identity, and the aim
of the Warden was to change the content of their hidden information so as to impersonate
one of the parties and infiltrate their plot. In information hiding literature we now make
the distinction between

• a passive Warden, who can only eavesdrop on Alice and Bob’s channel, and whose
aim is to detect the presence of hidden communication, and

• an active Warden, who can tamper will Alice’s stego objects. Their aim is either to
disrupt the payload so that Bob cannot recover it, or to impersonate Alice to Bob.
The latter is sometimes called a malicious Warden.

Steganography research is currently concerned with, almost exclusively, the passive War-
den case. That is also the focus of this course. For a little on active wardens, see
section 1.6. Instead of mathematical covers such as Simmons’ example – and it is dif-
ficult to construct a scenario in which Alice and Bob are legitimately exchanging large
square roots – we focus on covers which are digital media, particularly images. Infor-
mation hiding in digital media is the most active area of research (hiding in text has

3For this reason we do not consider the placement of information in unexpected places, such as file
or IP headers, to be true steganography. Unfortunately, there are a number of publications on network
packet/timing channel ‘steganography’ of this sort.

10 CHAPTER 1. STEGANOGRAPHY

had relatively little success) and image files are the first step (mp3s and video files have
too complex a structure to fit within the confines of a lecture course). We shall see that
digital media has huge capacity for embedded payload. Furthermore, it is in digital media
that illicit use of steganography is known to have occurred.

Finally, a word about the secret payloads. If Alice has any sense, the first thing she will
do is losslessly compress, because smaller payloads are always easier to embed and harder
to detect. Given that she shares a secret key with Bob, she should also encrypt the
compressed payload (just in case the Warden ever does get hold of it). Both operations
increase the apparent randomness (entropy) of the messages. It allows us to make the
random payload assumption: the payload consists of a sequence of bits which are
statistically indistinguishable from independent coin flips. We will carry this assumption
throughout almost the entire course.

1.3 Types of Steganography

A steganographic communication channel from Alice to Bob begins with a source of covers
for Alice. This might be a collection of digital images (or movies, mp3 files, etc.) which
she already acquired, a camera with which she can take cover photographs, a live video
stream, and so on. The type of cover will be determined by the situation in which Alice
and Bob find themselves: it is the type of object that they can legitimately communicate.

One type of steganography is cover selection, in which Alice selects, or waits for, a
cover which already contains the hidden message that she wants to send. This is only
going to be reasonable if the hidden message is very short. For example, Alice might
send 8 bits of information as the first 8 bits of a keyed hash of a digital image. The key
for the hash is shared with Bob. On average it will take Alice 256 images until she finds
one with the correct hash, and she sends that one. This is called a rejection sampler,
an idea introduced by Hopper (Hopper et al., 2002). The advantage of this method is
that the object Alice sends is completely natural, unaltered by embedding and therefore
innocent by construction (as long as certain technicalities are taken care of).

The disadvantage is that the payload must be extremely small, otherwise Alice will need
an infeasibly large library, or will have to wait a vast length of time, to find a suitable
object. There is an entire branch of the steganography literature devoted to a complexity-
theoretic analysis of techniques following Hopper. We will not take this approach because
we consider it unrealistic in practice. As far as we know, nobody has publicly constructed
such an embedding method for nontrivial payloads.

1.3. TYPES OF STEGANOGRAPHY 11

A variation on this idea is cover synthesis, in which Alice is able to construct a cover
which contains hidden data of her choice. Although a few such schemes have been pub-
lished4 only a handful apply to digital media, and they are subject to weaknesses because
it is very difficult to generate realistic cover examples. It is certainly possible to use a
combination of rejection sampling and cover synthesis to send moderate payloads in, for
example, mosaic images (each tile conveys a few bits) but there is no version for natural
photographs.

The third type of steganography, which is practical for digital media and carries significant
payloads, is cover modification. Here Alice takes a cover and makes subtle changes
in order to embed the hidden payload. This technique is ideal for digital media, which
consists of thousands or millions of data points and where small modifications can easily
pass inspection. It is by far the most active type of steganography in published research,
and there is good theoretical and practical work on both hiding and detection.

Let us formalise the cover modification paradigm as follows. Let C be the set of all objects
of the same type as covers (e.g. digital images of a certain type and size), K the set of
possible secret keys, and M the set of payloads that Alice might want to transmit. For
now, the representation of these objects can be flexible: raw bitmap images might be
represented as a vector of pixel intensities, JPEG images as a header concatenated with
a vector of quantized DCT coefficients (see subsection 1.5.1), and keys and payloads can
simply be sequences of bits.

Alice uses an embedding function to modify a cover into a stego object, given the
payload and secret embedding key, and Bob uses an extraction function to recover the
payload given the key. Note that Bob does not have access to Alice’s original cover for
his extraction (it would be make detection too easy if Alice’s original cover could ever be
seen by the Warden). The embedding and extraction functions have the type

Emb : C×K×M→ C,
Ext : C×K→M.

In fact, the messages which can be hidden in cover c may depend on c itself: even, for
example, images with the same size might have different capacity (maximum possible
payload lengths). Similarly it is conceivable that the set of possible keys depends on the
cover as well. We will ignore these technicalities in our formal presentation, but must
take care of them in implementations.

4Try http://www.spammimic.com/ for an entertaining example.

12 CHAPTER 1. STEGANOGRAPHY

A stegosystem consists of Alice’s cover source, the embedding and extraction functions,
the channel by which Alice sends stego objects to Bob, and (usually implicitly) the source
of secret keys and payloads.

1.3.1 Aims of a Stegosystem

A cover modification stegosystem has a number of aims. The first is simply correctness
of the secret communication channel: for all c ∈ C, k ∈ K, and m ∈M,

Ext(Emb(c,k,m),k) = m.

This is usually simple to verify. Some authors also talk about robustness, which is
the ability of the payload to survive changes made to the stego object. This is relevant
when there is an active Warden, but even with a passive Warden the payload has to be
received correctly at the end of the channel through which that Alice sends stego objects.
So in the case of steganography in lossy compressed images, some might say that the
embedding has to be robust to the effects of lossy compression. In our formulation we
do not consider this to be robustness, simply correctness bearing in mind the type of the
stego object.

Another aim is capacity: #M should be large. That is, we transmit as much secret
information (log2 #M bits) as possible, or as we need, in each cover. Capacity is usually
measured relative to the size of the cover, a so-called embedding rate. We might talk
of p secret bits per cover pixel, or p secret bits per nonzero DCT coefficient in the cover.

Capacity is in competition with the unique aim of steganography: informally, the em-
bedding should be undetectable by a Warden. This is difficult to formalize, and we will
not come to a mathematical formulation until chapter 4, but we can start by expressing
the Warden’s task in the language of statistics as a hypothesis test. The Warden is
given an object x and knows (we assume, following Kerckhoffs’ Principle) that one of two
states holds:

(the null hypothesis) H0 : x is a genuine cover
(the alternative hypothesis) H1 : x = Emb(c,k,m)

for some unknown cover c, key k and payload m

The Warden has some decision function D(x) which determines whether they give a
positive detection of covert payload. The statistical terminology is to say that the Warden
either accepts the null hypothesis, or rejects it in favour of the alternative. There are two
mistakes he might make:

1.3. TYPES OF STEGANOGRAPHY 13

• Rejecting H0 when H0 was true. Statisticians call this a type I error, and steganogra-
phers call it a false positive or false alarm because the Warden detected something
that was not happening. It is typical to write the probability of a false positive as α.

• Accepting H0 when H1 was true. Statisticians call this a type II error, and steganog-
raphers call it a false negative or missed detection because the Warden failed to
detect steganography. It is typical to write the probability of a false negative as β.

The Warden will balance the sensitivity of their decision D(x) according to whether they
are more worried about false positive or false negative results, but either way it is their
aim to keep α and β low. Therefore one way to formalise the security of a stegosystem
is to say:

For all decision functions D : C→ {Positive,Negative}, α and β are reasonably large.

Note that we are not truly saying that use of the stegosystem is completely undetectable,
rather that it is not reliably detectable. The reason that the aims of capacity and unde-
tectability are in competition is that, given constant embedding rates, the Warden can
find a decision function such that α and β both tend to zero exponentially fast in the
length of the hidden payload! There will be more on this in later chapters.

One way to avoid detection is to make few changes to the cover. So a measure of interest
is the embedding efficiency, the number of payload bits hidden for each cover element
changed. To be more precise, it is the number of bits hidden divided by the average
number of changes needed. This is only a crude measure of security, because it does not
take the magnitude of changes into account, nor their individual detectability, but it is
still something to consider.

1.3.2 Secret Keys

The secret key, shared between Alice and Bob but unknown to the Warden, is crucial to
the security of a stegosystem. Without it, no system could possibly survive Kerckhoffs’
Principle, because the Warden could copy Bob and read the payload straight out. In
cover modification steganography the key often has a straightforward interpretation: it
determines where in the cover Bob will find the payload.

The following examples, like most steganography which does not use source coding (see
chapter 3), will use the key in the same way. The stego object is represented as a list
of elements (e.g. pixels) and the payload as a list of symbols (e.g. bits). One payload

14 CHAPTER 1. STEGANOGRAPHY

symbol is embedded in one stego element, and the key determines the order in which
the stego elements are modified. So Alice writes her payload symbols into the elements
in the order specified by the key, stopping when the payload has been completed. We
will see examples of the embedding operations, which perform the symbol-by-symbol
embedding, in the following section.

In such a system, the key must determine a permutation of the cover indices. We cannot
capture an entire permutation into a key, otherwise the key would very likely be longer
than the secret payload being communicated, so instead the key functions as a seed to
a pseudorandom number generator, and the stream of pseudorandom numbers generates
a pseudorandom permutation of the cover indices. The key should be long enough to
prevent the Warden from exhausting over all possible keys (see (Pevný & Ker, 2014) for
a recent paper on this topic), and the generation of the pseudorandom permutation needs
to avoid bias in the output: a simple algorithm is the famous Knuth shuffle (Knuth,
1998, §3.4.2, Algorithm P).

Some early steganography literature seemed unaware of the idea of generating pseudo-
random permutations, and instead simply picked random cover indices independently for
each payload symbol; the problem is that there is a high likelihood that the same location
will be used more than once, which damages the correctness of the embedding.

1.4 Example: LSB Embedding in Uncompressed Images

A digital image is displayed on the screen as a rectangular grid of coloured pixels. So the
simplest way to store a digital image is directly to represent this grid. In a raster image
format the image pixels are scanned (usually left-to-right and top-to-bottom), and their
colours stored. The raw format, native to most displays, is three bytes of information for
each pixel: values 0–255 representing the intensity of red, green, and blue (RGB) which
make up the colour5.

5This format is not native to printing devices, which must deal with subtractive rather than additive
colour, and some digital images are stored in CMYK (cyan, magenta, yellow, black) form, with up to 12
bits of precision for each component.

1.4. EXAMPLE: LSB EMBEDDING IN UNCOMPRESSED IMAGES 15

In this course we are more interested in how the image can be manipulated than the exact
format it is written on disk, but here is a particularly simple file format called PNM6.
The file is simply ASCII text

P3 # format identifier

400 300 # width height

255 # RGB value maximum

37 37 36 74 79 71 150 157 136 161 167 147 172 176 156 181 182 163

189 189 173 198 198 183 206 205 190 210 209 195 212 211 198 212 210 198 ...

#(R G B) (R G B) (R G B) bytes in scan order

(This is the beginning of the example cover image in Figure 1.1). The ASCII format
is not efficient, and a variation stores the bytes of the image scan directly (but retains
the ASCII header). There is an analogous format for images which are only grayscale
(one byte of brightness per pixel). The PNM format is very portable but more popular
and widespread bitmap image formats include TIFF and BMP; they can store a wider
range of image type and metadata (and also palette images, see subsection 1.4.2) but the
structure is essentially the same.

So let us represent a raw (as opposed to lossy-compressed) RGB cover image as a se-
quence of bytes (c[1], . . . , c[n]) where each byte represents, in turn, the red, green and
blue intensities of the pixels in scan order. For convenience we will omit from our repre-
sentation the size of the image, which we might say was already part of Alice and Bob’s
secret key. We use the secret key k to generate a pseudorandom order πk in which to
visit these bytes, i.e. for each k ∈ K,

(πk(1), . . . , πk(n)) is a permutation of (1, . . . , n).

Suppose that we have anm-bit payload represented by a sequence of bits (m[1], . . . ,m[m]).
In perhaps the simplest type of steganography, we visit the cover RGB bytes in the or-
der given by the key, overwriting the least significant bits (LSB) of each byte with the
message until the message is finished. We form the stego vector s by

s
[
πk(j)

]
= 2
⌊
c
[
πk(j)

]
/ 2
⌋

+ m[j] for j = 1, . . . ,m. (1.1)

and s[i] = c[i] for i /∈ {πk(j) | j = 1, . . . ,m}. Finally, Emb(c,k,m) = s.

6http://netpbm.sourceforge.net/doc/pnm.html

16 CHAPTER 1. STEGANOGRAPHY

This type of embedding is called LSB Replacement (LSBR) and it is one of the earliest
types of digital image steganography. The first literature and software to mention LSB
replacement is lost in the mists of time, but it was well-established by the time of the
first Information Hiding Workshop in 1996, and is implemented in some DOS software
(predating Windows 95).

The effect of the LSBR embedding operation is to change the colours very slightly. See
Figure 1.1 for an example of LSBR embedding in a small raw cover image; even magnified,
a change of ±1 to RGB values is not perceptible. This is true even in smooth areas of an
image (such as blue sky).

How does Bob reconstruct the hidden payload? All he needs is to use the secret key to
generate the permutation πk, and then read

Ext(s,k) =
(
s
[
πk(1)

]
(mod 2), . . . , s

[
πk(m)

]
(mod 2)

)
.

There is a defect with the stegosystem as described: unless it was part of the pre-shared
secret key, Bob does not know m, and therefore does not know where to stop reading LSBs
to extract the message. An implementation could solve this by adding a header to the
payload, which includes its length, but Alice should be careful not to make the message
recognisable as this might lead to easier key exhaustion attacks by the Warden7. An
alternative is for Alice to reserve an unambiguous terminator for the end of her payload.

What is the capacity of this embedding algorithm? The largest payload uses all the
bytes of the image, which is 3 times the number of cover pixels (we conventionally ignore
any overhead caused by either payload or cover headers). We say that the maximum
capacity is 3 bits per pixel (3 bpp), or 1 bit per cover byte. We can also measure the
embedding efficiency. Assuming a random message (one which is not correlated with
the cover) we will only have to change half of the bytes we visit, because half of them
carried the correct LSB already. Thus the embedding efficiency is 2 bits per change.

Note that the LSB replacement operation (1.1) can be equivalently written to emphasise
its isolation of the LSBs of each cover byte (the so-called least significant bitplane):

s
[
πk(j)

]
= c
[
πk(j)

]
& 254 + m[j],

7Predictable headers were used in this detection study http://www.citi.umich.edu/u/provos/
papers/detecting.pdf, though the techniques used are now very antiquated. Recent work has revived
the topic, more generally, of information leakage about the key.

1.4. EXAMPLE: LSB EMBEDDING IN UNCOMPRESSED IMAGES 17

171
88
51

188
95
53

222
203
54

180
99
59

211
151
116

209
118
96

217
169
122

242
239
224

163
107
65

187
153
84

221
199
48

180
138
63

215
174
115

209
171
108

212
187
112

244
241
226

139
68
43

172
111
76

216
197
57

166
118
53

193
138
105

199
152
114

206
171
116

242
240
225

147
94
42

164
98
64

215
195
39

192
155
35

175
81
68

176
89
74

207
176
126

239
237
224

131
66
42

148
104
75

198
171
41

197
171
34

173
111
84

172
111
85

205
174
131

238
236
221

99
28
27

138
101
77

152
117
55

167
136
35

167
118
91

162
110
80

211
196
154

226
225
209

110
72
58

115
83
62

107
70
51

115
73
53

151
107
82

158
111
80

186
179
142

84
85
77

86
51
39

70
32
28

80
48
39

94
57
44

117
79
60

127
87
60

47
46
35

17
17
16

170
89
50

189
95
52

223
203
54

181
98
59

210
150
117

209
118
97

217
169
123

243
239
224

162
107
64

187
152
85

221
198
49

180
138
62

214
174
115

209
170
109

213
186
113

245
240
226

138
69
42

172
110
76

216
197
56

166
119
52

193
139
105

199
152
115

207
171
117

242
241
225

146
95
43

165
99
65

214
195
38

192
155
34

175
81
68

177
89
74

206
177
126

239
237
224

130
67
43

149
104
74

198
170
41

197
171
35

173
110
85

173
110
85

205
174
130

239
237
220

98
29
27

138
100
76

152
116
54

166
136
34

166
119
91

163
111
80

211
197
154

227
225
209

110
73
58

115
82
63

106
70
51

115
73
53

151
106
82

159
111
81

186
178
142

85
84
76

87
51
38

70
33
28

81
48
38

95
56
44

117
78
60

127
87
61

46
46
34

17
16
17

Figure 1.1: Left, example cover image (400 × 300 pixels, 24-bit RGB) with 8 × 8 detail
below. Right, stego image with 3 bits per pixel embedded by LSBR, with 8 × 8 detail
below. The magnified blocks are annotated with R, G, B values.

Cover image courtesy of Eli Klein Fine Art, c© Liu Bolin

18 CHAPTER 1. STEGANOGRAPHY

where & represents bitwise logical ‘and’. Or it can be written to emphasise the LSB
flipping operation:

s
[
πk(j)

]
=

{
c
[
πk(j)

]
, if m[j] = c

[
πk(j)

]
(mod 2)

c
[
πk(j)

]
+ (−1)c[πk(j)], otherwise.

The latter exposes a weakness (even-value bytes can only ever be left alone or incremented;
odd-value bytes can only be left alone or decremented) which we can exploit in the next
chapter. Despite its weaknesses, LSBR has continued to be studied widely, partly due to
its extreme ease of implementation: in (Ker, 2004) I gave a two-line Perl script which
avoids the need for any special software by typing into a Linux shell

perl -n0777e ’$_=unpack"b*",$_;split/(\s+)/,<STDIN>,5;

@_[8]=~s{.}{$&&v254|chop()&v1}ge;print@_’

<input.pgm >output.pgm secrettextfile

This will perform LSB replacement in grayscale PNM files (if the pixel information is in
raw byte rather than ASCII encoding). It does not use a pseudorandom permutation to
spread the payload through the cover and has no secret key, but a four-line script can
achieve this (Ker, 2005).

1.4.1 Other Embedding Operations

We will soon see that LSB replacement in images is surprisingly easy to detect. But there
are alternative embedding operations, hardly any more complex, which are significantly
more secure.

The second simplest embedding operation, after LSBR, is LSB Matching (LSBM), also
sometimes called ±1 embedding. The image is traversed in the same way and the
payload bits are still carried in the LSBs of the intensity bytes, so the extraction function
is identical. It has the same capacity and embedding efficiency. But the change when a
modification is required, i.e. if m[j] 6= c

[
πk(j)

]
(mod 2), is given by

s
[
πk(j)

]
=


c
[
πk(j)

]
+ 1, if c

[
πk(j)

]
= 0

c
[
πk(j)

]
− 1, if c

[
πk(j)

]
= 255

c
[
πk(j)

]
± 1, otherwise, where ±1 is picked uniformly at random

(1.2)

1.4. EXAMPLE: LSB EMBEDDING IN UNCOMPRESSED IMAGES 19

This avoids the predictable structure of LSBR, and is significantly more difficult to detect.
As far as the lecturer knows, the first publication to describe LSB matching (not under
that name) is (Sharp, 2001), but it was almost certainly known, and its advantages
vaguely understood, well before this.

