Information Hiding and Covert Communication

Andrew Ker

adk@comlab.ox.ac.uk

Royal Society University Research Fellow Oxford University Computing Laboratory

Foundations of Security Analysis and Design Bertinoro, Italy, 25-26 August 2008

Information Hiding and Covert Communication

Part 1: Introduction to Steganography & Watermarking Highlight: examples

Part 2: Steganalysis

Highlight: extremely sensitive detectors for covert communication

Part 3: More Efficient Steganography

Highlight: codes which approach the maximum possible efficiency

Part 4: Steganographic Capacity Highlight: the Square Root Law

Information Hiding and Covert Communication

Part 1: Introduction to Steganography & Watermarking

- Steganography
 - Examples & countermeasures (steganalysis)
- Digital watermarking
 - Applications
 - Examples & countermeasures
- Typical embedding domains & operations

Communication

Communication: cryptography

Communication

Communication: coding

code

Communication

- Cryptography
 Keep the message confidential
- Coding
 Keep the message intact

Other challenges:

How can Alice and Bob share the secret key/code? How does Alice know that she is communicating with Bob?

G. Simmons. *The Prisoners' Problem and the Subliminal Channel*. In Proc. Crypto '83, Plenum Press, 1984.

Why digital media?

- We will see that it has plenty of capacity for hidden data.
- Over 70% of all internet traffic is audio, picture, or video.
- Over 20% of all internet traffic is YouTube video!
- Over 90% of peer-to-peer traffic is audio, picture, or video.

Example

Cover object, 512×512 pixels, grayscale

Cover object, 512×512 pixels, grayscale

· · · · ·	P	1	1	V.	1.1		3.6									
Strate in St					2.2		X		ine -							
Sur to N	194	226	224	136	137	135	188	229	215	201	106	104	109	127	226	238
	191	225	227	138	140	139	182	210	216	243	129	97	112	127	224	239
	196	222	227	141	139	140	177	227	230	246	133	90	115	125	214	240
	198	220	228	140	134	135	171	223	221	217	118	94	112	127	224	240
	192	222	228	149	135	140	157	218	217	205	120	100	113	121	218	239
	195	224	231	160	137	142	159	218	209	199	122	106	106	111	200	238
	200	221	233	166	153	149	151	209	203	199	125	108	108	104	184	228
	204	222	235	176	151	148	145	213	207	203	130	109	109	93	159	210
Marker we	211	223	238	171	151	149	151	212	214	209	131	116	118	101	155	203
	219	228	239	171	147	155	154	221	226	221	146	118	121	117	195	238
with maken	223	225	237	166	144	166	163	237	234	230	161	122	121	111	198	240
	204	211	218	151	126	156	165	242	238	242	166	123	124	115	195	240
	191	205	212	141	124	155	159	242	236	241	169	118	120	114	192	242
	178	207	200	129	124	154	160	243	237	238	166	122	122	110	183	238
	165	211	188	119	125	151	161	243	234	241	176	118	127	114	182	237
	152	215	170	107	126	145	162	243	236	243	182	115	123	120	191	245

LSB replacement

The simplest steganographic method for uncompressed ("TIF", "BMP") images.

Embedding

- Form payload as a sequence of bits,
- Take cover as a sequence of bytes,
- Replace Least Significant Bits (LSB) of cover bytes with payload.

Extraction

- Take cover as a sequence of bytes,
- Read LSBs.

Can be performed by an 80-character Perl program on a Unix commandline:
perl -n0777e '\$_=unpack"b*",\$_;split/(\s+)/,<STDIN>,5;
 @_[8]=~s{.}{\$&&v254|chop()&v1}ge;print@_'
 <input.pgm >output.pgm stegotext

LSB replacement

The simplest steganographic method for uncompressed ("TIF", "BMP") images.

Embedding

- Form compressed & encrypted payload as a sequence of bits,
- Take cover as a sequence of bytes in pseudorandom order per secret key,
- Replace Least Significant Bits (LSB) of cover bytes with payload.

Extraction

- Take cover as a sequence of bytes in pseudorandom order per secret key,
- Read LSBs, decrypt and decompress.

Using pseudorandom order also has the advantage of spreading smaller-thanmaximal payloads throughout the cover.

Stego object, 1 secret bit per cover pixel (32KB)

Cover object, 512×512 pixels, grayscale

Stego object, 1 secret bit per cover pixel (32KB)

Cover object, 512×512 pixels, grayscale

Cover object, 512£512 pixels, 24 bits per pixel

Stego object, 9 secret bits per cover pixel (288KB)

Steganography is not...

