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The Ultimate
Steganalysis Benchmark?

Outline

o Currently-used benchmarks not ideal
« New benchmark based on KL divergence
 Difficulties estimating the benchmark value

o Examples
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Common Benchmarks

e ROC curve

difficult to rank; too much information

e Area under ROC
« Minimize sum of false positive & negative

assumes false positive and false negatives
are equivalent

« False negative rate at fixed false positive
« False positive rate at fixed false negative

impossible to justify numbers objectively



Common Benchmarks

ROC curve \

difficult to rank; too much information

e Area under ROC

« Minimize sum of false positive & negative

assumes false positive and false negatives
are equivalent

also depend on
payload size

« False negative rate at fixed false positive

« False positive rate at fixed false negative

impossible to justify numbers objectively /

« Minimum payload detectable at fixed false positive & false negative rate

impossible to justify numbers objectively



Distribution Differences
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New Benchmark

« Based on Dxi,(Co, Cp), where C,, is the univariate distribution produced
just before threshold test.

From steganalysis/info theory literature

If steganography is repeated at a fixed embedding rate, the probability of
detection tends to 1. [Cachin; Moulin; Ker; ...]

o For long-run performance we should concentrate on payload sizes
tending to zero.

A theorem by S. Kullback

Let F), be a family of distributions satisfying certain regularity conditions.

Then lin%) w exists and is nongero. [adapted from Kullback, 1968]
p—)

o If we believe that the regularity conditions are satisfied, then Dk, (Cy, C))
is, locally to zero, a multiple of p?.



New Benchmark
DKL(C(), Cp)

The quantity @ = lim 5

p—0 p

tells us how quickly “evidence” accumulates. This is the proposed benchmark.

Note:
o “Payload size” should be measured by number of embedding changes

o Then Q is measured in “nats per embedding change squared”



Experimental Results
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*KL divergence estimation by [Wang, Kulkarni, & Verdu, 2005]
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Experimental Results

o2t
'I'=
i
2 = .'°'!!‘
.’;ll
sfd?
gill-
=15 :!"
s : =] :
.} i‘.!!
5 |
2 |'
) 1 — |
A i'
i!
li
0.5 - '
: |
l‘
]
'
0!
. al
0 : I I I I |
0 500 1000 1500 2000 2500
# embedding changes

e 10000 cover images
« LSB replacement embedding, 50 payload sizes, repeated 10 times each

« “Triples” steganalysis



Experimental Results

5 1076 Optimal method for estimating Q?
- Current heuristics depend on hand-
picked “sensible” choice of p.
Si 1.5x10° 1 * ¢
S
—
N ]
«Q ¢
1x10™°
0.5x107° =
| | | |
0 500 1000 1500 2000 2500

# embedding changes

e 10000 cover images
« LSB replacement embedding, 50 payload sizes, repeated 10 times each
o “Triples” steganalysis



Experimental Results
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« LSB matching (+1) embedding, 90 payload sizes, repeated 10 times each
« “Calibrated HCF COM” steganalysis



Conclusions

o There is a need for an application-independent benchmark.

o The new “Q-factor” benchmark measures how quickly information is
accumulated as payload increases.

« More work needed for good empirical estimation of “Q™:
— Currently seems to need a very large experimental base
— Test objects should be the same size
— Optimal estimation?
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Steganalysis %(_)00 grayscale 10000 colour

itmap covers JPEG covers
.[?)I-l?rgitrescu et al, THW 2002] 16.1 28.3
gfﬁﬁ?v/\lf 2004] 12.1 161
&;Z%evxs/ 2005] 20.7 1500
Triples/WLSM 16.1 1500

[Ker, SPIE EI 2007]

nanonats per embedding change squared
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