Once we are prepared to make ±1 changes to coefficients, why not use the choice to
convey more payload, increasing capacity and embedding efficiency? We come to ternary
embedding, which requires the payload to be formatted as a sequence of base-3 (ternary)
symbols {0, 1, 2}. The embedding operation selects the value of s

[
πk(j)

]
nearest to

c
[
πk(j)

]
such that

s
[
πk(j)

]
mod 3 = m[j].

This only requires a change of 0, +1, or −1 (apart from the exceptional case when the
cover value is 0 or 255 which, we shall see later, steganographers should be avoiding in
any case). Ternary embedding has a maximum capacity of one ternary symbol, log2 3
bits, per cover byte (or 3 log2 3 bits per pixel in RGB colour images). Given random
payload, the cover byte will need to be changed with probability 2

3 , meaning that the
embedding efficiency is 3

2 log2 3 ≈ 2.377 bits per change.

Assuming that cover images which have been over- or underexposed are excluded (thus
preventing 0s and 255s), ternary embedding is always a superior choice to LSBM, be-
cause it requires fewer changes of identical magnitude to convey the same payload. The
drawback is that the payload must be converted to ternary symbols, though there is a
nice solution to avoid this, which we shall see in chapter 3.

1.4.2 Palette Images

So far we have only dealt with RGB colour images. Obviously the same technique applies
directly to brightness values of a grayscale image. But a different type of uncompressed
image is the palette image, in which a limited number of colours are available (often 256),
with the colours listed in a header and the palette indices stored in an image scan. The
rationale is to save disk space and/or bandwidth.

The format GIF is most commonly used, and GIF files were predominant in the early years
of the internet, but are now becoming more and more scarce. Hiding in palette images
poses additional difficulties, because there is no guarantee that colours with similar indices
will look similar, so modifications must be done with the palette in mind. Some palette
hiding methods are discussed in (Fridrich, 2010, §5.2) but we will not consider them
further in this course.

20 CHAPTER 1. STEGANOGRAPHY

1.5 Example: Embedding in JPEG Images

Unfortunately, raw bitmap images are transmitted relatively rarely. The reason is simply
their size: a 1 megapixel (1 Mpix) colour image takes 3MB of bandwidth and storage,
which is not insignificant, even in the present time of cheap storage and fast networks.
Almost all images transmitted over the internet, including all social media and in prac-
tically every web page, use lossy-compressed images in JPEG format. Embedding in
JPEG images is conceptually quite similar to embedding in raw images, but there are a
few important differences. We need to understand what is actually stored in a JPEG file,
before we can modify it to carry a payload.

1.5.1 JPEG Essentials

The JPEG image format, and the lossy codec associated with it, date back to 1992. Based
on signal-processing techniques, the aim is to create an approximation of an image, which
is perceptually almost identical to the original but can be stored in much less space.

The key to storing information approximately is quantization, where a real number x
is approximated by q

[
x/q
]

for a fixed quantization factor q. Only the integer
[
x/q
]

needs to be stored, from which q
[
x/q
]

can be reconstructed later. Another way of saying
this is that quantizing x means storing it “to the nearest q”. The smaller the value of
q, the more precise the representation of x. With JPEG compression, quantization is
chosen so that perceptually important information (low frequency, brightness) is stored
with higher resolution and lower quantization factors than the less important information
(high frequency, colour).

We will briefly outline the steps involved in JPEG compressing a bitmap image:

(i) The colour space undergoes a linear transformation to separate intensity (lumi-
nance) from colour (chrominance). They are treated separately but similarly.
Typically the colour components are reduced in resolution by a factor of two.

(ii) The image is divided into 8 × 8 pixel blocks (padded as need be). Each block is
treated separately.

(iii) Each block undergoes a discrete cosine transformation (DCT), which expresses
the block as a linear combination of different (2-dimensional) frequencies.

(iv) The frequencies, which are called coefficients, are quantized; this step is where
information is lost, the others are exactly reversible. The quantization factors are
set at time of compression and vary for different frequencies: higher frequencies

1.5. EXAMPLE: EMBEDDING IN JPEG IMAGES 21

get higher quantization factors and many high frequency coefficients will end up
quantized to zero.

(v) The quantized coefficients from all blocks are arranged in a particular order, then
losslessly compressed. The compressed file, along with headers specifying the size
and the quantization factors, is the .jpg file stored.

To decompress a .jpg image, the steps are reversed: the format is parsed, the lossless
compression undone, the coefficients multiplied by the quantization factors, the DCT
inverted, colour components recombined and upsampled, and at the final stage the pixel
values must be rounded back to integers and clamped into the range 0–255 (which they
may have exceeded due to the lossy compression).

The above schema describes the most common use of the JPEG format. Many variations
exist in the specification: different colour spaces may be stored, the colour component
resolution can be varied, the data can be stored in different orders, additional header
information can be included, and so on.

We will give a bit more detail about the JPEG steps. In step (i), the (R,G,B) values for
each pixel undergo the linear transformationY

Cb
Cr

 =

 0
128
128

+

 0.299 0.587 0.114
−0.1687 −0.3313 0.5

0.5 −0.4187 −0.0813

RG
B

 .

The luminance is Y , which corresponds roughly to the eye’s perception of brightness
(depending on the display device being used). For images which had no colour in the first
place, grayscale levels are interpreted directly as Y . The chrominance coefficients Cb and
Cr indicate shift towards blue and red, respectively.

Step (ii) is straightforward. Let us take the luminance channel of an M ×N image and
call it Y [m,n] for m = 0, . . . ,M − 1 and n = 0, . . . , N − 18. There are dM/8e · dN/8e
blocks, let us call them Bp,r for 0 ≤ p < dM/8e and 0 ≤ r < dN/8e, defined by

Bp,r[i, j] = Y [8p+ i, 8r + j], for i, j ∈ {0, 1, . . . , 7}

with zero padding for Y if the image dimensions are not multiples of 8.

8In this section it is more convenient to base array and matrix indices at zero.

22 CHAPTER 1. STEGANOGRAPHY

A0,0 A1,0 A2,0 A7,0 A2,2 A7,7

Figure 1.2: Some of the basis blocks for the discrete cosine transform.

The 2-dimensional discrete cosine transform at step (iii) is an analogue of the Fourier
transform, but designed for real-valued signals. It amounts to an orthonormal change of
basis. Given an 8× 8 block B it produces an 8× 8 block of real numbers C by

C[u, v] =
7∑
i=0

7∑
j=0

B[i, j]
cucv

8
cos

(
π

8

(
i+ 1

2

)
u

)
cos

(
π

8

(
j + 1

2

)
v

)

where c0 = 1 and ci =
√

2 otherwise. It is easier to understand the effect of the DCT by
its inverse,

B =
7∑

u=0

7∑
v=0

C[u, v]Au,v (1.3)

where blocks Au,v make up the basis,

Au,v[i, j] =
cucv

8
cos

(
π

8

(
i+ 1

2

)
u

)
cos

(
π

8

(
j + 1

2

)
v

)
;

(here (u, v) are called the DCT modes).

We can see from (1.3) that the block B has been expressed as a linear combination of the
basis blocks, each of which are combinations of gradients in x and y directions, where the
linear combination is given by the coefficients C. Some of the basis blocks are pictured
in Figure 1.2.

The rationale for using the DCT is a) to attempt to decorrelate the coefficients, and b)
to separate low-frequency parts of the block from high-frequency parts.

Step (iv) is quantization. Every block is treated the same, but within each block every
coefficient is differently quantized, the higher frequencies receiving higher quantization
factors than lower. The overall harshness of the quantization can be different for every

1.5. EXAMPLE: EMBEDDING IN JPEG IMAGES 23

image, but most software uses standard quantization tables generated by a “quality fac-
tor” between 1 and 100. The matrix of quantization factors for the luminance component,
at “quality factor” 50, is

Q50 =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


(1.4)

and tables for higher and lower “quality factors” can be determined from this matrix9.

Step (v) will be irrelevant to steganographers, because it is completely reversible and
effectively provides a container for the quantized coefficients. There is a zig-zag ordering,
designed to make runs of zeros more likely, in turn making the data more compressible.

The size of a JPEG file depends on its contents and quality factor. With lower quality
factors, more coefficients are quantized to zero and the lossless compression becomes
much more efficient, but this happens to a lesser extent in images with lots of texture
(which have a larger high-frequency content) than images with large smooth regions. In
one of the image sets I use, for testing steganography and steganalysis, there are 1600
colour images sized 2000× 1500 (mostly of beaches and flowers). Uncompressed files are
8789KB each, and compressed JPEGs at quality factor 50 average 274KB – about 32
times smaller.

The uncompressed cover image from Figure 1.1 is compared with a JPEG-compressed
version in Figure 1.3, including a magnification of, and luminance DCT coefficients for,
one 8× 8 block.

1.5.2 Embedding Operation

Embedding in JPEGs is called transform-domain embedding, because the embedding
is applied to a transformation of the pixels (in contrast, embedding in raw images is

9We do not need to know the formula in detail, but for “quality factor” qf > 50 the quantization
matrix is approximately Qqf =

[
Q50

100−qf
50

]
.

24 CHAPTER 1. STEGANOGRAPHY

108.6
153.8
172.5

118
154.3
177.9

191.7
184.8
149.6

118.7
159.9
171.8

164.9
200.4
160.8

142.7
179.8
175.3

178
208.4
155.8

238.2
278.4
130.7

119
168.5
159.4

155.3
189.1
150.6

188.4
180.6
151.3

142
174.9
155.1

179.5
206.9
153.3

175.2
203.4
152.1

185.9
210.2
146.6

240.2
279.7
130.7

86.4
148.6
165.5

125.2
173.8
161.3

186.7
185.3
148.9

124.9
165.6
157.3

150.7
193.7
158.2

161.7
201.8
154.6

175.2
207.9
150

238.9
279.2
130.2

103.9
155.3
158.7

113.9
164.8
163.8

183.2
175.8
150.7

152.4
164.5
156.3

107.6
159.3
176.1

113.3
164.8
172.7

179.6
214.4
147.6

236.1
278.2
130.1

82.7
148.8
162.5

113.8
175

152.4

164.3
171.7
152.1

163.2
168.4
152.1

126.5
177.6
161.2

126.3
178.3
160.6

178.4
216.6
147

234.9
276.5
130.2

49.1
134.1
163.6

109.3
176.7
148.5

120.4
168.6
150.5

133.8
162.4
151.7

129.6
184.4
154.7

122.1
177.1
156.4

195.7
234.3
138.9

223.5
268.9
129.8

81.8
162.3
148.1

90.2
167.1
145.7

78.9
158.6
148

83.3
159.3
150.6

117.3
179
152

121.5
178.1
154

176.9
226.9
134.5

83.8
180.5
128.2

60.1
149.9
146.5

42.9
140.8
147.3

56.5
149.9
144.7

66.6
153

147.6

88.2
164.4
148.5

95.9
165.4
150.2

45
152.8
129.4

16.9
138.8
128.1

104.1
148.8
157.9

129.8
164.1
163.8

182.1
190.8
170

116.6
146.3
171.1

162.2
180.4
167.8

141.1
175.4
160

167.7
207.9
148.2

243.2
272

136.4

117.1
158.6
157.2

154.4
181

161.9

191.8
198.3
168.1

142.9
164.7
168.8

189.9
199.8
165.9

176.1
199.2
158.6

200
229.6
147.2

222.7
256.1
138.2

90
145.4
153.7

118.1
160.8
158.6

180.7
194.5
165.3

132.3
160
167

147
173.7
163.7

150.9
185

157.3

189.7
224.4
146.1

238.2
267.5
137.1

103.4
158.9
152

102.7
155

156.1

194
208.1
162.2

142.8
172.7
163.8

111.2
153.6
162.1

112.8
163.8
155.2

152.6
203.8
144

247.7
278.5
133.2

95.7
160.7
148.9

106.1
164.7
152.9

165.1
196.8
158.6

157.8
188.3
161

131.9
173.9
158.7

130
180.1
153

180
226.6
142.3

233.9
272.4
133

40
130.8
145.9

115.1
176.8
150

126.1
176.6
155.8

145.8
186.5
158.1

118
170.1
157.3

117
176

150.8

211.9
251.8
140.2

216.4
264.1
132

84.6
165.8
144

101.2
173.7
147.1

63.9
141.2
153.8

88.2
154.1
155.7

111
170

155.1

137.1
194.2
148.6

149.7
215.2
138.9

92.2
186

130.7

54
150.1
142.2

38.7
138

143.9

64.3
148

147.8

68
147.3
150.1

76
155
148

104.1
180.4
143.6

36.4
145.5
137

21
142.1
132.3

1083.1

−199.7

22.2

−116.8

−19.9

−11.2

17.9

45.7

234.2

−40.5

42.8

−84.9

8.8

−38.8

47.7

28.7

−113.4

55.5

−39

99.8

−11.5

−19.1

6.1

18.4

68.1

−54.2

22.3

−32.5

6.3

3.8

−31.4

8.2

−54.9

38.6

−5.8

−22.4

26.4

17.1

28.8

−3.6

−12.5

−3.4

20.7

7.5

−15.9

25

−12

21

−25.1

−24.8

−5.2

−25

7.8

−19.4

15.8

−1.7

−2.6

0.4

−10.1

17.6

−10.1

−1.5

4.7

7

8 x

135

6 x

−33

7 x

3

7 x

−17

9 x

−2

12 x

−1

25 x

1

36 x

1

6 x

39

6 x

−7

7 x

6

9 x

−9

11 x

1

18 x

−2

32 x

1

46 x

1

5 x

−23

7 x

8

8 x

−5

11 x

9

19 x

−1

28 x

−1

39 x

0

48 x

0

8 x

9

10 x

−5

12 x

2

15 x

−2

28 x

0

32 x

0

44 x

−1

49 x

0

12 x

−5

13 x

3

20 x

0

26 x

−1

34 x

1

41 x

0

52 x

1

56 x

0

20 x

−1

29 x

0

29 x

1

44 x

0

55 x

0

52 x

0

61 x

0

50 x

0

26 x

−1

30 x

−1

35 x

0

40 x

−1

52 x

0

57 x

0

60 x

0

52 x

0

31 x

0

28 x

0

28 x

0

31 x

1

39 x

0

46 x

0

51 x

0

50 x

0

Figure 1.3: Left, example cover image. Right, the same image JPEG compressed using
“quality factor 75” (quantization factors half of those in (1.4)). Corresponding 8 × 8
blocks are magnified below the image, annotated with their Y , Cb, Cr values (to 1 d.p.):
the very rough colour approximation is evident. At the bottom, the DCT coefficients for
the luminance component of the same block are displayed; on the left for the original
image, and how they are approximated in the JPEG file.

1.5. EXAMPLE: EMBEDDING IN JPEG IMAGES 25

called spatial-domain embedding). Once we understand what a JPEG file is, cover
modification is not too difficult. Clearly we cannot change LSBs of pixel values in an
image and expect these bits to remain unscathed when the file is JPEG compressed. The
modifications need to be at the level after information is lost, so that the payload is
not lost, and that means modifying quantized coefficients. If we perform steps (i)-(iv) of
JPEG compression, we find ourselves with 8×8 blocks of integers which are the quantized
coefficients:

Cp,r[u, v], for u, v ∈ {0, 1, . . . , 7}, 0 ≤ p < dM/8e, 0 ≤ r < dN/8e.

They are reconstructed exactly by the receiver/decompressor/extractor (re-ordering and
lossless compression are completely reversible), so we modify them to encode the payload.

In principle we could use the same embedding operation as for raw images, visiting the
quantized (luminance10) coefficients in pseudorandom order, and overwriting the least
significant bits with the payload. Unfortunately this tends to lead to visible artefacts
in the images unless the quantization factors are very small: suppose that we take a
JPEG-compressed image and change just one DCT coefficient in one block, say changing
C[u, v] by adding 1 to it. Decompression is a linear operation, so the effect on the pixels
is to add to the corresponding luminance block B the matrix

Q[u, v]Au,v.

So the effect of the single DCT change is to add an oscillating 8 × 8 block to the cover.
Consider that if u and v are not both small, Q[u, v] might be as high as 25, 50, or
even higher (depending on the quality factor). This means that the magnitude of the
oscillations might be 25 or more, out of a possible range 0–255: this is going to be
particularly visible in parts of an image which did not have much gradient to start with
(e.g. sky).

A proper solution to this problem took many years to develop, and we will come to it
in chapter 3. But an early attempt, which proved quite effective, was the following rule
of thumb: don’t change zero quantized coefficients. By and large, coefficients which are
not quantized to zero have low quantization factors, or occur in blocks which are already
very noisy. There is another reason to avoid creating new nonzero coefficients: it will
change the size of the .jpg file, and that might lead to a detectable signature. Another

10In the literature, it is almost always the luminance component which is used for embedding, with the
chrominance channels left unaltered. Partly this is because changes to the chrominance channels can be
quite visible, but use of chrominance channels has not been properly explored.

26 CHAPTER 1. STEGANOGRAPHY

heuristic, usually followed in JPEG steganography, is to ignore the ‘DC’ (flat basis block)
(0,0) modes altogether, because changes to them are visible as brighter or dimmer 8× 8
squares.

So how about visiting all the nonzero non-DC coefficients Cp,r[u, v], using something like
the LSB to convey payload? Now there is the non-shared selection channel problem:
when reading the stego object, Bob cannot tell the difference between zeros which were
not used for embedding and zeros which were created by embedding changes (he should
skip the former and read LSBs from the latter). A poor solution was adopted by the
program JSteg11, probably the first software to offer steganography in JPEGs; it avoids
both 0 and 1 quantized coefficients, and then uses LSBR on the rest. As we shall see
in the next chapter, that breaks a strong symmetry of quantized coefficients (quantized
value −a occurs almost equally as often as +a, for any a) and is very easily detectable.

An alternative embedding operation which uses LSBs but preserves symmetry is

s
[
πk(j)

]
=


c
[
πk(j)

]
, if m[j] = c

[
πk(j)

]
(mod 2)

c
[
πk(j)

]
− 1, otherwise, if c

[
πk(j)

]
> 0

c
[
πk(j)

]
+ 1, otherwise, if c

[
πk(j)

]
< 0

(1.5)

It is known as F5, and was described in the publication (Westfeld, 2001). There, the
extractor skips all zero coefficients. So we need to pair it with a more complicated method
for embedding:

(i) Traverse the quantized DCT coefficients in pseudorandom order as determined by
the secret key, skipping all zeros.

(ii) Use the F5 embedding operation to embed one bit of payload in each nonzero
coefficient.

(iii) But if this creates a new zero it will be skipped by the extractor, so repeat embed-
ding the same bit at the next nonzero coefficient.

Capacity in JPEG images is usually measured as bits per nonzero DCT coefficient (abbre-
viated bpnc) and the repeated embedding of the F5 algorithm means that the capacity is
usually around 0.7–0.8 bpnc. We will call (1.5) the F5 embedding operation, and the
algorithm above the F5 algorithm. JPEG images have smaller capacity than raw: our
cover example contained 120 000 pixels and under LSBR its capacity is 360 000 payload

11http://zooid.org/~paul/crypto/jsteg/

1.6. ACTIVE WARDENS 27

bits; In the JPEG version there are d400/8e · d300/8e · 64 = 121 600 DCT coefficients
but only 54 629 are nonzero and the published F5 implementation12 reports an estimated
capacity of 36 840 bits.

The effect of the F5 embedding operation is to pull coefficients towards zero; this weakness
leads to detectors, but they are nowhere near as sensitive as for JSteg or spatial-domain
LSBR embedding. For the F5 algorithm, the embedding efficiency is lower than 2 bits
per change and the repeated embedding causes an even greater increase in the number
of zero DCT coefficients, an effect known as shrinkage, which makes it more detectable.
Later versions of the F5 software include a method known as matrix embedding, which
is a method to increase embedding efficiency at small payloads; we will come to this in
chapter 3.

