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Outline

���� Imperfect embedding

���� Square root law & a linear key

���� Asymptotically perfect security with no stego key

– definition of security in the absence of a key

���� Asymptotically perfect security with Hamming syndrome codes
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Imperfect embedding
Perfect embedding preserves all statistics of the cover source.

���� It is undetectable. 

���� It has a linear capacity law. 

���� It is not practically realisable. 

We contend that all practical steganography is imperfect.

Imperfect embedding makes changes to elements of the cover, in a way which 

does not preserve their statistics.

���� Capacity follows a ‘Square Root Law’.

Notation: cover size n (‘pixels’)

payload size m (bits)



Cover consists of     ‘pixels’, some are used to carry payload,

of which some are changed.

Model:

���� Cover pixels: i.i.d. random variables with p.m.f. 

���� Changed pixels: i.i.d. random variables with p.m.f.

���� Embedding: used pixels selected uniformly at random,

each changed with probability ½,

���� known to the detector, 

Classic square root law

imperfect embeddingperfect information

covers not deterministic
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As cover size 

1. If then an asymptotically perfect detector exists.

2. If then we have asymptotically perfect security.

So        is the critical payload ‘rate’.

Classic square root law



Cover consists of     ‘pixels’, some are used to carry payload,

of which some are changed.

Model:

���� Cover pixels: i.i.d. random variables with p.m.f. 

���� Changed pixels: i.i.d. random variables with p.m.f.

���� Embedding: used pixels selected uniformly at random,

each changed with probability ½,

���� known to the detector, 

Classic square root law

To tell the recipient which pixels are used requires            stego key. 

Theorem (MM&Sec 09)

If the stego key length is not at least           then an asymptotically perfect 

detector exists, regardless of payload rate.



Non-shared selection channel
Avoid telling the recipient the location of the changes 

(but still have the message extractable).

Well-solved by wet paper codes [Fridrich et al, 2004]:

���� Reduce everything to binary (e.g. pixel LSBs).

���� Create an             matrix D (possibly public).

���� Change the cover c into a stego object s such that Ds=p,
where p is the desired payload.

Difficult to analyse the predictability of the changes.

Possible flaws already highlighted [Böhme, 2005].

How generated?

How solved?How many changes?



Simplest example
[Anderson & Petitcolas, 1998]

���� Reduce everything to binary (e.g. pixel LSBs).

���� Divide into m groups:

(The groups can be made public.)

���� Carry payload bit i as the parity of the sum of the pixels in group i.

���� When a group in the cover needs its parity flipping, pick one of its pixels to 

change uniformly at random.

— We know exactly how predictable the changes are.
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Cover consists of m publicly known groups of pixels each of size             

Model:

���� Cover pixels: i.i.d. random variables with p.m.f. 

���� Changed pixels: i.i.d. random variables with p.m.f.

���� Embedding: each group unchanged with probability ½,

otherwise one randomly selected pixel changed,

���� known to the detector, 

As cover size 

1. If then an asymptotically perfect detector exists.

2. If then we have asymptotically perfect ‘security’.

Up to       groups, each at least       big, spreads the payload thinly enough.

Theorem



Consider one group of pixels

Let      and      be the probability laws for cover and stego pixel groups.

Proof idea

Random variable, mean 1, 
satisfying some analytic 
conditions.



Consider one group of pixels

Let      and      be the probability laws for cover and stego pixel groups.

Proof idea

This coefficient is known as 
Steganographic Fisher Information (SFI).

It turns out that the SFI of uniformly-
spread embedding is also



Steganographic security
With the prior scheme, there is no steganographic key at all.

���� Everyone knows the pixel groups and so can read the message.

���� The content is not confidential.

Steganographic security is distinct from cryptographic security and the latter

still requires a shared crypto key.

NB: if the hidden payload is encrypted, the encryption must have the 

property that cyphertexts cannot easily be recognised.



Syndrome codes
Making one change to a group of pixels can carry more than one bit.

Well-studied topic called matrix embedding [Crandall, 1998].

���� Divide pixels into groups.

���� Use syndromes of some code with low covering radius 

(like solving Ds=p in each group).

Again, we should be concerned that the locations of the changes might be 

predictable.



Payload of size m, embedded using largest possible binary Hamming code. 

Model:

���� Cover pixels: i.i.d. random variables with p.m.f. 

���� Changed pixels: i.i.d. random variables with p.m.f.

���� Embedding: make minimum changes and move to uniformly random 

coset.

���� known to the detector, 

As cover size 

[1. If then an asymptotically perfect detector exists.]

2. If then we have asymptotically perfect security.

Theorem



Conclusions
���� The old ‘parity of a block’ idea is asymptotically perfectly secure, below the 

square root bound.

– The opponent gains nothing by knowing the groups.

– No stego key is required: ‘public key steganography’.

– A crypto key is still required, for confidentiality.

���� The old ‘syndrome of a Hamming code’ idea is asymptotically perfectly 

secure, with number of changes below the square root bound.

– This means the payload capacity is 

���� We should consider the finer asymptotics of matrix embedding and related 

schemes.

– Steganographic Fisher Information:
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