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The Square Root Law

Does Not
Require a Linear Key
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* Imperfect embedding

* Square root law & a linear key

* Asymptotically perfect security with no stego key
— definition of security in the absence of a key

* Asymptotically perfect security with Hamming syndrome codes



Imperfect embedding

Perfect embedding preserves all statistics of the cover source.

* [t is undetectable.
* It has a linear capacity law.

* [t is not practically realisable.
We contend that all practical steganography is imperfect.

Imperfect embedding makes changes to elements of the cover, in a way which
does not preserve their statistics.

* (Capacity follows a “Square Root Law’.

Notation: cover sizen  (‘pixels’)
payload size m (bits)



Classic square root law

Cover consists of n ‘pixels’, some are used to carry payload,
of which some are changed.
Model:

* Cover pixels:  i.i.d. random variables with p.m.f. p(x),
* Changed pixels: i.i.d. random variables with p.m.f. q(x),

* Embedding: m used pixels selected uniformly at random,
each changed with probability %,

e p(x) known to the detector, Va.p(x) # 0,1, Jy.p(y) # q(y).
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perfect information imperfect embedding

covers not deterministic




Classic square root law

Cover consists of n ‘pixels’, some are used to carry payload,
of which some are changed.
Model:

* Cover pixels:  i.i.d. random variables with p.m.f. p(x),
* Changed pixels: i.i.d. random variables with p.m.f. q(x),

* Embedding: m used pixels selected uniformly at random,
each changed with probability %,

e p(x) known to the detector, Va.p(x) # 0,1, Jy.p(y) # q(y).

As cover size n — o0,
1. If m/yv/n — oo then an asymptotically perfect detector exists.

2. If m/v/n— 0 then we have asymptotically perfect security.

So +/n is the critical payload ‘rate’.



Classic square root law

Cover consists of n ‘pixels’, some are used to carry payload,

of which some are changed.
Model:

* Cover pixels:  i.i.d. random variables with p.m.f. p(x),
* Changed pixels: i.i.d. random variables with p.m.f. q(x),

* Embedding: m used pixels selected uniformly at random,
each changed with probability %,

e p(x) known to the detector, Va.p(x) # 0,1, Jy.p(y) # q(y).
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To tell the recipient which pixels are used requires O(mlogm) stego key.

Theorem (MM&Sec 09)
If the stego key length is not at least O(m) then an asymptotically perfect
detector exists, regardless of payload rate.
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Non-shared selection channel

Avoid telling the recipient the location of the changes
(but still have the message extractable).

Well-solved by wet paper codes [Fridrich et al, 2004]:

* Reduce everything to binary (e.g. pixel LSBs).
* Create an m x n matrix D (possibly public). «——How generated?

* Change the cover ¢ into a stego object s such that Ds=p,

/ where p is the desired payload. \
How many changes? How solved?

Difficult to analyse the predictability of the changes.
Possible flaws already highlighted [Bohme, 2005].



Simplest example

[Anderson & Petitcolas, 1998]
* Reduce everything to binary (e.g. pixel LSBs).

* Divide into m groups:

I
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(The groups can be made public.)

* Carry payload bit ¢ as the parity of the sum of the pixels in group .

 When a group in the cover needs its parity flipping, pick one of its pixels to
change uniformly at random.

— We know exactly how predictable the changes are.



Theorem

Cover consists of m publicly known groups of pixels each of size [n/m].

Model:

* Cover pixels:  i.i.d. random variables with p.m.f. p(x),
* Changed pixels: i.i.d. random variables with p.m.f. q(x),

* Embedding: each group unchanged with probability %,
otherwise one randomly selected pixel changed,

e p(x) known to the detector, Va.p(x) # 0,1, Jy.p(y) # q(y).

As cover size n — o0,

1. If m/yv/n — oo then an asymptotically perfect detector exists.

2. If m/v/n— 0 then we have asymptotically perfect ‘security’.

Up to+/n groups, each at least/n big, spreads the payload thinly enough.



Proof idea

Consider one group of pixels (X1,...,Xx), k= [n/m].
Let P and Q be the probability laws for cover and stego pixel groups.

D1, (cover || stego)
= mDkin(P || Q)
% HZ p(X5) +

= —mkE log(

= >] Random variable, mean 1,
satisfying some analytic
conditions.




Proof idea

Consider one group of pixels (X1,...,Xx), k= [n/m].
Let P and Q be the probability laws for cover and stego pixel groups.

D1, (cover || stego)
= mDkiL(P || Q)

5 11 p(Xi) + 55 225 a(X5) [y, p(X»)]
Hz’p(Xi)

= —mkE log(

myoe L Z 9(X;) This coefficient is known as
2 Steganographic Fisher Information (SFI).

It turns out that the SFI of uniformly-
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Steganographic security

With the prior scheme, there is no steganographic key at all.
* Everyone knows the pixel groups and so can read the message.

e The content is not confidential.

Steganographic security is distinct from cryptographic security and the latter
still requires a shared crypto key.

NB: if the hidden payload is encrypted, the encryption must have the
property that cyphertexts cannot easily be recognised.



Syndrome codes

Making one change to a group of pixels can carry more than one bit.

Well-studied topic called matrix embedding [Crandall, 1998].

* Divide pixels into groups.
* Use syndromes of some code with low covering radius

(like solving Ds = p in each group).

Again, we should be concerned that the locations of the changes might be
predictable.



Theorem

Payload of size m, embedded using largest possible binary Hamming code.
Model:

* Cover pixels:  i.i.d. random variables with p.m.f. p(x),

* Changed pixels: i.i.d. random variables with p.m.f. q(x),

* Embedding: make minimum changes and move to uniformly random
coset.

e p(z) known to the detector, Va.p(z) # 0,1, Jy.p(y) # q(y).

As cover size n — oo,

[1. If m/v/nlogn — oo then an asymptotically perfect detector exists.]

2. If m/v/nlogn — 0 then we have asymptotically perfect security.



Conclusions

* The old ‘parity of a block’ idea is asymptotically perfectly secure, below the
square root bound.

— The opponent gains nothing by knowing the groups.
— No stego key is required: ‘public key steganography’.
— A crypto key is still required, for confidentiality.

* The old 'syndrome of a Hamming code’ idea is asymptotically perfectly
secure, with number of changes below the square root bound.

— This means the payload capacity is O(v/nlogn).

e We should consider the finer asymptotics of matrix embedding and related
schemes.

— Steganographic Fisher Information:

n
2lim Dky (cover || stego)—
m
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* The old ‘parity of a block’ idea is asymptotically perfectly secure, below the
square root bound.

— The opponent gains nothing by knowing the groups.
— No stego key is required: ‘public key steganography’.
— A crypto key is still required, for confidentiality.
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— This means the payload capacity is O(v/nlogn).

e We should consider the finer asymptotics of matrix embedding and related
schemes.
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