In chapter 3 we will solve the non-shared selection channel problem and be able to use the
F5 embedding operation without shrinkage (re-embedding the same bit multiple times).
We will also be able to perform adaptive embedding, which locates the embedding
changes in those parts of an image where, we hope, they are least detectable. Typically
this would mean edge areas and noisy textures. Before these problems were properly
solved, the F5 algorithm was a de facto standard (for at least 2001–2007) and has been
widely studied, so it makes for a good example in this course.

1.6 Active Wardens

Active Wardens are not within the scope of this syllabus. In realistic applications of
steganography, it is not very likely that a Warden will be active (can one imagine an
intelligence agency tampering with digital media transmitted over the internet, trying
to disrupt covert communication?). However, social media websites do tend to recom-
press, and sometimes resize, the images and videos uploaded to them, which is not an
active Warden trying to damage the payload but nonetheless presents a challenge for the
steganographer; as yet, there is relatively little literature on this topic.

Active Wardens are central to the part of information hiding known as digital water-
marking. The aim of watermarking is to include secret information in the cover which
an enemy cannot remove unless they completely ruin the quality of the cover (one can, of
course, always destroy hidden information by blanking an image completely). The main

12http://code.google.com/p/f5-steganography/

28 BIBLIOGRAPHY

application is to identify and protect copyrights of digital media, for example by embed-
ding an individual watermark in each copy of a pre-release video, so that a leaker can
be identified. A non-security application, recently proposed by Digimarc Corporation, is
to replace barcodes scanned at supermarket checkouts by watermarks spread throughout
the packaging: then the item can go through the scanner in any orientation.

The payload will be a lot smaller than in steganography, and must be embedded in a
redundant way, often using techniques related to spread spectrum communications.
Interesting contemporary research includes finding ways to defeat the collusion attack,
in which a number of differently-watermarked copies of the same cover are merged by
colluding pirates.

In order to avoid confusion, we repeat the essential difference between steganography
and watermarking: in the former, the enemy tries to detect the hidden payload; in the
latter, the enemy tries to disrupt the hidden payload. Fundamentally, the limitations of
steganography are about the decision functions of the enemy, which through information
theory is susceptible to mathematical analysis. On the other hand, the limitation in
digital watermarking is how much the Warden is allowed to tamper with the carrier,
which depends on human perception and thus is difficult to capture formally.

Bibliography

Fridrich, J. (2010). Steganography in Digital Media: Principles, Algorithms, and Ap-
plications. Cambridge University Press.

Hopper, N. J., Langford, J., & von Ahn, L. (2002). Provably secure steganography.
In Advances in Cryptology: Proceedings of CRYPTO 2002, volume 2242 of Lecture
Notes in Computer Science (pp. 77–92). Springer. Available at http://eprint.iacr.

org/2002/137/.

Kahn, D. (1996). The history of steganography. In Proceedings of 1st Information Hiding
Workshop, volume 1174 of Lecture Notes in Computer Science (pp. 1–5). Springer.
Available at http://books.google.co.uk/books?id=gWdiyTlEBIIC&pg=PA1.

Ker, A. D. (2004). Improved detection of LSB steganography in grayscale images. In
Proceedings of 6th Information Hiding Workshop, volume 3200 of Lecture Notes in
Computer Science (pp. 97–115). Springer. Available at http://www.cs.ox.ac.uk/

andrew.ker/docs/ADK09D.pdf.

BIBLIOGRAPHY 29

Ker, A. D. (2005). Resampling and the detection of LSB matching in colour bitmaps. In
Security, Steganography, and Watermarking of of Multimedia Contents VII, volume
5681 of Proceedings of SPIE (pp. 1–15). SPIE. Available at http://www.cs.ox.ac.

uk/andrew.ker/docs/ADK11B.pdf.

Knuth, D. E. (1998). The Art of Computer Programming Volume 2 – Seminumerical
Algorithms. Addison-Wesley, 3rd edition.

Pevný, T. & Ker, A. D. (2014). Steganographic key leakage through payload meta-
data. In Proceedings of 2nd ACM Workshop on Information Hiding and Multimedia
Security (pp. 109–114). ACM. Available at http://www.cs.ox.ac.uk/andrew.ker/

docs/ADK62B.pdf.

Sharp, T. (2001). An implementation of key-based digital signal steganography. In
Proceedings of 4th Information Hiding Workshop, volume 2137 of Lecture Notes in
Computer Science (pp. 13–26). Springer. Available at http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.60.5380.

Simmons, G. J. (1983). The prisoners’ problem and the subliminal channel. In Advances
in Cryptology, Proceedings of CRYPTO ’83 (pp. 51–67). Plenum Press. Not freely
downloadable. For students only, available at https://www.cs.ox.ac.uk/teaching/

materials13-14/advsec/ThePrisonersProblem.pdf.

Westfeld, A. (2001). F5–a steganographic algorithm. In Proceedings of 4th Information
Hiding Workshop, volume 2137 of Lecture Notes in Computer Science (pp. 289–302).
Springer. Available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
115.3651.

30 BIBLIOGRAPHY

Chapter 2

Steganalysis

Reading (course text): Fridrich, §5.1.1, 10.1–2, 11.1.3, parts of chapter 12

Alternatives &
further depth:

Böhme, §2.3.2, 2.10.1–3
Schaathun, §2.3, 6.1, 8.2, 10.3, 14.1

Security is almost always defined in terms of the opponent: a system is secure if we prevent
them achieving their attack goal. The enemy of the steganographer is the Warden, who
is performing steganalysis, trying to detect the hidden data. In this chapter we take
the role of the Warden and see how steganalysis can be achieved. As well as being
an important topic in its own right, it allows us to understand better the weaknesses
of stegosystems, and it will motivate the steganographic advances to be presented in
chapter 3.

We must first clarify the attack model, which is the amount of information available
to the Warden, and then review briefly the decision theory which covers the general
topic of detection. Then we see examples of two types of steganalysis: specific methods
which target an embedding weakness (in our example, spatial-domain LSBR), and general
methods which apply machine learning techniques to train a detector to recognise stego
objects by example. Genuine experimental results are included.

Finally, we discuss how the topic of steganalysis has recently widened to include scenarios
more general than the classic Prisoners’ Problem, and briefly mention the techniques used

31

32 CHAPTER 2. STEGANALYSIS

to perform steganalysis when there are multiple actors, multiple images, and incomplete
information about the cover sources.

2.1 The Warden’s Knowledge

In other literature the Warden is also called a steganalyst, attacker, or adversary.
Their aim is to uncover Alice and Bob’s information hiding scheme, by determining the
presence or absence of hidden data in stego/cover objects.

In the last chapter we mentioned Kerckhoffs’ Principle, which (loosely summarised as “as-
sume the enemy knows the system”) is an acknowledged axiom in cryptography research
because it makes a conservative assumption: the cryptographer cannot accidentally un-
derestimate their opponent. There are more components to a stegosystem than just the
embedding and extraction algorithms, and more realistic scenarios in which the eaves-
dropper knows less, and the literature has not always been clear about exactly what the
Warden is supposed to know.

At the time of writing, I know of no published work identifying all the different possible
scenarios for steganalysis. Here is a partial attempt to do that, first codifying the level
of the Warden’s knowledge about the embedding:

(A∗) The Warden knows the content of the hidden payload and the embedding algorithm
used.

(A) The Warden knows the length of the hidden payload, but not its content, and knows
the embedding algorithm used.

(B) The Warden knows the embedding algorithm used, but nothing about the payload.

(C) The Warden does not know the embedding algorithm used.

and second about the source of covers:

(1) The Warden knows the exact characteristics of Alice’s cover source.

(2) The Warden does not know the exact characteristics of Alice’s cover source, but
can learn about it by seeing examples.

(3) The Warden does not have information about Alice’s cover source, but can learn
about a similar one by seeing examples.

(4) The Warden knows nothing about Alice’s cover source.

2.1. THE WARDEN’S KNOWLEDGE 33

In addition, we might consider variations in what the Warden knows about the secret key
generation algorithm, which is relevant to exhaustion attacks, but we will not do that here.
We could identify finer distinctions in the above lists, as well. More importantly, there
are new possibilities arising when there are multiple actors (in our analogy, prisoners)
sending multiple communications; see subsection 2.5.

Steganography is usually measured against situation (A)(2): if the stegosystem is not
reliably detectable even when an adversary knows the embedding and extraction algo-
rithms, plus the length of payload they are searching for, and when they can learn about
the cover source empirically, then the embedding is secure. We generally do not consider
situation (A∗) because, as we said in subsection 1.2, an embedder should avoid known (or
chosen!) plaintexts attacks by encrypting prior to embedding. As for knowledge about
the covers, this is a contemporary topic: much theoretical work, like that we shall see in
chapter 4, assumes case (1), and most experimental work assumes case (2), but case (3)
is probably the most likely.

Although a stegosystem which is reliably detectable in situation (A)(2) is not ‘secure’,
this does not mean that it will never be used, and we still need detection techniques
that work in more difficult scenarios. Even case (C)(4), in which the Warden seems to
have no information on which to base a decision, is not entirely hopeless if Alice sends
many communications, which the Warden can cluster into two identifiably different types
of object (cover and stego). Dealing with unknown embedding algorithms (C), and so-
called mismatched covers (3), is something of research interest at the moment.

Whatever the scenario, steganalysis in real-world objects (as opposed to theoretical con-
structions) is never perfect. We need to measure its accuracy, and such measurement
comes from decision theory.

2.1.1 Receiver Operating Characteristic

Recall that the Warden seeks a decision function D : C → {Positive,Negative} which
classifies an object as cover or stego correctly, with as high a probability as possible. For
technical reasons we should allow D to include randomness in its decision. The Warden
can make two types of error:

• A false positive (type I error), D(x) = True when x is actually an innocent cover.

• A false negative (type II error), D(x) = False when x is actually a stego object.

34 CHAPTER 2. STEGANALYSIS

Given a decision function, a stochastic (random) source of covers1, and a particular
embedding algorithm and payload size, we can measure the probability of these errors,
respectively α and β. In machine learning literature the probability 1−α is called speci-
ficity, and 1 − β is called sensitivity or (in statistical terminology) power. Steganog-
raphers tend to stick to calling α the false positive rate and β the false negative
rate.

The performance (accuracy) of the detector can be represented as a single point (α, β) ∈
[0, 1]2. But almost all detectors can vary their sensitivity, by adjusting some parameter in
the detection process (as we shall see next, adjusting a threshold is usually the simplest
way to do this), whereby they can be tuned to be more sensitive – more false positives but
fewer false negatives – or, conversely, less sensitive. Tracing out the set of all pairs (α, β)
as the sensitivity is varied creates a curve called the receiver operating characterstic
(ROC), a name using old-fashioned language which reflects its history in 1940s radar
development. Conventionally, the false positive (α) rate is shown on the x-axis, and true
positive/power (1− β) rate on the y-axis. Some examples are shown in Figure 2.1.

The ROC therefore describes the accuracy of a detector, with curves nearer to the top-left
corner representing better detection, and a 45◦ line representing random guessing (one
can achieve α = 1 − β by ignoring the input and giving a positive detection at random,
with probability α). Unfortunately, it is not always easy to say that one detector is
“better than” another, when the curves cross: the application determines whether a
higher false positive or false negative rate is preferred. Fridrich discusses some ways to
reduce the ROC curve to a summary detector “score” in (Fridrich, 2010, §10.2.4). In
steganalysis it is more complicated still, because the ROC depends on the size of the
embedded payload: most likely the detector gets better (gives fewer false negatives for
any given false positive rate) as the payload causes more or larger changes to the cover.

2.2 A Simple Example of Steganalysis

To illustrate the decision-theoretic concepts around steganalysis, we will start with an
extremely simple example, perhaps the first example of statistical steganalysis to be
published. Given a sequence x, for example encoding RGB values of a raster image or

1This implies a probability distribution over all covers, which is tricky to define properly. A rough-
and-ready definition is to say that the cover is an image taken at random from all those produced by a
particular cover source.

2.2. A SIMPLE EXAMPLE OF STEGANALYSIS 35

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

1
−

β

Figure 2.1: Some examples of ROC curves. α is the false positive rate and 1 − β the
detection rate. The dotted line at 45◦ indicates a useless random guess. The dashed
line represents a detector which is unquestionably better – with lower false positive and
negative rates – than either of the solid lines, but either of the solid lines might represent
a better choice than the other, depending on the application.

quantized coefficients in a JPEG, we can produce the histogram which we will denote
h,

h[j] = # {i |x[i] = j}.

The elements of histogram are sometimes called bins. For the example cover image in
Figure 1.1, we display the histogram of all its RGB values (pooled, though on other
occasions one might want to separate the colour channels) in Figure 2.2. Below left, we
zoom in on the bins 12–27. Below right, the partial histogram of the same image after
embedding to maximum capacity (3 bpp) by LSBR. Below middle, where the image has
only half of its pixels used for embedding, 1.5 bpp payload.

Right away, we can see a weakness of LSBR embedding. What has happened, for a reason
which will be explained in section 2.3, is that pairs of histogram bins h[2i] and h[2i+ 1],
are being pulled together by the embedding, until with maximum payload they are almost
equal: this is called the “pairs of values” effect. The same thing happens, very reliably,
in other images as well.

(Incidentally, the same can be seen in the DCT domain. Recall from subsection 1.5.2 that
the JSteg embedding operation works like LSBR, but on the quantized DCT coefficients

36 CHAPTER 2. STEGANALYSIS

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

fr
eq

ue
nc

y

0
10

00
20

00
30

00
40

00
50

00
60

00

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

fr
eq

ue
nc

y

0
10

00
20

00
30

00
40

00
50

00
60

00

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

fr
eq

ue
nc

y

0
10

00
20

00
30

00
40

00
50

00
60

00

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

fr
eq

ue
nc

y

0
10

00
20

00
30

00
40

00
50

00
60

00

Figure 2.2: Above, complete histogram of the RGB values for the cover image in Fig-
ure 1.1. Below, a selection of 16 histogram bins: left, the cover image; middle, with
payload of 1.5 bits per cover pixel (50% capacity); right, with a payload of 3 bits per
cover pixel (100% capacity). The pairs of values effect is apparent.

2.2. A SIMPLE EXAMPLE OF STEGANALYSIS 37

−20 −15 −10 −5 0 5 10 15 20

fr
eq

ue
nc

y

0
50

10
0

15
0

−20 −15 −10 −5 0 5 10 15 20

fr
eq

ue
nc

y

0
50

10
0

15
0

Figure 2.3: Left, histogram of the quantized DCT values (divided by their quantization
level) for the (0, 4)-mode for the JPEG cover image. Right, the corresponding histogram
when the JSteg embedding operation is simulated for a 100% capacity payload. The
colours mark the parity of the histogram bins. As well as the pairs of values effect, the
symmetry of the cover histogram is broken by the embedding.

of a JPEG file and omitting all coefficients with value 0 or 1. In Figure 2.3 we show the
histogram of the (0, 4)-DCT mode (i.e. the coefficients Cp,r[0, 4] for all p and r) of the
JPEG version of our cover image, and after simulating the JSteg embedding operation.
We see the “pairs of values” effect, and also that the cover histogram is approximately
symmetrical, with this symmetry broken by embedding.)

So even without knowing much about Alice’s covers, we can already construct a steganog-
raphy detector for LSBR in spatial- or transform-domain images. Given an image, we

38 CHAPTER 2. STEGANALYSIS

extract its histogram and compute the so-called chi-square value2

T =

127∑
i=0

(
h[2i+ 1]− h[2i]

)2
h[2i+ 1] + h[2i]

. (2.1)

The formula arises as a suitably scaled measurement of how far apart are all the pairs of
histogram counts h[2i+1] and h[2i]. If some histogram bins are empty (which sometimes
happens for values near 0 or 255), terms with zero denominator should be excluded. In
stego objects, according to our observation, T should be fairly close to zero, whereas in
cover objects it should be significantly greater than zero. (You will prove the effect of
LSBR payload on T , in the exercises.)

As often happens, the Warden has produced a scalar value T which should be higher (or
in this case lower) when steganography is present. They can create a decision function
D(x) by setting a threshold τ :

D(x) =

{
True, if T (x) ≤ τ ,

False, if T (x) > τ .
(2.2)

(Or in other cases with the positive decision above rather than below the threshold.)
Decreasing τ in (2.2) means that fewer positive decisions will be made, the probability
of false positives reduces but the probability of false negatives increases. Conversely,
increasing τ means more false positives and fewer false negatives. This is an example
of how easily the Warden can trade false positives for false negatives by adjusting the
sensitivity of their detector.

The chi-square detector is not very sensitive. To measure its accuracy in real images, we
took a set of 1600 colour PNMs (all taken with the same camera, and subject to minimal
processing to convert the raw camera CCD output to pixels), each sized 2000 × 1500
pixels. We measured the statistic (2.1) for each cover, and then again when randomly-
generated relative payloads of p = 0.2, 0.4, . . . , 1 bits per cover byte (1.8M, 3.6M, . . . ,
9M bits of payload) were embedded using LSBR. From this data we can estimate the
false positive and false negative rates3 as we vary the detection threshold τ , and draw
the ROC for each payload size. This is shown in Figure 2.4.

2This detector is called the chi-square detector because there is a weak relationship between (2.1) and
the chi-square distribution from statistics. Do not be fooled: most literature follows the original (West-
feld & Pfitzmann, 1999) in making this connection and then derives a so-called probability of embedding
value from T , but this is comes from a misconception about the nature of conditional probability. The

2.2. A SIMPLE EXAMPLE OF STEGANALYSIS 39

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

1
−

β

p = 0.2
p = 0.4
p = 0.6
p = 0.8
p = 1

Figure 2.4: ROC curves for the chi-square detector as observed in 1600 images, 3
megapixel RGB, with payload p bits per cover byte embedded by LSBR.

Although the detector achieves perfect accuracy – no observed false positives or false
negatives at all – when the payload is the maximum possible, the accuracy quickly falls
back when the payload is smaller, to barely above random at p = 0.2 bits per cover byte.
This is because we can say something useful about the value of (2.1) in stego images with
full payload but cannot say much about it in cover images. In fact it varies a lot in cover
images, and causes lots of false positives unless the detection threshold is very low.

Plotting ROC curves, for a range of payload sizes, obtained by calculating the detection
value on a large library of real-world covers, is the correct way to measure the accuracy
of any steganalysis technique. Scalar summaries of the ROC, as in (Fridrich, 2010,
§10.2.4), can also be calculated. But we must take care not to over-interpret results for
one set of covers, because they might be an artefact of the cover source not repeated in
general, and modern reputable publications proposing new steganalysis methods should
provide experimental results observed in a number of different sets of cover images. Over-
interpretation of results observed in images from only one source, or in too few images
for statistical rigour, is an easy trap to fall into.

chi-square quantile is not a measure of probability in this situation.
3It is an estimate – of the probabilities α and β when images are picked at random from the same

source – because it comes from a finite set of samples. 1600 samples is enough for reasonable accuracy,
but this data tell us less about the accuracy of the same detector in images from a different source, which
might have quite different characteristics.

40 CHAPTER 2. STEGANALYSIS

2.3 A Structural Attack on Spatial-Domain LSBR

In this section we analyze the parity structure of the LSBR embedding operation, which
explains the “pairs of values” effect. On its own it does not lead to a powerful detector,
but the same analysis in pairs of pixels can be extremely powerful. We give a simplified
example of a detector called couples, based on pairs of pixels, which can even estimate
the size of the hidden payload.

Detectors of this type appeared first in (Fridrich et al., 2001) and (Dumitrescu et al.,
2002), and then many related techniques in a hodge podge of different notations. At first
the relationships between the different techniques were unclear, and it was not until (Ker,
2005) that the so-called structural detectors were unified in a common framework and
notation. The example which will be presented in this section is simpler than any which
have been published, but it is reasonably easy to see how to extend it, and see (Fridrich,
2010, p. 233) for discussion of other structural detectors.

2.3.1 Parity Structure

Let us explain the “pairs of values” effect. First, we want to model the embedding
stochastically (randomly). Suppose that a cover image c is turned into a stego image s
with a payload which is proportion p of the maximum. (In a n-pixel RGB colour image,
the payload is 3np.) Take one random pixel in the cover: since the payload is spread into
the cover by a pseudorandom permutation, there is probability p that this pixel is used
for payload, and probability 1 − p that it is ignored by the embedding and extraction
processes4.

Let us re-word once more the formula for LSB replacement (1.1), taking each pixel at a
time:

s[i] =


c[i], if location i was not used for embedding,

c[i], if location i was used for embedding but already had the correct LSB,

c[i] + 1, otherwise, if c[i] is even,

c[i]− 1, otherwise, if c[i] is odd.

4A technicality for pedants only: these probabilities are not quite independent, because if pixel number
one is used for embedding it makes it fractionally less likely that pixel number two is also used. But the
effect of this tiny dependence can be ignored.

2.3. A STRUCTURAL ATTACK ON SPATIAL-DOMAIN LSBR 41

Figure 2.5: Graphical representation of the effect of LSB replacement on histograms.

Given an assumption of random payload bits (or at least bits uncorrelated with the cover)
we can say that the probability of any location having the payload bit already is 1

2 . So
putting this together we have

s[i] =


c[i], with probability 1− p

2 ,

c[i] + 1, with probability p
2 if c[i] is even,

c[i]− 1, with probability p
2 if c[i] is odd.

(2.3)

We can represent this graphically in Figure 2.5: for a pixel which originally lies in his-
togram bin h[2i], there is probability 1 − p

2 that it remains there, probability p
2 that it

moves into histogram bin h[2i+ 1], and conversely.

This is the structural property of LSBR: even-valued pixels might be left alone or
incremented, but never decremented, and conversely for odd-valued pixels. It leads to
predictable relationships between stego histograms and cover histograms.

For a fixed cover image, with histogram h, let us model embedding with a random key
and random payload of length 3np: in this case, the histogram of the stego object h′ is
also random. But we can compute the expected (average) value of its counts, which comes
from (2.3), and for large numbers of pixels we can assume that the observed stego object
has histogram approximately equal to its expectation5 giving us the linear equations(

h′[2i]
h′[2i+ 1]

)
≈
(

1− p
2

p
2

p
2 1− p

2

)(
h[2i]

h[2i+ 1]

)
. (2.4)

5Technically we are using the fact that a binomial random variable Bi(m, q) has mean mq, and the
law of large numbers.

42 CHAPTER 2. STEGANALYSIS

This equation explains the histograms seen in Figure 2.2: when p = 1, we have h′[2i] ≈
1
2(h[2i] + h[2i + 1]) ≈ h′[2i + 1], and when 0 < p < 1 the pairs of values h′[2i] and
h′[2i+ 1] are pulled close together in proportion to p.

However this equation is not terribly useful for steganalysis. Although it relates the cover
to the stego image in an interesting way, it lacks an important component: the expected
behaviour of histograms for natural cover images. Although histograms of natural cover
images tend to be fairly “smooth”, this is not true at peaks, and the smoothness varies
widely depending on the source of the images and the image processing operations which
were involved in acquiring it from a camera or scanner. That is why the chi-square
statistic makes for a weak detector.

2.3.2 Structural Steganalysis

It only takes a small generalization, though, to create powerful steganalysis. Instead of a
simple histogram, let us look at an adjacency histogram or co-occurrence matrix,
which counts how often every pair of pixels intensities occur as neighbours.

h[j, k] = # {i |x[i] = j and x[i+ 1] = k}.

Here we intend the order of data in the representation x to be such that neighbouring
pixels have neighbouring values, for example by concatenating row scans of red, green,
and blue bytes. One can include vertical as well as horizontal neighbouring pixels in the
counts, and also symmetrise, but it makes no difference to the subsequent analysis (nor
much to the outcomes).

The pairs of values effect also applies to adjacency histograms: a pair of pixels can change
between bins h[2i, 2j], h[2i, 2j+1], h[2i+1, 2j], and h[2i+1, 2j+1], depending on whether
the first and/or second pixel in the pair has its LSB flipped. Modelling the embedding
as independent changes to pixels, as in the previous subsection, leads to the diagram in
Figure 2.6.

In turn, we reach the following set of linear (approximate) equations h′[2i, 2j]
h′[2i, 2j+1]
h′[2i+1, 2j]

h′[2i+1, 2j+1]

 ≈
(1− p

2)2 p
2 (1− p

2) p
2 (1− p

2) (p
2)2

p
2 (1− p

2) (1− p
2)2 (p

2)2 p
2 (1− p

2)
p
2 (1− p

2) (p
2)2 (1− p

2)2 p
2 (1− p

2)
(p
2)2 p

2 (1− p
2) p

2 (1− p
2) (1− p

2)2


 h[2i, 2j]

h[2i, 2j+1]
h[2i+1, 2j]

h[2i+1, 2j+1]

 . (2.5)

2.3. A STRUCTURAL ATTACK ON SPATIAL-DOMAIN LSBR 43

Figure 2.6: Graphical representation of the effect of LSB replacement on adjacency his-
tograms.

44 CHAPTER 2. STEGANALYSIS

Now we invert the system of equations, by inverting the matrix. It is easy to check that h[2i, 2j]
h[2i, 2j+1]
h[2i+1, 2j]

h[2i+1, 2j+1]


≈ 1

(1− p)2

 (1− p
2)2 −p

2 (1− p
2) −p

2 (1− p
2) (p

2)2

−p
2 (1− p

2) (1− p
2)2 (p

2)2 −p
2 (1− p

2)
−p

2 (1− p
2) (p

2)2 (1− p
2)2 −p

2 (1− p
2)

(p
2)2 −p

2 (1− p
2) −p

2 (1− p
2) (1− p

2)2


 h′[2i, 2j]

h′[2i, 2j+1]
h′[2i+1, 2j]

h′[2i+1, 2j+1]

 (2.6)

which expresses the histogram of the original cover in terms of the histogram of a stego
image and the payload rate p.

In order to make a powerful detector, we need to find a property which is true of cover
images and tends to fail for stego images (note that this is the reverse of the situation with
the chi-square detector). It took researchers a while to come up with such a property, not
helped by notation which obscured what was really going on, and it turns out that there
are a number of possible options. For our detector we will use this following equation
(sometimes called a symmetry):∑

i

h[2i, 2i+ 1] ≈
∑
i

h[2i+ 1, 2i+ 2]. (2.7)

Why should this be true in covers? Both sides of the equation relate to the number
of pairs of adjacent pixels differing by one. The LHS is the number of such pairs with
the first pixel even, and the RHS is the number with the first pixel odd. It certainly
makes sense that (2.7) should be approximately true in natural images, because even and
odd values should not be related to subsequent pixel differences. It can be established
empirically that it fails for stego images, and one could construct a statistic analogous to
chi-square, but in fact we can use (2.7) to do something even more powerful.

Let us extract two equations from (2.6): with j = i,

h[2i, 2i+1] ≈ 1

(1− p)2

(
−p

2(1− p
2)h′[2i, 2i] + (1− p

2)2h′[2i, 2i+1]

+ (p2)2h′[2i+1, 2i]− p
2(1− p

2)h′[2i+1, 2i+1]

)
(2.8)

2.3. A STRUCTURAL ATTACK ON SPATIAL-DOMAIN LSBR 45

and with j = i+2,

h[2i+1, 2i+2] ≈ 1

(1− p)2

(
−p

2(1− p
2)h′[2i, 2i+2] + (p2)2h′[2i, 2i+3]

+ (1− p
2)2h′[2i+1, 2i+2]− p

2(1− p
2)h′[2i+1, 2i+3]

)
. (2.9)

Now we can sum (2.8) and (2.9) over i, substitute into (2.7) – all of which is left as an
exercise – and we reach a quadratic equation for p which depends only on h′. In other
words, we have found an approximate equation for the size of the unknown payload, in
terms solely of the stego object and with no knowledge of the cover except for a belief in
(2.7).

2.3.3 Performance of Simplified Couples

An estimator of p is called a quantitative steganalyzer (or estimator), because it fulfils
a forensic tool beyond simple detector: it allows the Warden to estimate the size of
the payload sent by Alice6. The simplified couples method has created a quantitative
steganalyzer, and it is just the tip of the iceberg when it comes to estimators based on
structural analysis of LSBR.

For a start, we can make additional assumptions about covers –
∑

i h[2i, 2i + 3] ≈∑
i h[2i + 1, 2i + 4],

∑
i h[2i, 2i + 5] ≈

∑
i h[2i + 1, 2i + 6], etc. – and need to work

out how to combine all the assumptions. Then we could move to analysis of triplets of
pixels or even quadruples, which become much more complicated, with the estimator for
p being the result of a polynomial of degree 4, 6 or higher. Many of my papers in the
period 2004–2008 were on this topic.

But even the simplified detector we just presented is quite powerful. First, we can use
its output as a decision function (give positive detection if the payload estimator exceeds
a threshold). We used the same set of images as in section 2.2 and plotted ROCs for
detection of relative payloads p = 0.05, 0.1, . . . , 0.25 bits per cover byte. This is shown
in Figure 2.7, and compare it with the same experiment for the chi-square detector in
Figure 2.4: the simplified couples detector maintains low false positive and false negative
rates even when the payload is much smaller, and has practically perfect detection for

6More precisely, it estimates the number of embedding changes made by Alice. If Alice should happen
to embed a large payload which requires few changes, the Warden cannot possibly hope to know: when
a location carries payload without a change it is, by definition, not detectable.

46 CHAPTER 2. STEGANALYSIS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

1
−

β

p = 0.05
p = 0.1
p = 0.15
p = 0.2
p = 0.25

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
estimate of p

fr
eq

ue
nc

y

0
10

0
20

0
30

0
40

0

p = 0
p = 0.2

Figure 2.7: ROC curves for the simplified couples detector as observed in 1600 images, 3
megapixel RGB, with payload p bits per cover byte embedded by LSBR.

payloads as low as p = 0.2. More sophisticated structural detectors can reliably detect
payloads as low as 0.01–0.02 bits per cover byte, but a lot depends on the cover source.
(For example, we shall see in chapter 4 that one expects smaller relative payloads to be
more detectable in larger images.)

We can also measure the accuracy of the forensic tools, estimating the size of hidden
payload. We will not go into this, beyond looking at the results from the experiment on
the right of Figure 2.7: when the payload is zero, the estimate is usually close to zero, and
when the payload is 0.2 bits per cover byte, the estimate is usually close to 0.2. In this
case the estimator is worst for high payloads, but this can be avoided by constructing
more complicated estimates. In the literature the accuracy is often measured by the
mean and variance of the estimate compared with the true payload, although this can
be dangerous if the true variance is infinite (a theoretical possibility which can never be
determined experimentally) so some have advocated robust measures of accuracy, such
as median error and interquartile range.

The same structural methods, by the way, can also be applied to JPEG steganography
schemes that use LSBR as their underlying embedding operation. JSteg is particularly
vulnerable.

2.4. GENERAL ATTACKS USING MACHINE LEARNING 47

2.4 General Attacks using Machine Learning

Targeted steganalysis, of the type in previous section, is hard work. A researcher has
to study the effect of embedding on histograms, or something similar, until they spot a
statistic which is stable in cover images and changes when payload is added. A different
statistic might be needed for every different embedding algorithm. For example, the chi-
square and couples statistics are completely ineffective in detecting LSBM embedding (as
we will see in Figure 2.8): by behaving consistently on cover pixels of different parity,
LSBM avoids all the structural defects of LSBR and is much more difficult to detect.
There is an example in (Fridrich, 2010, §11.4), which summarises some of the literature
on this, and shows how poor the detectors are.

An alternative method for steganalysis rose to dominance over the period 2004-2010,
gradually displacing most targeted attacks (apart from those which, like structural de-
tectors, manage to exploit a particularly gross weakness). The idea is to use machine
learning algorithms to do the work. There are three components to machine learning
steganalysis:

(i) A set of features, a collection of statistics for each image. Often adjacency his-
tograms, or similar counting statistics, are used.

(ii) A set of training data, which comes from a large library of innocent cover images
(from the same source as Alice’s, or a very similar source). Using the steganography
algorithm, a matching set of stego images (usually all with the same sized payload)
are also created.

(iii) A machine learning algorithm or learner which, having been fed the features from
the training cover and stego data, is supposed to learn a general rule for separating
cover images from stego images.

After being trained, the rule can be used to classify novel images as cover or stego.

This sets up the steganalysis problem as a supervised binary classification problem, which
pins it firmly to the type (A)(2) we described in section 2.1. It is important that the
training data comes from a source which is the same as, or very closely matched with,
Alice’s. Otherwise the learner might find rules which do not apply to the real data on
which Warden wants to use it. The problem of mismatched training data in steganalysis
is of current research interest.

48 CHAPTER 2. STEGANALYSIS

2.4.1 Average Perceptron

Let us suppose that a feature extraction function φ : C→ Rk computes k real (or integer)
features φ(x) from every object. We use y = ±1 for the label, which takes −1 when x
is a cover image and +1 when x is a stego image. Many learners try to find a linear
classifier

ŷ = sign(w · φ(x)) (2.10)

where ŷ means the estimated label that corresponds to x, and sign(−) is the function
which makes nonnegative numbers to 1 and negative numbers to −1. Training the learner
amounts to finding weights w7, typically to minimize classification errors on training
data. Nonlinear classifiers are more general but usually more difficult to find/train, and
there are various tricks for reducing nonlinear problems to linear ones. See (Bishop,
2006) for more information about machine learning in general.

Given some labelled training data, {(xi, yi) | i = 1, . . . , n}, finding a good choice for w
can be attempted in many ways. It is quite likely that no perfect w exists and “good
choice” means that the classifier should work correctly – as often as possible – on ex-
amples not in the training data. One of the simplest algorithms for learning w is the
average perceptron, the history of and justification for which we will not go into here;
see (Bishop, 2006, §4.1.7) for more details. The perceptron algorithm is as follows:

(i) Set w = wa = 0.

(ii) Pick a random element (x, y) ∈ {(xi, y) | i = 1, . . . , n}.
(iii) If sign(w · φ(x)) 6= y (i.e. training example i is misclassified) then w=w + yφ(x).

(iv) Set wa = wa + w, return to step (ii).

The vector wa is tracking the running average (the scalar constant is irrelevant) of the
vector w, which is being updated according to the perceptron rule. It may be necessary
to repeat steps (ii)–(iv) many more times than n, so that each training point is visited
multiple times, before wa converges to a stable vector. It is this wa which is used, after
training, to classify novel objects by (2.10).

The perceptron does not usually make the most of its training data, though, and more
complicated algorithms – particularly the kernelized support vector machine (KSVM)

7In order to allow some bias into the classifier, we can generalize a bit to ŷ = sign(w ·φ(x) + b) simply
by adding a constant 1 to the features of every image; the weight element corresponding to this 1 works
as b. See any book on machine learning for more explanation.

2.4. GENERAL ATTACKS USING MACHINE LEARNING 49

– dominated the steganalysis literature for the period roughly 2004–2011. But such
complicated learning algorithms are slow to train, and this limits both the length of the
feature vector (to a maximum of a few hundred features in practice) and the size of the
training data (to a few thousand examples). Contemporary steganalysis is now using
so-called rich features, first proposed in (Kodovksý & Fridrich, 2011), which involve
much larger and rather generic counting features, typically 10000-50000 per image. They
must use simpler classifiers such as perceptron or Fisher linear discriminator (FLD),
often combining the results of many simple classifiers built on random subsets of features
(a so-called ensemble classifier). This is a topic of current research.

2.4.2 SPAM Features

We will illustrate the paradigm of machine learning steganalysis using a simple feature
set which we call reduced SPAM. They are inspired by the SPAM8 features proposed
in (Pevný et al., 2010), but the reduced features are simpler to describe and still sufficient
to show how this type of steganalysis can work.

Good features should encode enough information about the presence of hidden data for
the learning algorithm to find a good classification rule, but not be swamped by irrelevant
information about the image content. Although early feature sets were inspired by the
same sort of analysis as in section 2.3.2, researchers later realised that non-specialised
feature sets would have better generality. So they usually boil down to elaborations of
histograms, adjacency histograms, and so on.

The reduced SPAM features will be based on an adjacency histogram, but of a filtered
image. Representing an image as an n-byte vector x where consecutive elements come
from horizontal neighbours, we compute pixel differences:

x̂[i] = x[i+ 1]− x[i], for i = 1, . . . , n− 1.

The purpose of the filter (which can be a lot more complex than the so-called Laplacian
filter given here) is to reduce the effect of image content on the features, while leaving
the effect of stego noise (alterations due to embedding changes) mostly unchanged. The
elements of x̂ are integers, not necessarily positive.

Then we compute an adjacency histogram from the filtered image,

h[j, k] = # {i | x̂[i] = j and x̂[i+ 1] = k}.
8Subtractive Pixel Adjacency Matrix

50 CHAPTER 2. STEGANALYSIS

The reduced SPAM features will be normalized elements of h. In order to keep down
the dimensionality of the features (and hence the number weights to be learned by the
classifier), we use only the central part of the adjacency histogram

φ(x) =

(
h[j, k]∑T

j,k=−T h[j, k]

∣∣∣∣ j, k ∈ {−T, . . . , T}
)

(2.11)

where T is big enough to include useful data but small enough to keep the dimension
(2T + 1)2 down. We will use T = 4, so that (2.11) gives 81 features from each image.

The real SPAM features differ in three important ways:

(i) They use filters in multiple directions: horizontal, vertical, and diagonal differences.

(ii) They are based on the frequency of triples rather than pairs, thus h[j, k, l] =
{i | x̂[i] = j and x̂[i+ 1] = k and x̂[i+ 2] = l}. This leads to higher dimension-
ality, and the standard SPAM features have dimension 686.

(iii) They normalize in a different way, computing empirical conditional probabilities
P[x̂[i] = j | x̂[i+ 1] = k and x̂[i+ 2] = l] instead of simple counts.

These changes make the features more powerful, more able to distinguish stego ob-
jects with smaller payloads from covers. And recent work has extended SPAM-style
features still further, combining features extracted from different image filters (Fridrich
& Kodovský, 2012). The dimensionality is a few thousand features per image, which
necessitates efficient processing and speedy learners.

2.4.3 Detecting LSBM by Reduced SPAM Features

Let us see how well the reduced SPAM features work, in combination with the average
perceptron learner. We will test against LSBM, where the specialised structural detectors
are not effective.

We used the same set of 1600 images as in section 2.2, but split into 800 for training and
800 for testing (it is vital to test machine learning classifiers on data they have not seen
before). 82 features – the reduced SPAM features plus a constant 1 – were extracted from
the 800 training cover images, and the 800 corresponding stego images with maximum
LSBM payload (1 bit per cover byte). These were fed into an average perceptron learner
which produced a weight vector w.

2.4. GENERAL ATTACKS USING MACHINE LEARNING 51

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

1
−

β

Simplified SPAM
Simplified Couples

Figure 2.8: ROC curves for the detector created by training an average perceptron learner
on reduced SPAM features, and the simplified couples detector (which does not work),
when the payload is 3bpp embedded using LSBM.

The weight w was then used to test features from the other 800 covers, and corresponding
stego images. In order to create a ROC curve, we set thresholds on the raw output of
the decision function

D(x) =

{
True, if w · φ(x) ≥ τ ,

False, if w · φ(x) < τ ,

replacing the usual sign decision function by one whose sensitivity can be varied. Note
that this is typically not the optimal way to alter the false positive/negative tendency
of a machine learning classifier: instead, one should change the learner itself, penalizing
one type of error over the other. But this is very slow to change, requiring a re-train for
every point of the ROC, and is not used in steganalysis.

The ROC produced by this method, and that for the simplified couples detector, are
shown in Figure 2.8. Observe that the couples detector barely works at all because
LSBM does not have parity structure (that its performance is above random is due to
some cover images which are over/underexposed; LSBM and LSBR behave identically on
such pixels). Despite our SPAM features being simplified and reduced, and our use of a
simple learner, we still have very good detection accuracy. It does fall off, however, for
smaller payloads (experiments not included here) and LSBM payloads of around 0.1 bits
per cover byte are difficult to detect accurately, even with state-of-art steganalysis.

52 CHAPTER 2. STEGANALYSIS

2.4.4 Features for JPEG Steganography

Machine learning steganalysis was first used for JPEG images, against embedding meth-
ods like F5 and its contemporaries. The ideas are similar, using counts of the number of
times different quantized DCT coefficients are observed. With DCT coefficients there are
more different versions of “neighbour”: the neighbouring coefficient from the same 8× 8
block, or the corresponding coefficient in a neighbouring block. So the feature sets are
a bit more complex to define, though the ideas are much the same as for spatial-domain
features.

There are also different ways to filter a JPEG image. Coefficient differences are used,
but an important method is called calibration. Here, the idea is to get a peek at the
cover characteristics when (as usual) only the stego object is available, by decompressing
the JPEG file, cropping it (by say 4 pixels on the top and left) to desynchronize the
8 × 8 boundaries, and recompressing. Calibration has proved to be a powerful addition
to JPEG feature sets, although why it actually works can be a bit mysterious.

We will not say more about steganalysis of JPEG images here, save to mention that
the F5 algorithm, which we saw in subsection 1.5.2, is basically detected because of the
histogram changes of the embedding operation changing only towards zero. Shrinkage
makes this effect much worse.

2.5 The Wider Picture

Our chapter has focused on case (A)(2) from section 2.1. This is appropriate for testing
the security of a stegosystem, because it tests the undetectability of the embedding in
a situation favourable to the detector. But practical steganalysis will not always be so
favourable.

Quantitative steganalysis turns a classification problem into a regression problem, and
can deal with case (B), where the Warden does not know the payload length. But such
detectors are currently rare, except for LSB embedding (but see (Pevný et al., 2012) for
use of the machine learning paradigm in quantitative steganalysis). Almost all literature
applying binary classifiers to steganalysis neglect this case; one publication (Pevný, 2011)
examines this situation and finds that training with random payloads works quite well.

Case (C) is called blind steganalysis9. It is difficult to define precisely because the

9The book (Fridrich, 2010) seems to conflate the idea of using machine learning with detecting
unknown algorithms. In fact, there are plenty of targeted detectors built on machine learning algorithms.

BIBLIOGRAPHY 53

Warden is supposed to detect any kind of embedding, including methods they have never
thought of, but not falsely flag unusual images which have been subject to innocent
alteration such as image processing. There is some work applying anomaly detectors
to steganalysis, usually replacing two-class supervised classification algorithms with one-
class supervised machines. Unsupervised techniques can also be used.

Only recently has there been work on case (3), where the detector has to be trained
on data which is not an exact match for Alice’s cover source. Simpler classifiers tend
to generalize a little better, and the technique of ‘calibration’ (sect. 2.4.4) seems to be
important. But for realistic conditions we need to reconsider the Prisoners’ Problem in
two ways.

First, why did the Warden know which of Alice’s image to look at? Mostly likely they
would not, and Alice would send a stream of communications, only a few of which contain
hidden payload. There are two interesting questions here. How should Alice allocate her
payload amongst multiple images: put all of it into a few images, or spread it amongst all
of them? And how can the Warden detect this, without being swamped by false positives
if Alice sends many innocent images, or without missing all the little bits of evidence
that should accumulate if Alice sends a little payload in every object? These problems
were posed in (Ker, 2006) and there has been little success in answering the questions
definitively.

Second, why did the Warden know that Alice, out of all the prisoners, is the one doing
secret communication? In practice, a Warden would be a person or agency monitoring a
network or social media site, scanning every image from every user without knowledge of
which user might be a steganographer, or which of their images are the ones with payload.
Some recent work looked at this as a problem of clustering or anomaly detection but on
the level of actors (users/prisoners) rather than individual objects (Ker & Pevný, 2014).
This even allows consideration of case (4), where the Warden knows nothing of Alice’s
source, because they calibrate their expectation of users by the behaviour of the majority:
it is completely unsupervised.

These topics are the subject of a recent survey paper, which looks at making steganogra-
phy and steganalysis research more applicable to real world problems (Ker et al., 2013).

Bibliography

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

54 BIBLIOGRAPHY

Dumitrescu, S., Wu, X., & Wang, Z. (2002). Detection of LSB steganography via
Sample Pair Analysis. In Proceedings of 5th Information Hiding Workshop, volume
2578 of Lecture Notes in Computer Science (pp. 355–372). Springer. Apparently not
freely downloadable, but subscribers can read it at SpringerLink.

Fridrich, J. (2010). Steganography in Digital Media: Principles, Algorithms, and Ap-
plications. Cambridge University Press.

Fridrich, J., Goljan, M., & Du, R. (2001). Reliable detection of LSB steganography
in color and grayscale images. In Proceedings of 3rd ACM Workshop on Multimedia
and Security (pp. 27–30). ACM. Available at http://ws2.binghamton.edu/fridrich/

Research/acmwrkshp_version.pdf.

Fridrich, J. & Kodovský, J. (2012). Rich models for steganalysis of digital images.
IEEE Transactions on Information Forensics and Security, 7(3), 868–882. Available
at http://dde.binghamton.edu/kodovsky/pdf/TIFS2012-SRM.pdf.

Ker, A. D. (2005). A general framework for the structural steganalysis of LSB re-
placement. In Proceedings of 7th Information Hiding Workshop, volume 3727 of
Lecture Notes in Computer Science (pp. 296–311). Springer. Available at http:

//www.cs.ox.ac.uk/andrew.ker/docs/ADK13D.pdf.

Ker, A. D. (2006). Batch steganography and pooled steganalysis. In Proceedings
of 8th Information Hiding Workshop, volume 4437 of Lecture Notes in Computer
Science (pp. 265–281). Springer. Available at http://www.cs.ox.ac.uk/andrew.ker/

docs/ADK18D.pdf.

Ker, A. D., Bas, P., Böhme, R., Cogranne, R., Craver, S., Filler, T.,
Fridrich, J., & Pevný, T. (2013). Moving steganography and steganalysis
from the laboratory into the real world. In Proc. 1st ACM Workshop on Infor-
mation Hiding and Multimedia Security (pp. 45–58). ACM. Available at http:

//www.cs.ox.ac.uk/andrew.ker/docs/ADK57B.pdf.

Ker, A. D. & Pevný, T. (2014). The steganographer is the outlier: Realistic large-
scale steganalysis. IEEE Transactions on Information Forensics and Security, 9(9),
1424–1435. Available at http://www.cs.ox.ac.uk/andrew.ker/docs/ADK58C.pdf.

Kodovksý, J. & Fridrich, J. (2011). Steganalysis in high dimensions: Fusing classifiers
built on random subspaces. In Proceedings of SPIE/IS&T Electronic Imaging: Media
Watermarking, Security, and Forensics III, volume 7880 (pp. 0L01–0L13). SPIE.
Available at http://dde.binghamton.edu/kodovsky/pdf/Kod11spie.pdf.

BIBLIOGRAPHY 55

Pevný, T. (2011). Detecting messages of unknown length. In Proceedings of
SPIE/IS&T Electronic Imaging: Media Watermarking, Security, and Forensics
III, volume 7880 (pp. 0T01–0T12). SPIE. Not freely available, but the con-
ference presentation slides are at http://www.researchgate.net/profile/Tomas_

Pevny2/publication/253393301_Detecting_messages_of_unknown_length/links/

00b7d537336d31d34e000000.pdf.

Pevný, T., Bas, P., & Fridrich, J. (2010). Steganalysis by subtractive pixel adjacency
matrix. IEEE Transactions on Information Forensics and Security, 5(2), 215–224.
Available at http://ws2.binghamton.edu/fridrich/Research/paper_6_dc.pdf.

Pevný, T., Fridrich, J., & Ker, A. D. (2012). From blind to quantitative ste-
ganalysis. IEEE Transactions on Information Forensics and Security, 7(2), 445–454.
Available at http://www.cs.ox.ac.uk/andrew.ker/docs/ADK41D.pdf.

Westfeld, A. & Pfitzmann, A. (1999). Attacks on steganographic systems. In
Proceedings of 3rd Information Hiding Workshop, volume 1768 of Lecture Notes in
Computer Science (pp. 61–76). Springer. Available at http://users.ece.cmu.edu/

~adrian/487-s06/westfeld-pfitzmann-ihw99.pdf.

56 BIBLIOGRAPHY

Chapter 3

Countermeasures

Reading (course text): Fridrich, §8.1–4, 9.1, 9.4

Alternatives &
further depth:

Fridrich, rest of chapters 8 & 9, Appendix C
Böhme, §2.8.2

Having seen the sorts of techniques with which the Warden can detect payload, we now
return to the role of the steganographer. This chapter examines different ways to avoid
detection. Naive ideas, such as trying to preserve the histogram when embedding, do
not work. But when Alice’s embedding uses coding, where the changes she makes to
the cover are not simply to overwrite parts of it with her payload, steganography can
be performed with fewer changes (making it harder to detect). Coding also, as a bonus,
helps solve the non-shared selection channel problem which affects F5.

There are connections with classical coding theory, but we will try to avoid getting drawn
into this subject. Chapters 8 and 9 of (Fridrich, 2010) give the connections in much
more detail. We will use a minimum of coding terminology, and prove a simplified theorem
to illustrate the bound on embedding efficiency.

Finally we outline how to perform “optimal” embedding, if not all embedding changes
are equally dangerous, which minimizes changes to a distortion function. Recent research
has found interesting connections with statistical physics.

57

58 CHAPTER 3. COUNTERMEASURES

3.1 Preserving Histograms

The first countermeasures to statistical steganalysis were based on a simple idea. If
the Warden can detect us by some function of the image histogram, we should fix the
embedding process to reduce the change to the histogram, or to ensure that there is no
change at all to the counts in each histogram bin. For example, half of the pixels could
be used to hide payload in the usual way, and the other half modified solely with the aim
of restoring the original histogram.

Two notable embedding algorithms which try to preserve the histogram are OutGuess1

and Steghide2. The algorithm used by OutGuess was described in (Provos, 2001):
its main aim is to preserve not only the global histogram (in JPEGs, of quantized DCT
coefficients) but also the histograms within local regions of the image, and it also contains
a few other minor tweaks aiming to improve embedding efficiency. The Steghide algorithm
comes from (Hetzl & Mutzel, 2005), which gives a graph-theoretic formulation of the
following problem: try to exchange pixels, rather than change any of them. If pixels are
exchanged, the histogram cannot be altered at all. Naturally, we must take care only to
exchange pixels with similar values, else the result is visible.

There is a problem with these approaches. Although one might successfully preserve a
histogram, what is to stop the opponent (the Warden) from making a decision based on
an adjacency histogram? If one tries to preserve the entire adjacency histogram (not
easy), the opponent could use 3rd-order data such as frequencies of pixel triplets. Indeed,
trying to preserve the histogram of an image usually causes more changes to the adjacency
histogram, and so on.

With modern steganalysis, which uses a wider range of features than simple histograms,
embedding algorithms such as OutGuess and Steghide are comprehensively broken. In-
deed, OutGuess is one of the most easily detectable steganography systems for JPEG
files (Pevný & Fridrich, 2007). Of course it is easy, with hindsight, to see the flaws in
their design, but it is the nature of research for progress to be made by breaking previous
work.

1The original website http://www.outguess.org/ has gone, but a version of OutGuess was re-
released in 2014 at http://www.outguess-rebirth.com/. At the moment it appears to have the
same poor security.

2http://steghide.sourceforge.net/

3.2. IMPROVING EMBEDDING EFFICIENCY 59

3.2 Improving Embedding Efficiency

If we cannot preserve all the possible features in the cover, we should try to change them
as little as possible. That is, we want as few embedding changes as possible. Recall
that the embedding efficiency is the reciprocal of the average number of changes per
payload bit embedded; this section is about increasing the embedding efficiency.

We have already mentioned that the payload should be losslessly compressed prior to
embedding. We take this as given. If the compressed payload is of maximum length (for
example 1 bpnc if we hide in LSBs of nonzero DCT coefficients of a JPEG, or 3 bpp
if we hide in raw colour images) then there is nothing we can do to improve efficiency.
But if the payload is of less than maximum length then we have some flexibility: we
can convey information in the choice of pixels changed, as well as their contents. When
information is conveyed indirectly it is called coding. We then need a clever way for the
recipient to extract that information, without knowledge of the original cover; the idea
was first proposed by Ron Crandall on a steganography mailing list, but was not formally
published until some time later.

To reason about coding, we need to decompose the embedding operation. Sadly, not all
literature makes this decomposition explicit.

3.2.1 Decomposing the Stegosystem

Recall the definition of the embedding and extraction functions:

Emb : C×K×M→ C,
Ext : C×K→M.

We suppose that embedding can be broken down into three parts, which we next describe
with reference to examples we have previously seen. We shall be a bit more concrete about
the cover and message: let us say that the cover is n elements from an alphabet Σ (e.g. n
quantized DCT coefficients, which are integers), and the message is m < n symbols from
an alphabet Γ (e.g. a binary string of length m). Thus C = Σn, M = Γm, and K can
remain arbitrary.

At the lowest level, there is an operation which extracts one message symbol from one
cover element:

ExtSym : Σ→ Γ.

60 CHAPTER 3. COUNTERMEASURES

For example, this might read the LSB from an integer, or its remainder (mod 3). Similarly,
there is an operation to change a cover element to hold a specified message symbol

EmbSym : Σ× Γ→ Σ.

This could be the LSBR or F5 embedding operation, and is also allowed to behave
randomly (e.g. LSBM). The correctness criterion is that ExtSym(EmbSym(c),m) = m
for all m ∈ Γ and c ∈ Σ. Note that these low-level operations are unkeyed and work on
single elements at a time.

At the second level, there is an operation which converts a string of n message symbols
into the true message, using the key:

Decode : Γn ×K→ Γm,

and a corresponding function to turn one string of n message symbols into another which
encodes a desired message:

Code : Γn ×K× Γm → Γn.

In the examples we have seen, these might simply use the key to read or write m of the
n symbols in a certain order, but we shall see how to improve on this. The correctness
criterion is that Decode(Code(b,k,m),k) = m.

Finally, the embedding and extraction functions are constructed by combining the en-
coding and decoding operation with the low-level operation, thus3

Emb(c,k,m) = zipwith EmbSym c Code(map ExtSym c, k, m),

Ext(c,k) = Decode(map ExtSym c, k).

This presentation cannot directly describe stegosystems where certain cover elements
are skipped depending on their value (like the F5 algorithm), but we return to that in
section 3.3.

3We are using functional notation

map f (x1, . . . , xn) = (f(x1), . . . , f(xn)), and

zipwith g (x1, . . . , xn) (y1, . . . , yn) = (g(x1, y1), . . . , g(xn, yn)).

3.2. IMPROVING EMBEDDING EFFICIENCY 61

3.2.2 Using Syndromes

We will illustrate improved-efficiency embedding with a simple example. Take a tiny
cover with 7 elements (perhaps intensity bytes or quantized DCT coefficient integers),
and suppose that the desired message length is 3 bits: n = 7, m = 3. We can write

c = (c1, . . . , c7).

We will use the LSBM operations for manipulating individual symbols:

ExtSym(c) = c (mod 2)

and

EmbSym(c, b) =


c, if ExtSym(c) = b already,

1, if ExtSym(c) 6= b and c = 0,

254, if ExtSym(c) 6= b and c = 255,

c± 1, otherwise, where ±1 is picked at uniformly random.

We will write
b = (b1, . . . , b7)

for the LSBs of the cover, b = map ExtSym c.

Now define a binary matrix H by

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 . (3.1)

This matrix comes from coding theory. It is the parity-check matrix of a Hamming code.
All we need to know about coding theory is that a matrix (over some field, probably
binary) is called the parity-check matrix of an [n, k] code if it of dimension (n −
k)×n and its rows are linearly independent. Note that our matrix algebra, including the
definition of linear independence, must be over the right finite field: in this case, binary
arithmetic.

Let us pretend that there is no embedding key for a moment (it simplifies the presentation,
but in practice the key could be used to scramble the order of bits in the cover). Now
using binary (mod 2) arithmetic, we can define

Decode(b′) = Hb′,

Code(b,m) = b + H-1(m−Hb).
(3.2)

62 CHAPTER 3. COUNTERMEASURES

When H is a parity-check matrix for a code then Hb is called a syndrome of b; the
message m is communicated as the syndrome of the vector Code(b,m).

Now H-1 is not to be taken as a literal inverse because non-square matrices do not have
inverses. H-1(x) means “find some vector e such that He = x”. A solution is guaranteed
to exist if the rows of H are linearly independent. Then

Decode(Code(b,m)) = H
(
b + H-1(m−Hb)

)
= Hb + m−Hb = m.

In this case, because the columns of H in (3.1) are all the nonzero sequences of 3 bits,
the solution to He = x very easy to compute: if x = 0 then e = 0, otherwise e =
(0, . . . , 0, 1, 0, . . . , 0) where the 1 is in position i if x is column i of H.

This stegosystem communicates a relative payload (in this context denoted α) of α = 3/7
bits per cover element. What is the embedding efficiency (denoted e)? As always, this is
taken as an average over random messages:

With probability 1
8 , m = Hb already: e = 0. Zero changes.

With probability 7
8 , m 6= Hb and so e contains one nonzero element: only one of the

seven cover element needs to have its LSB flipped. One change.

For an average of 7
8 changes it communicates 3 message bits, an embedding efficiency of

e = 3/78 ≈ 3.43. This is considerably higher than the value 2 which would be obtained
by choosing three fixed (given by the key) cover elements and changing their LSBs if
necessary. The reason this is possible is because the embedder has a choice of which
cover elements to change, hence communicating more information than flipping fixed
elements. The recipient does not need to know the original cover, or to know exactly
which elements were changed; they only need to compute the syndrome.

Of course, real covers are much larger than 7 elements. We could use this code by splitting
the cover into groups of 7, embedding 3 bits of payload in each (perhaps in pseudorandom
order specified by the secret key). Thus for any payload which is no greater than 3/7
times the total number of embedding locations, and with a low-level embedding operation
which puts one bit into one cover element, we can use the code to achieve an embedding
efficiency of 3/78 ≈ 3.43. What about relative payloads of greater than 3/7? Well, we
could embed by simple overwriting in some of the groups of 7, and use the code in others.
This achieves an embedding efficiency of somewhere between 2 and 3.43. In general one
can mix-and-match different codes over different groups of pixels.

3.2. IMPROVING EMBEDDING EFFICIENCY 63

3.2.3 Hamming Codes

More generally, embedding using syndromes has the following form. Given the parity-
check matrix H of an [n, k] code, we use a keyed version of (3.2) to perform encoding
and decoding. The underlying payload symbols Γ should come from the same field as
H, so for example if we use ternary embedding then H is a matrix with entries (mod
3). Because H is (n − k) × n, we will be embedding n − k payload symbols in n cover
locations, for a relative embedding rate of α = (n− k)/n.

If
Code(b,k,m) = b + e(b,k,m)

then nonzero elements of e are the locations of the embedding changes, and so we want
e to have minimum Hamming weight (number of nonzeros). When we use a syndrome
code with matrix H, then e should be a minimal Hamming weight solution to He = x.
This is called a coset leader and then efficient embedding involves finding matrices H
such that

(i) coset leaders have small Hamming weight (if the average Hamming weight of a coset
leader is w then the average embedding efficiency will be (n− k)/w), and

(ii) it is computationally feasible to find coset leaders.

If the matrix H is random and n is large then it can be infeasible to find a coset leader. It
is not just a case of solving the simultaneous equations He = x, but of finding the solution
e with minimum Hamming weight, and in general this is an NP-complete problem. But
for structured codes, where H has been suitably designed, coset leaders can be found
quickly.

The example in the previous subsection used a structured matrix H, which is one of a
family called the Hamming codes, and it is easy to see how to generalise it. For any
integer p ≥ 2, the parity-check matrix of the [2p − 1, 2p − p − 1] binary Hamming code
has columns which are all the different nonzero vectors of length p. The coset leaders
are found in the same way as before. To solve He = x, if x = 0 then e = 0, otherwise
e = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is in position i if x is column i of H. By arranging
the columns in binary order, one can write down i immediately.

For general p, we store p payload bits in 2p−1 cover locations, making zero changes with
probability 2−p and one change otherwise. So the overall relative payload is

α =
p

2p − 1

64 CHAPTER 3. COUNTERMEASURES

and the embedding efficiency is

e = p
2p

2p − 1
.

Note that larger p forces smaller relative payloads, but at higher embedding efficiencies.
So using p = 2, splitting a cover into blocks of size 3, allows a relative payload of up to
2/3 and an embedding efficiency of 8/3. When p = 3 we have the [7, 4] binary Hamming
code of the previous section, payloads of up to 3/7 and embedding efficiency of 24/7.
Using p = 4, allows a relative payload of 4/15 and embedding efficiency of 64/15.

Suppose that we wanted to hide 21 ·14 = 294 bits of payload in the cover from Figure 1.1.
Dividing its 360 000 embedding locations (RGB bytes) into 21 blocks of 214 − 1 (which
leaves a few thousand unused) we can take p = 14 and use the [214 − 1, 214 − 14 − 1]
binary Hamming code to embed 14 bits of payload into each block, say using the LSBM
operation, with an average of very nearly 21 embedding changes in total. Compared
with simple LSBM the payload requires approximately 7 times fewer changes, which
must surely be much less detectable. (We could do even better with codes over ternary
alphabets and ternary embedding.)

As before, we could use different combinations of these codes to interpolate between the
different relative payload sizes, with the embedding efficiency similarly interpolated. We
have left open, however, the question of how the receiver knows exactly which codes to
use to receive the payload; it could be part of the secret key, or stored in the first few
(uncoded) bits of payload.

Hamming codes are not the only option for syndrome coding. It turns out that unstruc-
tured random matrices H work better, but they have to be sparse (having relatively
few nonzeros). Sparsity allows for both high embedding efficiency and a reasonably quick
search for coset leaders (Filler, 2007). For payloads near to maximum, random codes
of small dimension are appropriate (Fridrich & Soukal, 2006). An advantage of using
random matrices H is that they can be generated (according to some algorithm which
gives the right sort of sparsity) from the secret key k, removing the need for any further
permutation of cover elements. The idea that the key tells the receiver where to find the
payload no longer holds, instead it decodes the payload for the receiver.

3.2.4 Theoretical Bounds

How efficient is it possible to be? In this section we seek an upper bound on the em-
bedding efficiency. This bound applies not only to syndrome coding (in the language

3.2. IMPROVING EMBEDDING EFFICIENCY 65

of coding theory, linear codes) but in fact to any stegosystem of the form described in
subsection 3.2.1.

Let us fix Γ = {0, 1}. We bound the embedding efficiency in the following way: suppose
that we have a cover of n elements and allow ourselves to make up to c changes; how big
can the payload be? Simply by counting the number of different outcomes, we could only
possibly convey

c∑
i=0

(
n

i

)
(3.3)

different messages, because that is the number of different stego objects reachable from
the cover in at most c changes. Our task is to bound (3.3).

Assume c ≤ n
2 . (There is no point using a binary coding function which makes more

than n/2 changes on average: it could only achieve an embedding efficiency of less than
2, since the payload cannot be larger than n.) Then we have

c∑
i=0

(
n

i

)
= c−c(n− c)−(n−c)

c∑
i=0

(
n

i

)(c

n− c

)c
(n− c)n

(a)

≤ c−c(n− c)−(n−c)
c∑
i=0

(
n

i

)(c

n− c

)i
(n− c)n

(b)

≤ c−c(n− c)−(n−c)
n∑
i=0

(
n

i

)(c

n− c

)i
(n− c)n

(c)
= c−c(n− c)−(n−c)nn

=
(
c
n

)−c(n−c
n

)−(n−c)
(3.4)

where the first equation is just multiplying by constants; (a) follows because c
n−c < 1,

which follows from c ≤ n
2 ; (b) is because the additional terms are all positive; (c) is just

a binomial expansion of (c+ n− c)n.

In this notation, the relative payload is defined by

α =
log2 #M

n

and therefore (3.4) gives

α ≤ − c
n log2

c
n −

n−c
n log2

n−c
n = H(cn) (3.5)

66 CHAPTER 3. COUNTERMEASURES

where H is the binary entropy function

H(x) = −x log2 x− (1− x) log2(1− x). (3.6)

This function has an important place in coding and communication theory. Because H
is monotone increasing on the range [0, 1/2), we can invert (3.5) to get

c ≥ nH-1(α). (3.7)

Now recall that the embedding efficiency is the number of bits of payload per change, i.e.

e =
αn

c
.

We can use (3.7) to get the upper bound

e ≤ α

H-1(α)
. (3.8)

Now this is not actually the bound we want, because it applies to the worst-case message:
we have shown that at least some messages must use at least H-1(α)/α changes per
payload bit, but not necessarily all. This worst-case is called the lower embedding
efficiency, and it is not quite the same as the embedding efficiency we defined using
the average number of changes over random messages. However, it can be proved (way
beyond our syllabus) that the two are equal asymptotically as n → ∞. Therefore this
bound should be considered an asymptotic limit on e for large covers.

A diagram of the relationship between α and e is displayed in Figure 3.1. Note that the
x-axis is nonlinear. It shows the bound, and also the relative payload and embedding
efficiency of the binary Hamming code family (recall that they can be interpolated by
mixing blocks of different size using different p). The least efficient is simply LSB re-
placement or matching and for large relative payloads the Hamming codes are some way
below the optimum. (It has been shown that sparse random codes come extremely close
to the bound.) For small payloads, very efficient embedding is possible; we already know
that small payloads were harder to detect, and boosted efficiency makes them even more
difficult. Therefore the lesson is to keep payloads as small as possible.

Recall our discussion of ternary embedding in subsection 1.4.1: if one is going to make
±1 changes to pixels/coefficients/whatever then we can reduce the number of changes
by using Γ = {0, 1, 2} and ExtSym(c) = c (mod 3). For non-binary alphabets the bound
(3.8) is higher; you will derive the bound as an exercise, and it is plotted in the same
figure. In fact, there is a clever trick which allows efficiency very close to that of ternary
embedding without having to re-code the payload in a ternary alphabet, which we will
mention in the next section.

3.2. IMPROVING EMBEDDING EFFICIENCY 67
2

4
6

8
10

12
14

0.001 0.01 0.1 10.02 0.05 0.2 0.5

relative payload (α)

em
be

dd
in

g
ef

fic
ie

nc
y

 (e
)

log23

LSB embedding
Ternary embedding
Bound for binary Γ
Bound for ternary Γ
Binary Hamming codes

Figure 3.1: Asymptotic bounds on embedding efficiency (y-axis), as limited by the relative
payload (x-axis, nonlinear scale). Bounds for binary and ternary alphabets are shown,
as well as the values for the binary Hamming code family.

68 CHAPTER 3. COUNTERMEASURES

3.3 Non-Shared Selection Channel

Recall the problem which arose in our discussion of F5 embedding: if the embedder wants
to skip all zero coefficients, but might create new zeros during the embedding, how does
the receiver know which zeros were skipped and which carry payload? The list of elements
in the object which carry payload is called the selection channel and F5 suffers from
the non-shared selection channel problem. In general, what to do if certain part of
the cover should not be used, but the recipient does not know which ones? This was a
thorn in the side of early steganography schemes, but there is now an elegant solution.

We can formulate this problem using the same system as subsection 3.2.1. As well as the
other functions, suppose that there is a predicate

Wet : Σn → Bn,

where B = {True,False}, which informs the embedder that certain locations are “wet”
and not for use4. We must take account of this during the coding procedure, but the
“wet” locations are not known at the decoding stage:

Decode : Γn ×K→ Γm,

Code : Γn × Bn ×K× Γm → Γn.

with the correctness condition Decode(Code(b,w,k,m),k) = m and, for all i,

w[i] =⇒ Code(b,w,k,m)[i] = b[i].

The stegosystem is combined in exactly the same way:

Emb(c,k,m) = zipwith EmbSym c Code(map ExtSym c, Wet(c), k, m),

Ext(c,k) = Decode(map ExtSym c, k).

The situation is very similar to the one we explored in the last section: with syndrome
codes the receiver does not need to know which elements were changed, so they can solve
the non-shared selection channel rather easily. In this context they are called wet paper
codes.

4The terminology “wet” comes from the first steganography publication to propose this tech-
nique (Fridrich et al., 2005). In this analogy, the steganographer cannot write on wet parts of a piece
of paper, but the paper dries before the recipient receives it.

3.3. NON-SHARED SELECTION CHANNEL 69

Suppose that a cover has n elements (or is split into blocks of n elements). Let us once
more pick a (binary, if Γ = {0, 1}) matrix H which is m× n and use Decode(b′) = Hb′.
We are using n embedding locations to convey m < n payload symbols. Suppose l of the
n cover symbols are wet, and k are dry (so n = l + k). We want to solve

Hb′ = m (3.9)

without changing the wet elements of b. This can be done by hand for small H, but more
systematically we can permute the columns of H, and the corresponding elements of b′,
to put all the wet locations at the end. Then we have

H ′



b1
...
bk
w1
...
wl


= m,

where H ′ is the column-permuted version of H, b1, . . . , bk are the symbols in the dry
cover locations, and w1, . . . , wl the symbols in the wet locations. Splitting H ′ into parts
sized m× k and m× l, we have

(
H1H2

)(b
w

)
= m

which can be rearranged to
H1b = m−H2w. (3.10)

Now it is simply a matter of solving the m × k linear equations. Will they have a
solution? Usually not if k < m (with fewer dry cover symbols than the size of the message,
embedding is usually impossible). When m ≥ k it depends on whether the matrix H1

has full rank. For random matrices, this happens with probability 1−O(2k−m), i.e. very
likely if there are a few spare dry locations compared with the size of the payload. (You
will investigate this in the exercises.) For large m and n, though, solving a system of m×k
linear equations by Gaussian elimination can be very slow (O(km2)) and researchers have
investigated techniques for using particular types of sparsity for more efficient algorithms;
one is described in (Fridrich, 2010, §9.2).

70 CHAPTER 3. COUNTERMEASURES

To make things more complicated, we would like to solve (3.9) with high embedding
efficiency, i.e. by changing few elements of b in (3.10); it amounts to finding a coset
leader (w.r.t. H1) for m−H2w−H1b. However, we cannot hope that H1 is a usefully-
structured matrix, because it is a selection of columns from H where we have no control
over the selection (it is determined by the wet cover symbols). In the absence of structure,
we must fall back to using sparse random codes or random codes with small codimension,
and the algorithms involved are rather complex (Fridrich et al., 2006).

3.3.1 Applications

Wet paper codes are used in a number of ways. We briefly survey some applications.

First, we can solve the shrinkage problem of F5. All zero DCT coefficients are marked as
wet, and the embedder uses a wet paper code (typically a keyed pseudorandom linear code
with matrix H size 18 × d18/αe, which gives a good efficiency-complexity compromise)
to embed the payload. The embedding operation is the plain F5 operation, and the
payload symbols are the LSBs of the coefficients. The receiver uses the key to reconstruct
the embedding matrix and recover the syndromes. By using a clever algorithm and
some exhaustive searching, the embedding can be done with coset leaders, substantially
increasing the embedding efficiency if the relative payload is small. This algorithm is
called no-shrinkage F5, usually abbreviated nsF5.

A similar application would be for hiding in raw images, to avoid saturated (0 or 255)
pixels. Many amateur camera images have areas of solid black or white due to over-
or under-exposure, and we have seen that to embed in these areas can present obvious
weaknesses. By marking all saturated areas as wet (and splitting the cover to try to
distribute the wet areas fairly evenly between code blocks) they can be avoided.

A powerful embedding method becomes possible if embedding is done at the same time
as JPEG compression. Recall that JPEG compression means quantization of DCT co-
efficients, so that a coefficient x becomes q[x/q]. Now if we embed in that quantized
coefficient, it will become q([x/q] + e) where e is the change, usually ±1. For some values
of x, q([x/q] + e) will be closer to the original x than others (i.e. suppose quantization
increases x, then an embedding change takes it back down a step, there is much less
overall change than if quantization increases x and embedding increases it further). We
can use wet paper codes to ensure that embedding changes which compound on quanti-
zation change are not used. This is called perturbed quantization (PQ), and there are
many ways of applying it (to any kind of quantization, not just JPEG), which are beyond

3.4. MINIMIZING DISTORTION 71

the scope of this course. They have more power than other embedding schemes because
they have some “side information”, which is knowledge of the original unquantized cover.
Such knowledge is not always available, particularly given that most digital cameras and
phones take JPEG images almost exclusively.

Finally, we mention a particularly attractive application of wet paper codes. Suppose that
we wish to get the efficiency of ternary embedding without the difficulty of transcoding
a payload into ternary alphabet. Instead, we can use the following algorithm:

(i) Using an LSB embedding algorithm, perhaps along with a syndrome code, em-
bed a binary payload of length m into a cover, remembering the locations which
are changed. Suppose that m/e embedding changes were made (the embedding
efficiency for this message was e).

(ii) Each of these m/e locations (apart from saturated ones) could be changed from c to
c+ 1 or c−1 and still contain the correct LSB. So mark all unchanged or saturated
locations as wet, and use a wet paper code to convey additional information in the
approximately m/e changed locations by the value of their 2nd-least significant bit
(i.e. element x maps to bx/2c (mod 2)).

In other words, we are able to select whether to change by +1 or −1 to convey one
additional bit of information for every change in the first stage. We have attained an
embedding efficiency of e+ 1, which is approximately what one would have achieved by
using a comparable ternary code to the binary code in step (i).

Other applications, and more details on these, are explained in §9.4 of (Fridrich, 2010).

3.4 Minimizing Distortion

The push to increase embedding efficiency implicitly assumes that all changes are equally
detectable, from which it follows that minimizing the number of changes is the best
option. This is sensible if the embedder has no idea how detectable each change might
be, but if they either have information about the possible detectors used against them, or
have built up a model of images which gives them information about which changes are
more detectable, then they may want to take this into account when embedding. Coding
that does so is called adaptive embedding.

The literature on this topic is still new, but it relies on some complicated ideas from
information and coding theory, so we present here only the simplest model for so-called

72 CHAPTER 3. COUNTERMEASURES

optimal embedding, where the changes are independent. It is a different approach
from those of sections 3.2 and 3.3.

We will not talk about the cover and stego objects directly. Instead, suppose that there
is a given fixed cover with n locations (perhaps cover elements) which could be changed
when the cover is turned into a stego object, and that the distortion associated with
changing element i is d[i]. We will say that distortion approximates detection risk, or
something related to it, and we are supposing that the overall risk of the embedding is
the average sum of the distortion of all the changes that were made. Think of d[i] as the
cost of performing change i. We are assuming that these changes are binary (that they
either happen or do not happen), and that they do not interact at all (so that one change
does not affect the distortion associated with any other). No payload is carried except
by the choice of embedding changes.

The question arises: how should the embedder choose their changes to minimize total
distortion but maximize the payload carried? In practice, for a given size payload how
do they minimize the distortion? An obvious solution is to convey m < n bits of payload
by making or not making (each carrying one bit) the changes associated with the lowest
m values of d, but this is not optimal. From a practical point of view it would not be
sensible because it allows the enemy to focus their attention on a subset of the cover (we
must assume that the enemy knows the distortion function), and it is incorrect from a
theoretical point of view because it makes the m-th-least damaging change with the same
likelihood as the least damaging change. It also denies us the embedding efficiency boost
from coding, when the payload is smaller than the cover.

As usual, let us model the payload as random. We can think of an embedding algorithm
as one which makes change i with probability p[i]. To turn optimal embedding into a
proper optimization problem, we will need to quote, in a rough-and-ready way, some
results from the information theory literature:

Fact 3.1 An upper bound on the total information (in bits) which can be conveyed
by potential changes, occurring independently with probabilities given by p, is the total
entropy ∑

i

H(p[i])

where H(−) is the binary entropy function (3.6).

(Equation (3.5) is the special case when all probabilities are equal.)

3.4. MINIMIZING DISTORTION 73

Fact 3.2 There exists suitable coding to allow the recipient to receive information very
close to this bound, without access to the original cover.

(Random codes will approach the bound asymptotically as n→∞, for fixed m/n. That
is not to say that they are efficient for the embedder.)

Given these, we want to choose the probabilities p so that the total entropy is big enough
for a message of length m < n, but that the average total distortion is minimal. The
optimization problem becomes

minimize
∑
i

p[i]d[i] subject to
∑
i

H(p[i]) = m. (3.11)

Theorem 3.3 The optimal solution to (3.11) is given by

p[i] = 1
1+2λd[i]

where λ is some positive constant which can be determined from
∑

iH(p[i]) = m.

Proof We can solve this by use of a Lagrange multiplier. Let

Λ =
∑
i

p[i]d[i] + µ
(∑

i

H(p[i])−m
)
.

Recall that H(x) = −x log2 x − (1 − x) log2(1 − x) so that H ′(x) = − log2(
x

1−x) (this is
called the logit function). Then

∂Λ

∂p[i]
= d[i]− µ log2(

p[i]
1−p[i])

which is zero if
p[i]

1− p[i]
= 2λd[i]

where λ = 1/µ. The result follows; λ must be positive in order for the stationary point
to be a minimum. �

Note that the optimal embedding involves potentially making any of the changes in the
cover5 with positive probability, but the probability is lower for locations with higher dis-
tortion. Note that the probabilistic model of embedding is determined by optimality with

5Unless we decide to model “wet” embedding locations by assigning them a distortion of ∞.

74 CHAPTER 3. COUNTERMEASURES

respect to distortion, which then must be turned into a particular embedding algorithm
(in this course we have worked the other way around).

So what sort of coding can take account of distortion? Actually, syndrome coding can
still be used, but it is generally an NP-complete problem to find He = x where the total
distortion e·d is minimal. The introduction of syndrome trellis codes (STCs) (Filler
et al., 2011) solves this problem: the parity-check matrix H is designed with the following
structure:

H =


Ĥ

Ĥ

0

Ĥ

0

. . .


where Ĥ is a small random binary matrix, typically with height around 10 and width
approximately 1/α so that the overall size of H is m×n (where m is size of payload and
n size of cover). Because each payload bit depends on only a few cover elements, and
using some dynamic programming tricks, solving He = x with minimum total distortion
is tractable. Furthermore, STCs come close to theoretical bounds called rate-distortion
curves.

There are many challenges in improving these stegosystems. First, the model ought to
be extended to allow embedding changes to interact. This is possible, and the general
solution parallels something from theoretical physics: p[i] forms a Markov Random Field
(MRF), and λ is like the inverse temperature of a physical system (Filler, 2010). MRFs
are notoriously difficult to work with, and realistically the distortion function needs to
have a particular form for the solution to be calculated. We then need a code that
allows us to embed with the specified probabilities. Because of the difficulties, almost all
adaptive embedding still uses purely additive distortion.

Most importantly, how does the embedder justify the choice of a particular distortion
function? We can think of this problem as a generalization of that in section 3.1, and the
same caveat applies: if a detector is looking at a different type of distortion from the one
minimized by the embedder, the embedding might be very detectable. The good news is
that STCs allow millions of dimensions of distortion to be measured, which is more than
the number of features feasibly used by a machine-learning detector.

The first adaptive embedding using STCs was known as HUGO (Pevný et al., 2010);

BIBLIOGRAPHY 75

it works in the spatial domain using an cost-sensitive form of LSBM. The current state-
of-the-art is a family of embedding algorithms called UNIWARD (Holub et al., 2014)
and they measure distortion of each possible change by its effect on a wavelet-transformed
version of the image, because such transform captures dependencies in multiple directions.
There is a spatial domain (raw image) version called S-UNIWARD, a JPEG version called
J-UNIWARD, and a side-informed JPEG version that makes use of the uncompressed
image from which the JPEG is derived (similarly to the PQ method that we mentioned
in subsection 3.3.1) called SI-UNIWARD.

But very recent research has started exploiting the distortion measure itself, focusing
steganalysis on the most-used parts of images and contrasting their features with those
in less-used parts. Countermeasures to the countermeasures are developing.

Bibliography

Filler, T. (2007). Minimizing embedding impact in steganography using low density
codes. Master’s thesis, Czech Technical University in Prague. Available at http:

//dde.binghamton.edu/filler/pdf/Tomas_Filler_master_thesis.pdf.

Filler, T. (2010). Gibbs construction in steganography. IEEE Transactions on Infor-
mation Forensics and Security, 5(4), 705–720. Available at http://dde.binghamton.

edu/FILLER/pdf/Fill10tifs-gibs-journal.pdf.

Filler, T., Judas, J., & Fridrich, J. (2011). Minimizing additive distortion in
steganography using syndrome-trellis codes. IEEE Transactions on Information
Forensics and Security, 6(3), 920–935. Available at http://dde.binghamton.edu/

filler/pdf/Fill10tifs-stc.pdf.

Fridrich, J. (2010). Steganography in Digital Media: Principles, Algorithms, and Ap-
plications. Cambridge University Press.

Fridrich, J., Goljan, M., Lisoněk, P., & Soukal, D. (2005). Writing on wet
paper. IEEE Transactions on Signal Processing, 53(10), 3923–3935. Available at
http://ws2.binghamton.edu/fridrich/Research/WPC_TransactionsJournal1.pdf.

Fridrich, J., Goljan, M., & Soukal, D. (2006). Wet paper codes with improved
embedding efficiency. IEEE Transactions on Information Forensics and Security,
1(1), 102–110. Available at http://ws2.binghamton.edu/fridrich/Research/wpc_

with_improved_embedding_efficiency-ieee.pdf.

76 BIBLIOGRAPHY

Fridrich, J. & Soukal, D. (2006). Matrix embedding for large payloads. IEEE
Transactions on Information Forensics and Security, 1(3), 390–395. Available at
http://ws2.binghamton.edu/fridrich/Research/large_payloads-ieee_revised.pdf.

Hetzl, S. & Mutzel, P. (2005). A graph-theoretic approach to steganography. In
Proceedings of 9th International on Conference, Communications and Multimedia
Security, volume 3677 of Lecture Notes in Computer Science (pp. 119–128). Springer.
Available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.3146.

Holub, V., Fridrich, J., & Denemark, T. (2014). Universal distortion function for
steganography in an arbitrary domain. EURASIP Journal on Information Security,
2014(1). Available at http://jis.eurasipjournals.com/content/2014/1/1.

Pevný, T., Filler, T., & Bas, P. (2010). Using high-dimensional image models
to perform highly undetectable steganography. In Proceedings of 12th Information
Hiding Conference, volume 6387 of Lecture Notes in Computer Science (pp. 161–
177). Springer. Available at http://hal.archives-ouvertes.fr/hal-00541353/PDF/

HUGO-electronic_pre_proc.pdf.

Pevný, T. & Fridrich, J. (2007). Merging Markov and DCT features for multi-class
JPEG steganalysis. In Proceedings of SPIE/IS&T Electronic Imaging: Security,
Steganography, and Watermarking of Multimedia Contents IX, volume 6505 (pp.
3–14). SPIE. Available at http://dde.binghamton.edu/tomas/pdfs/Pev07-SPIE.pdf.

Provos, N. (2001). Defending against statistical steganalysis. In Proceedings of 10th
USENIX Security Symposium (pp. 323–335). Available at http://www.citi.umich.

edu/u/provos/papers/defending.ps.

Chapter 4

Theory

Reading (course text): Fridrich, §13.2, Appendix B.2

Alternatives &
further depth: Böhme, §3.1, 3.2, 3.4

In the final chapter, we turn to the theory of steganography. We know, from chapter 2,
that larger payloads cause more distortion to a cover, and are therefore more reliably
detectable. The fundamental question is: given an acceptable level of risk for the em-
bedding, how large a payload is too large? What is the capacity? An acceptable risk
would be one where the detector is guaranteed a minimum false positive and/or false
negative rate, so that the embedder does not feel that their risk of detection is too high.

We will not usually be able to answer the question directly, but we can infer some asymp-
totic results, particularly the square root law which relates secure capacity to the size
of the cover. The difficulty is that we must reason about every possible detector, includ-
ing those which have not yet been invented; we have to use some information theoretic
arguments. Accordingly, we need abstract models of covers and of embedding, and the
former is difficult to make realistic.

The theory of steganographic capacity is new, and there are many interesting results still
to prove, and probably some surprises to uncover. It is an area of active research.

77

78 CHAPTER 4. THEORY

4.1 Probabilistic Models

In order to prove theorems about detectability, we need to model stochastically both the
effect of embedding and the covers themselves. The former can be done with a high level
of realism. The latter is bound to be difficult, otherwise image processing would be a
lot easier a discipline. The state-of-art still involves abstract cover models which cannot
capture completely the interdependencies in digital media. Nonetheless we still reach
interesting theoretical results which hold up well when tested on real data.

4.1.1 Independent Embedding

We begin with the embedding. As in section 2.3, we assume that the payload is (uni-
formly) random, and we continue with the assumption of mutually independent em-
bedding, which means that each cover location should be affected independently of the
others1. With a suitable formulation we can cover a wide class of embedding operations
including LSBR, LSBM, Ternary embedding, and F5.

Recall the decomposition of a stegosystem from subsection 3.2.1. At the lowest level, it is
the EmbSym operation which causes changes to covers. The effect of these changes can
be described by the matrix

Q[j, k] = P[EmbSym(j,m) = k], when m is chosen uniformly from Γ.

Here j and k index elements of Σ. The assumption that the inserted symbols are uniformly
random follows from the random payload assumption. For example, if the covers are
bytes, then for LSBR

Q[2j, 2j] = Q[2j, 2j + 1] = Q[2j + 1, 2j] = Q[2j + 1, 2j + 1] =
1

2
, all other Q[j, k] = 0,

and for F5

Q[j, j − 1] = Q[−j,−j + 1] =
1

2
for j > 0; all other Q[j, k] = 0.

The mutually independent embedding model is that every cover symbol is affected, in-
dependently of the value of that cover symbol and independently of whether other cover

1We previously noted that this is not quite correct, for fixed-length messages, but it is very close to
reality.

4.1. PROBABILISTIC MODELS 79

symbols are used, with some probability γ called the embedding rate which is deter-
mined by the payload size2. In simple embedding schemes, γ will be proportional to the
payload size m, for example γ = m/n in simple LSBR and LSBM, but would be slightly
superlinear (in m, if n is fixed) when improved embedding efficiency coding is used. By
focusing on γ, rather than the actual payload size, we are separating improvements due
to coding from the effect of steganography on the cover.

Suppose that a single cover symbol X can take values Σ = {1, . . . , l} and does so with
probabilities p1, . . . , pl. Under this embedding model, the distribution of the correspond-
ing stego symbol Y must be

P[Y = j] = P[X not used for embedding ∧ X = j]

+
l∑

i=1

P[X used for embedding ∧ X = i ∧ X changed to j]

= P[X not used for embedding] P[X = j]

+

l∑
i=1

P[X used for embedding] P[X = i] P[X changed to j]

= (1− γ)pj + γ
l∑

i=1

piQ[i, j]. (4.1)

4.1.2 Cover Models

Covers are more difficult to model, and we cannot hope to make a very realistic model at
this stage. In this course we will use the iid cover model, which is simply that the cover
is a random vector 〈X1, . . . , Xn〉, with n samples which we shall call “pixels”, where each
pixel is independent of every other and all pixels have the same distribution. (“iid” is
the standard abbreviation for independent identically distributed).

Of course, pixels in real digital media are not independent: dependencies are introduced
by smoothing and demosaicing (converting the output of a camera CCD, which samples

2In some literature the payload is alternatively represented by a change rate β, but we prefer to
separate the effect of the EmbSym operation from the code which uses it; in our model a cover symbol
can be used but not actually changed. Unfortunately, the coding still affects the embedding because the
likelihood of changing a used pixel does depend on the code.

80 CHAPTER 4. THEORY

only one of red, green, or blue at each pixel, into a full-colour image) in a digital camera,
by camera optics, and by the content of the picture itself. (Nonetheless, it is often the case
that we can learn interesting facts or make accurate deductions from very coarse models,
as computational linguistics has often found.) Therefore the literature has considered
more general models of images. State of the art is work on Markov chains, where each
pixel may be influenced by one neighbour (this can quickly be generalized to k-th order
Markov chains where each pixel may be influenced by a fixed number of “previous” pixels);
a big part of the technical difficulty is that independent embedding causes the stego object
not to be a Markov chain any more. One day there will be cover models based on Markov
Random Fields, which allow arbitrary dependence, and it will be interesting to see what
conditions are required for the Square Root Law (coming up in section 4.4) to hold.

4.2 A Concept from Information Theory

We need one more abstract concept, this time from information theory, called Kullback-
Leibler divergence (KL divergence or just KLD) and sometimes relative entropy.
Think of it as a measure of distance between two distributions or two random variables.
In this course we only need to define it for finite-valued random variables, which makes it
a little simpler than the fully-general version you might read about in information theory
literature.

Suppose that X and Y are discrete random variables taking the same finite set of values
{x1, . . . , xn}, where the distributions are given by

P[X = xi] = pi, P[Y = xi] = qi.

Thus pi and qi define the distributions of X and Y ; of course
∑
pi =

∑
qi = 1. Think

of X as representing a cover pixel, and Y a stego pixel. We want to measure how much
difference the embedding caused, by how much it affected the cover distribution. There
are a number of distances between random distributions, for example total variation,
1
2 maxi |pi−qi| or Hellinger distance

√
1
2

∑
i(
√
pi −

√
qi)2, but it is KL divergence which

has the right properties to make it work for us here.

The KL divergence is given by

DKL(X ‖ Y) =
n∑
i=1

pi log
pi
qi

4.2. A CONCEPT FROM INFORMATION THEORY 81

and you can see that the actual values {x1, . . . , xn} themselves are irrelevant to it3. For
the definition to make sense, qi > 0 for exactly the same i where pi > 0 (pi = qi = 0
is permissible if we use the convention that 0 log 0/0 = 0). For our purposes it will be
convenient to restrict attention to cases when none of the pi or qi is zero.

The first crucial property is that KL divergence is additive for independent random
variables. Suppose that X and Y take values x1, . . . , xm with probabilities p1, . . . , pm
and q1, . . . , qm, and that X ′ and Y ′ take values x′1, . . . , x

′
n with probabilities p′1, . . . , p

′
n

and q′1, . . . , q
′
n. If X is independent of X ′ (i.e. P[X = xi ∧ X ′ = x′j] = pip

′
j) and Y is

independent of Y ′ then

DKL

(
〈X,X ′〉 ‖ 〈Y, Y ′〉

)
=

m∑
i=1

n∑
j=1

pip
′
j log

pip
′
j

qiq′j

=
m∑
i=1

n∑
j=1

pip
′
j log

pi
qi

+ log
p′j
q′j

=
m∑
i=1

pi log
pi
qi

(
∑

j p
′
j) +

n∑
j=1

p′j log
p′j
q′j

(
∑

i pi)

= DKL(X ‖ Y) +DKL(X ′ ‖ Y ′)

from which it follows (by induction, or by adapting the above proof), that if 〈X1, . . . , Xn〉
are independent and 〈Y1, . . . , Yn〉 are independent then

DKL

(
〈X1, . . . , Xn〉 ‖ 〈Y1, . . . , Yn〉

)
=

n∑
i=1

DKL(Xi ‖ Yi). (4.2)

When objects consist of many independent samples (e.g. pixels in the iid cover model)
then it is easy to calculate the KL divergence caused by embedding, by summing it over
the different samples.

A note of caution: KL divergence is not symmetric, so in general DKL(X ‖ Y) 6=
DKL(Y ‖ X).

3We will use the natural logarithm in our definition, and all future mentions of log will assume natural
base, in which case the unit of KL divergence is the nat; if the logarithm is to base 2 then this multiplies
the value by a constant and the unit is the bit.

82 CHAPTER 4. THEORY

4.2.1 Example

We give an example of the calculation of KL divergence, and its interpretation.

Suppose just 2 pixels 〈X1, X2〉 which can only take two values {0, 1}, iid covers where
P[Xi = 0] = p0 > P[Xi = 1] = p1 (i.e. cover pixel are unequally distributed between the
two values; of course p0 + p1 = 1). Suppose independent embedding where γ = 1

2 and

Q =

(1
2

1
2

1
2

1
2

)
.

By (4.1), covers 〈Y1, Y2〉 have independent pixels where P[Yi = 0] = q0 = 3
4p0 + 1

4p1 and
P[Yi = 1] = q1 = 3

4p1 + 1
4p0. By (4.2) and then using the definition of KL divergence we

compute

DKL

(
〈X1, X2〉 ‖ 〈Y1, Y2〉

)
= 2DKL(X1 ‖ Y1)

= 2p0 log
(
p0
q0

)
+ 2p1 log

(
p1
q1

)
= 2p0 log

(
4p0

3p0+p1

)
+ 2p1 log

(
4p1

3p1+p0

)
. (4.3)

Now suppose that, instead of using each pixel with probability 1
2 , the embedding uses

exactly one pixel, randomly selected. This is not independent embedding, and computing
the KL divergence is not as simple, but is instructive to compare the answer with the
previous one. By taking each possible cover and stego combination, we compute

P[〈Y1,Y2〉=〈0,0〉] = 1
2P[〈X1,X2〉=〈0,0〉] + 1

4P[〈X1,X2〉=〈1,0〉] + 1
4P[〈X1,X2〉=〈0,1〉]

= 1
2p

2
0 + 1

2p0p1 = 1
2p0.

P[〈Y1,Y2〉=〈0,1〉]

= P[〈Y1,Y2〉=〈1,0〉] = 1
4P[〈X1,X2〉=〈0,0〉] + 1

4P[〈X1,X2〉=〈1,0〉] + 1
4P[〈X1,X2〉=〈0,1〉] + 1

4P[〈X1,X2〉=〈1,1〉]

= 1
4p

2
0 + 1

2p0p1 + 1
4p

2
1 = 1

4 .

P[〈Y1,Y2〉=〈1,1〉] = 1
4P[〈X1,X2〉=〈1,0〉] + 1

4P[〈X1,X2〉=〈0,1〉] + 1
2P[〈X1,X2〉=〈1,1〉]

= 1
2p0p1 + 1

2p
2
1 = 1

2p1.

and plugging into the definition of KL divergence we have

DKL

(
〈X1, X2〉 ‖ 〈Y1, Y2〉

)
= p20 log

(
p20
1
2p0

)
+ 2p0p1 log

(
p0p1

1
4

)
+ p21 log

(
p21
1
2p1

)
= p20 log(2p0) + 2p0p1 log(4p0p1) + p21 log(2p1). (4.4)

4.3. THE DATA PROCESSING THEOREM 83

It is quite interesting to compare (4.3) and (4.4). It can be shown (we won’t try to do it
here) that the latter is always a bit greater than the former. What does this mean? If
KL divergence measures a distance between cover and stego objects, and more distance
equals more detectability, it tells us that embedding in exactly one pixel is, in principle,
more detectable than embedding in both pixels each with probability 1

2 . This is because
the detector has more information: they know that exactly one pixel has been used, never
zero or two.

This illustrates how information about the location of payload can influence (and com-
plicate!) the calculation of KLD.

4.3 The Data Processing Theorem

The second key property of KL divergence is that it cannot be increased by processing
(applying any function to the random variables concerned), which is known as the data
processing theorem or data processing inequality4. This is a key element of the
theory of steganography, and will give the possibility of bounding the performance of any
detector.

We only need the special case of the theorem applying to finite random variables, which
can be proved by elementary methods. First, we will prove a famous mathematical
inequality.

Lemma 4.1 (The Log-Sum Inequality) For p1, . . . , pn and q1, . . . , qn all > 0,

(
∑
pi) log

∑
pi∑
qi
≤
∑

pi log
pi
qi

(4.5)

Proof Take the function f : (0,∞)→ (−∞,∞), f(x) = x log x. We have f ′′(x) = 1
x >

0, so f is convex.

Given any n positive numbers x1, . . . , xn, consider the polygon P whose outline is given
by the points

(
x = xi, y = f(xi)

)
. For any α1, . . . , αn such that all αi ∈ (0, 1) and∑

αi = 1, (
x =

∑
αixi, y =

∑
αif(xi)

)
4There is another data processing inequality, which one finds in the information theory literature, for

mutual information rather than KLD. It has a similar flavour.

84 CHAPTER 4. THEORY

y = x log x

y

x

●

●

●

●

P

Figure 4.1: Because y = x log x is convex, every point inside the polygon P , whose vertices
are (xi, xi log xi), must be above the curve.

4.3. THE DATA PROCESSING THEOREM 85

defines a point inside the polygon P . Because f is convex, P lies entirely above the curve
y = f(x) (see Figure 4.1)5, so that(∑

αixi
)

log
∑
αixi ≤

∑
αixi log xi. (4.6)

Now substitute xi = pi
qi

and αi = qi∑
qi

into (4.6). We get∑
pi∑
qi

log

∑
pi∑
qi
≤ 1∑

qi

∑
pi log

pi
qi
. (4.7)

Multiplying (4.7) by
∑
qi gives (4.5). �

(We can adapt the proof to cover cases when some pi or qi are zero, but there is no need
for our application.)

For any distributions,
∑
pi =

∑
qi = 1, which substituting into (4.5) immediately tells

us

Lemma 4.2 (Non-negativity of KL divergence) For any random variables X and
Y ,

DKL(X ‖ Y) ≥ 0.

We are now in a position to prove the KL divergence version of the data processing
theorem. If KL divergence measures the distance between two distributions, the theorem
tells us that the distance cannot be increased by applying any function.

Theorem 4.3 (The Data Processing Theorem) For any random variables X and
Y , and any function h,

DKL(X ‖ Y) ≥ DKL

(
h(X) ‖ h(Y)

)
. (4.8)

Proof Let {x1, . . . , xn} be the possible values of X and Y and {y1, . . . , ym} its image

5Readers familiar with probability will realise that this is simply an application of Jensen’s inequality.

86 CHAPTER 4. THEORY

under h. If h is not 1-1, m < n. Write pi = P[X = xi], qi = P[Y = xi], Pi = P[h(X) = yi],
and Qi = P[h(Y) = yi]. By taking the preimage of yi under h we simply have

Pi =
∑

j :h(xj)=yi

pj and Qi =
∑

j :h(xj)=yi

qj .

By (4.5),

Pi log
Pi
Qi
≤
∑

j:h(xj)=yi

pj log
pj
qj
.

Then we simply substitute in,

DKL

(
h(X) ‖ h(Y)

)
=

m∑
i=1

Pi log
Pi
Qi

≤
m∑
i=1

∑
j:h(xj)=yi

pj log
pj
qj

=

n∑
j=1

pj log
pj
qj

= DKL(X ‖ Y)

since the double sum covers all members of {x1, . . . , xn} once each. �

4.3.1 Detector Bound

Now we can apply the data processing theorem to the problem of detection. Suppose
that X is a random variable or vector which represents the distribution of covers in C,
and Y represents the distribution of stego objects in C. The embedding algorithm and
payload size used to create Y can be fixed or random, but in our applications they will
typically be fixed.

Recall that a detector is a decision function D : C → {Positive,Negative}. We can use
the data processing theorem to prove:

Theorem 4.4 For any detector D, with false positive rate α and false negative rate β,

α log
(α

1− β

)
+ (1− α) log

(1− α
β

)
≤ DKL(X ‖ Y).

Proof In this setting, a false positive happens when D(X) = Positive and a false

4.3. THE DATA PROCESSING THEOREM 87

negative when D(Y) = Negative; therefore

P [D(X) = Positive] = α P [D(Y) = Positive] = 1− β
P [D(X) = Negative] = 1− α P [D(Y) = Negative] = β.

Now D is an example of a function like h in (4.8), so we can apply the data processing
theorem to get

DKL(D(X) ‖ D(Y)) ≤ DKL(X ‖ Y).

But the left hand side just involves random variables over two values {Positive, Negative}
and the KL divergence can be calculated by hand as

α log
(α

1− β

)
+ (1− α) log

(1− α
β

)
,

proving the result. �

This is a powerful result, but the form of the function α log
(

α
1−β
)

+ (1 − α) log
(
1−α
β

)
is

difficult to work with. All we will need to know is that it is an upper bound on detector
performance: for any given α it sets a minimum on β, and vice versa. To show this, we
can use a simple inequality.

Lemma 4.5 α+ β ≥ 1−
√

1

2

(
α log

(
α

1−β
)

+ (1− α) log
(
1−α
β

))
.

Proof Define

f(x) = α log
(α

1− x

)
+ (1− α) log

(1− α
x

)
− 2(α+ x− 1)2.

Then
f ′(x) = α

1−x −
1−α
x − 4(α+ x− 1) = (α+ x− 1)

(
1

x(1−x) − 4
)
.

Observe that the derivative is zero when x = 1−α, negative when x < 1−α, and positive
when x > 1 − α, so f is minimum at x = 1 − α. And f(1 − α) = 0, therefore f(β) ≥ 0
for all β. Rearranging gives the required result. �

(Lemma 4.5 is a special case of Pinsker’s Inequality.) Since α+ β = 1 corresponds to
a detector with random output, this shows how low KL divergence guarantees that any
detector must have near-random performance6.

6There is a partial converse, in the sense that high KL divergence means that certain high-performance
detectors exist in some cases, but in general we can only use the results of this section as an upper bound
on detector performance.

88 CHAPTER 4. THEORY

4.4 The Square Root Law for IID Covers

Finally, we come to a result relating secure steganography capacity to the size of the
cover. This version is for the iid cover model only, but it was an important advance in
the theory of steganography. We will state the theorem here and then prove its three
parts separately.

Theorem 4.6 Suppose that covers are distributed as iid pixels with a finite range of
values which we (without loss of generality) call {1, 2, . . . , l}. So the independent random
variables 〈X1, . . . , Xn〉, where n is the size of the cover, are defined by P[Xi = j] = pj
for j = 1, . . . , l. Suppose mutually independent embedding defined by the l× l matrix Q,
and embedding rate γ which depends on the cover size n.

(a) If
∑

i piQ[i, j] = pj , for all j, then the embedding is undetectable.

(b) If there exists j such that
∑

i piQ[i, j] 6= pj , then

(i) If γ2n → ∞ as n → ∞ then there exists a detector which is asymptotically
perfect, in the sense that α can be arbitrarily small and β → 0.

(ii) If γ2n → 0 as n → ∞ then any detector must be asymptotically useless, in
the sense that α+ β → 1.

4.4.1 Proof of (a)

From here on, let us write qj =
∑

i piQ[i, j]. In stego objects the probability of a pixel
taking value j is, according to (4.1), (1 − γ)pj + γqj . If qj = pj for all j then the
stego probabilities are exactly equal to the cover probabilities, and under the iid cover
model with independent embedding there can be no dependencies between pixels in either
cover or stego object. Therefore cover objects and stego objects have exactly the same
distribution and cannot be distinguished (their KL divergence is zero; every detector is
purely random).

4.4.2 Proof of (b)(i)

Pick j such that qj > pj (at least one such j exists). An asymptotically perfect detector
can be constructed by counting the occurrences of j in objects, so let h be the histogram
of the observed object x. Then define

D(x) =

{
True, if h[j] > npj + c

√
n,

False, if h[j] ≤ npj + c
√
n,

4.4. THE SQUARE ROOT LAW FOR IID COVERS 89

where c is a large constant to be chosen later.

There are many ways to prove that this is asymptotically perfect. Let us write T = h[j].

In cover objects, under the iid model, T ∼ Bi(n, pj). By (0.1), Var[T] ≤ n
4 . A false

positive occurs if T > npj + c
√
n. According to Chebyschev’s inequality,

α = P
[
T > npj + c

√
n
]
≤ Var[T]

c2n
≤ 1

4c2
,

which can be made arbitrarily small with suitably large choice of c.

Recall that, in stego objects, the probability of a pixel taking value j is (1− γ)pj + γqj =
pj + γε where ε = qj − pj > 0. Then

β = P
[
T ≤ npj + c

√
n
]

= P
[
T ≤ n(pj + γε) + (c

√
n− γεn)

]
≤ Var[T]

(c
√
n− γεn)2

≤ 1

4(c2 − 2cγε
√
n+ γ2ε2n)

→ 0,

no matter what the value of c or ε, if γ2n→∞.

4.4.3 Proof of (b)(ii)

Let us compute the KL divergence between one cover pixel and one stego pixel, and
bound it above. According to the definition,

DKL(Xi ‖ Yi) =

l∑
j=1

pj log
pj

(1−γ)pj+γqj

=

l∑
j=1

−pj log
(

1 + γ
(qj−pj

pj

))
(a)

≤
l∑

j=1

−pjγ
(qj−pj

pj

)
+ pjγ

2
(qj−pj

pj

)2
= γ

(∑
pj −

∑
qj
)

+ γ2
∑

(qj−pj)2
pj

(b)
= γ2

∑
(qj−pj)2

pj

90 CHAPTER 4. THEORY

where (a) follows from log(1 + x) ≥ x− x2 for x sufficiently close to zero7, and (b) from∑
pj =

∑
qj = 1, since both are distributions of random variables. Now recall that all

cover pixels are independent, and all stego pixels are independent because of mutually
independent embedding. Therefore by (4.2),

0 ≤ DKL(X ‖ Y) =
n∑
i=1

DKL(Xi ‖ Yi) ≤ cnγ2

for some constant c. It follows that DKL(X ‖ Y) → 0 if γ2n → 0, and by applying
Theorem 4.4 and Lemma 4.5 that α+ β → 1 for any detector.

4.4.4 Discussion

Let us interpret the meaning of Theorem 4.6. Suppose that we decide our maximum
supposedly “secure” payload size m as a function of a cover size n; for example, we might
embed at b bits per pixel or per nonzero DCT coefficient. Suppose for a moment that we
use a simple embedding scheme such as LSBR or F5, where the embedding rate is equal
to, or proportional to, m/n. Then Theorem 4.6 says that the key value is γ2n ∝ m2/n.
If m grows asymptotically faster than

√
n, then for larger and larger covers the risk of

detection tends to one, but when m grows asymptotically slower than
√
n then, at least

for sufficiently large covers, the risk of detection tends to zero. Hence the name square
root law, saying that the payload size is limited to grow as the square root of the cover
size.

This is a surprising result. Following signal-processing theory, it was expected that there
would be a communication rate, hence the popularity of measures such as bits per pixel
and bits per nonzero coefficient. Indeed, for perfect steganography, which is case (a)
of Theorem 4.6, the entropy rate of the covers is the maximum communication rate of the
channel. But for imperfect steganography, case (b) of Theorem 4.6, where the embedding
does not quite manage to preserve the cover distribution, the only rate is zero because
capacity is sublinear.

A survey paper (Ker et al., 2008) tested contemporary detectors against contemporary
steganography schemes, measuring accuracy for payloads in cropped-down images so that
the payload was constant, proportional to cover size, or to its square root. In all cases
a close adherence to a square root law was observed. Figure 4.2 is an example: you
can see that accuracy decreases with cover size if the payload is fixed, increases with the

7Note that γ2n→ 0 implies that γ → 0, so our x is sufficiently close to zero for n sufficiently large.

4.5. EXTENSIONS 91

cover size if the payload is proportional, and remains roughly constant when the payload
scales with the square root of the cover size. The conclusion of (Ker et al., 2008) is that
the square root law is quite robust in practice. There are some complications, though, in
creating covers of different sizes: one cannot simply resize, because the resizing introduces
sampling artefacts which affect detectability, and when cropping JPEGs care must be
taken to crop a “representative” region rather than picking, for example, a particularly
flat area like sky.

Note that γ does not have to be strictly proportional to the payload sizem, if sophisticated
coding is used. We saw in chapter 3 that as the payload size becomes smaller the use
of better (more efficient) codes becomes possible. As the embedding efficiency rises, so
γ decreases. This means that m can grow slightly faster than

√
n, if such coding is

used. The exercises explore the net effect on the capacity law, when using a code like the
Hamming codes.

Finally, the square root law seems to lack a vital piece of information. If (given fixed
coding) m scales with

√
n, what is the constant? For a given level of detectability, and a

given cover source, can we state the asymptotic relationship m ∼ c
√
n? For artificial cover

sources the answer is yes, and it takes us into some old statistical theory about Kullback
Leibler divergence and Fisher information. But to determine Fisher information from
real covers, such as a source of images, is much more difficult and this is a topic of current
research.

4.5 Extensions

The simplest square root law, in section 4.4, has been extended in many ways:

1. The combination of statistical attacks and key exhaustion attacks was examined
in (Ker, 2009). It was shown that the number of keys must scale with the payload
size.

2. This was resolved in (Ker, 2010a), where the use of coding was formally included
in the theorem. This turned out to be rather difficult, because one must assume
that the enemy is aware of the code being used, and therefore gets a small amount
of information about the likely locations of changes. It was shown that Hamming
codes introduce no asymptotically-significant weakness.

92 CHAPTER 4. THEORY

0 5 10 15 20 25 30

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
−

P
E

Cover size N (nonzero coefficients) × 10
4

fixed payload

0.025bpnc @ N=50000

0.075bpnc @ N=50000

0.125bpnc @ N=50000

0 5 10 15 20 25 30

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
−

P
E

Cover size N (nonzero coefficients) × 10
4

payload ∝ N

0.025bpnc @ N=50000

0.075bpnc @ N=50000

0.125bpnc @ N=50000

0 5 10 15 20 25 30

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
−

P
E

Cover size N (nonzero coefficients) × 10
4

payload ∝ N

0.025bpnc

0.075bpnc

0.125bpnc

10 3 30

1
0

0
0

3
0

0
0

C
a

p
a

c
it
y
 M

 (
b

it
s
)

Cover size N (nonzero coefficients) × 10
4

M = 8.7N
0.532

M = 4.4N
0.535

PE = 0.1

PE = 0.25

Figure 4.2: Taken from (Ker et al., 2008). Above, shows detector accuracy (y-axis,
defined as the accuracy at the point of the ROC curve to minimize sum of false positive
and false negative) as cover size varies. When the payload is of fixed length, it becomes
less detectable in larger covers; when the payload length is proportional to the cover size,
it becomes more detectable in larger covers; when the payload length scales with the
square root of the cover size, detectability is roughly constant. Below, measuring the
smallest payload which can be detected with given accuracy, as the cover size varies. We
observe a close accordance with a square root law.

In each case the embedding algorithm was nsF5, and the detector was a Support Vector
Machine using 274 features.

4.6. CONCLUSIONS 93

3. The cover model was widened to include dependency between pixels, with a Markov
chain model (Filler et al., 2009). Bounding the KL divergence is a significant
analytical hurdle.

4. A very interesting situation arises when, in the context of Theorem 4.6, the detector
does not know the exact distribution of the cover source, but instead learns it by
seeing examples of genuine covers (Ker, 2010b). This mimics the most usual real-
world situation of training a machine learning classifier. It turns out that the
detector requires (up to a constant multiple) as many genuine covers to learn from
as the suspect objects they test, if they want to keep the embedder down to a square
root law. This means that detectors cannot rest in learning a cover model, and they
must constantly re-train in order to refine their information about covers.

Similar theorems by Fridrich investigate how steganographic capacity scales when covers
are quantized and resampled. There is also a version of the Square Root Law for communi-
cating by radio, in noisy channels (where the signals are continuous). Our understanding
of asymptotic capacity laws is widening.

4.6 Conclusions

The theory of steganography is still new. Even apart from the difficulty of modelling
covers faithfully, it is hard to reason about cases where the detector has less than full
knowledge of the cover source, or more than zero knowledge about the (likely) location of
embedding changes. KL divergence is a difficult beast to control, and even for the simple
Markov chain model the necessary analysis can become fearsome.

Theory also has to rise to the challenges of steganalysis of multiple actors. Clearly any
capacity law has to include the number of innocent actors, whose data can blind the
detector in false positives. One still expects proportionate capacity to decline as the
cover size increases, but to increase as the number of actors increases.

But already the theory has taught us a few important lessons about steganography:
capacity is not linear, so the covert communication channel gets thinner over time (how
to manage this is a topic not well researched), and the detector should continue its training
forever.

94 BIBLIOGRAPHY

Bibliography

Filler, T., Ker, A. D., & Fridrich, J. (2009). The square root law of steganographic
capacity for Markov covers. In Proceedings of SPIE/IS&T Electronic Imaging: Me-
dia Forensics and Security XI, volume 7254 of Proc. SPIE (pp. 0801–0811). SPIE.
Available at http://www.cs.ox.ac.uk/andrew.ker/docs/ADK36B.pdf.

Ker, A. D. (2009). The Square Root Law requires a linear key. In Proceedings of
11th ACM Workshop on Multimedia and Security (pp. 85–92). ACM. Available at
http://www.cs.ox.ac.uk/andrew.ker/docs/ADK40B.pdf.

Ker, A. D. (2010a). The Square Root Law does not require a linear key. In Proceedings
of 12th ACM Workshop on Multimedia and Security (pp. 213–223). ACM. Available
at http://www.cs.ox.ac.uk/andrew.ker/docs/ADK43B.pdf.

Ker, A. D. (2010b). The Square Root Law in stegosystems with imperfect information.
In Proceedings of 12th Information Hiding Conference, volume 6387 of Lecture Notes
in Computer Science (pp. 145–160). Springer. Available at http://www.cs.ox.ac.uk/
andrew.ker/docs/ADK42B.pdf.

Ker, A. D., Pevný, T., Kodovský, J., & Fridrich, J. (2008). The square root law
of steganographic capacity. In Proceedings of 10th ACM Workshop on Multimedia
and Security (pp. 107–116). ACM. Available at http://www.cs.ox.ac.uk/andrew.

ker/docs/ADK32B.pdf.

Index

e (embedding efficiency), 62
bxc (floor function), 4
h (histogram), 35
M (matrix notation), 3
β (probability of false negative), 34
α (probability of false positive), 34
α (relative payload), 62
[x] (round-to-nearest function), 4
x[i] (vector index), 3
x (vector notation), 3
M [i, j] (matrix index), 4
sign(x) (sign function), 4

±1 embedding, 18
[n, k] code, 61

acceptable risk, 77
adaptive embedding, 27, 71
adjacency histogram, 42
adversary, 32
alternative hypothesis, 12
attacker, 32
average perceptron, 48

basis, 22
binary entropy function, 66, 72
binomial distribution, 5
bins, 35
bit, 81
bits per change, 16

bits per nonzero coefficient, 90
bits per pixel, 16, 90
blind steganalysis, 52
bpnc, 26
bpp, 16

calibration, 52
capacity, 11, 12, 16, 77
change rate, 79
Chebyschev’s inequality, 6, 89
chi-square detector, 38
chi-square statistic, 38
chrominance, 20
co-occurrence matrix, 42
code, 60
coding, 57, 59
coefficients, 20, 22
collusion attack, 28
communication rate, 90
conditional probability, 4
correctness, 12
coset leader, 63
cost, 72
couples detector, 40
cover modification, 11
cover selection, 10
cover synthesis, 11

data processing inequality, 83
data processing theorem, 83

95

96 INDEX

DCT modes, 22
decision function, 12
decode, 60
decorrelate, 22
digital media, 9
digital watermarking, 27
discrete cosine transformation, 20
discrete random variable, 4
distortion, 72
dry, 68

embedding
e+ 1, 71
efficiency, 13, 16, 59, 62, 64, 66, 69
function, 11
operations, 14
rate, 12, 79

ensemble, 49
entropy, 72
extraction function, 11

F5, 26, 70
algorithm, 26, 52
embedding operation, 26, 60

false alarm, 13
false negative, 13, 33
false negative rate, 34
false positive, 13, 33
false positive rate, 34
feature, 47
Fisher information, 91
Fisher linear discriminator, 49
FLD, 49

Hamming code, 61, 63
Hamming weight, 63
Hellinger distance, 80
histogram, 35

hypothesis test, 12

iid, 79
iid cover, 79
independent events, 4
independent identically distributed, 79
independent random variables, 5

JPEG, 20
embedding, 70
example, 24
features, 52

JSteg, 26

Kerckhoffs’ Principle, 9
kernelized support vector machine, 48
KL divergence, 80
KLD, 80
Knuth shuffle, 14
KSVM, 48
Kullback-Leibler divergence, 80

label, 48
Laplacian filter, 49
learner, 47
linear, 48
logit function, 73
lower embedding efficiency, 66
LSB

matching, 18, 47, 50, 60, 61
replacement, 16, 35, 40, 47, 60

LSBM, 18, 47, 50, 60, 61
LSBR, 16, 35, 40, 47, 60
luminance, 20

machine learning, 47
matrix embedding, 27
mean, 4
mismatched covers, 33

INDEX 97

missed detection, 13
mutually independent embedding, 78

nat, 81
no-shrinkage F5, 70
non-shared selection channel, 26, 68
nsF5, 70, 92
null hypothesis, 12

optimal embedding, 72
OutGuess, 58

pairs of values, 35, 42
parity-check matrix, 61
partition theorem, 4, 5
payload, 9
perceptron algorithm, 48
perturbed quantization, 70
Pinsker’s Inequality, 87
pixels, 14
power, 34
PQ, 70
Prisoners’ Problem, 8, 53
probability mass function, 4

quality factor, 23
quantitative steganalysis, 45
quantization, 20
quantization factor, 20

random payload assumption, 10, 78
random variable, 4
raster, 14
rate, 90
raw, 15
receiver operating characterstic, 34
reduced SPAM, 49
rejection sampler, 10
relative entropy, 80

relative payload, 62
robustness, 12
ROC, 34

secret key, 9
security, 13
selection channel, 68
sensitivity, 34
shrinkage, 27, 52
side information, 70
SPAM features, 49
sparse, 64
spatial-domain, 25
specificity, 34
spread spectrum, 28
square root law, 90
STC, 74
steganalysis, 31

machine learning, 47, 50
quantitative, 45
statistical, 35
structural, 40, 42

steganalyst, 32
steganography, 7
Steghide, 58
stego noise, 49
stego object, 9
stegosystem, 12
stochastic, 34
structural property, 41
structural steganalysis, 40
structured codes, 63
subliminal, 8
symmetry, 44
syndrome, 62
syndrome trellis codes, 74

tail inequalities, 6

98 INDEX

ternary, 19
ternary embedding, 19, 66
total variation, 80
training data, 47
transform-domain, 23
type I error, 13
type II error, 13

undetectability, 12, 13
uniform random variable, 5

Warden, 8, 32
active, 9
malicious, 9
passive, 9

weights, 48
wet, 68
wet paper codes, 68