- Hiding data in pseudorandom streams e.g. Truecrypt.
 (too easy)
- Hiding data in unused parts of image/video/audio/packet/program headers. (not secure)

Steganalysis

- the counter-discipline to steganography, detecting hidden data.

Even when steganography is not perceptible (visually, audibly, ...) it might still be detected by **statistical analysis**.

The "pairs of values" effect can be used to make a detector, known as the **"Chi-Square"** detector for LSB replacement

A. Westfeld & A. Pfitzmann. *Attacks on Steganographic Systems*. In Proc. 3rd Information Hiding Workshop, Springer LNCS, 1999.

Digital watermarking

secret key

Applications

- Broadcast monitoring
 - The watermark is a machine-readable tag identifying the cover content.
- Copyright enforcement
 - The watermark proves ownership of the cover.
 - The watermark indicates a license to play the cover medium on specific device.
- Traitor tracing
 - The watermark identifies the original recipient of the cover.

Traitor tracing

multimedia distributor

Example "DSSS Watermarking"

Form cover as a vector of bytes:

$$\boldsymbol{d} = (d_1, \ldots, d_n)$$

Generate random "watermark" sequence (actually a secret key) of +1 and -1:

 $\boldsymbol{w} = (w_1, \dots, w_n)$ $w_i = \pm 1$ equiprobably, and independently

Watermarked image is simply $d^* = d + \alpha w$ (α is the watermark strength).

To detect the presence of the watermark, form the "similarity" or "normalized correlation" score $nc(d^*, w) = \frac{d^* \cdot w}{\sqrt{d^* \cdot d^*}}.$

which is high when this particular watermark is present and low otherwise.

I. Cox, J. Kilian, F. Leighton, & T. Shamoon. *Secure Spread Spectrum Watermarking for Multimedia*. IEEE Trans. Image Processing, 6(12), 1997.

Example "DSSS Watermarking"

Form cover as a vector of bytes:

$$\boldsymbol{d} = (d_1, \ldots, d_n)$$

Generate random "watermark" sequence (actually a secret key) of +1 and -1:

 $\boldsymbol{w} = (w_1, \dots, w_n)$ $w_i = \pm 1$ equiprobably, and independently

Watermarked image is simply $d^* = d + \alpha w$ (α is the watermark strength).

To detect the presence of the watermark, form the "similarity" or "normalized correlation" score $nc(d^*, w) = \frac{d^* \cdot w}{\sqrt{d^* \cdot d^*}}.$

which is high when this particular watermark is present and low otherwise.

This watermark conveys no information except its presence ("zero bit watermark").

Watermark detection

Watermark attacks

- the counter-discipline to watermarking, destroying hidden data.

(The opponent wants to remove the watermark without destroying the cover.)

Note that embedding a watermark MUST degrade the cover a bit, otherwise it can be painlessly overwritten.

Common attacks

• Noise attack

Not targeted: simply aim to reduce watermark fidelity.

• Collusion attack

Take the average of many copies of the same cover, with different watermarks.

• Desynchronization attack

Distort the cover spatially so that the watermark is no longer detectable.

• Watermark estimation

EITHER use many objects with the same watermark, OR treat the detector as an oracle, to estimate (and then subtract) the watermark.

Noise attack

Added Gaussian noise (standard deviation=20).

Collusion attack

Formed a new image by averaging three copies of the same cover marked with different watermarks.

Desynchronization attack

Removed pixel column 1 and pixel duplicated column 512.

Steganography & watermarking

• Steganography

Embed message so that it cannot be detected Steganalysis Detect hidden information

Digital watermarking
 Embed message so that it cannot be removed Watermark attacks
 Remove information (without destroying cover)

JPEG

- lossy compression using quantization in the DCT domain.

- 1. Split into 8×8 blocks.
- 2. Discrete Cosine Transform.
- 3. Quantize DCT coefficients.
- 4. Compress conventionally and store.

JPEG

- 1. Split into 8×8 blocks.
- 2. Discrete Cosine Transform (to 8×8 coefficients).

- 16 11 10 16 ···· 12 12 14 19 14 13 16 24 14 17 22 29 ···
- 3. Divide coefficients by "quantization table" and round to nearest.
- 4. Compress quantized coefficients conventionally and store.

JPEG

In practice, JPEG compression reduces file size with relatively little loss in visual quality.

Bitmap 768KB

JPEG 66KB

JPEG steganography

It is at this level that the steganographic payload is (usually) embedded.

F5 steganography

Alters LSBs of nonzero quantized coefficients (there are some slight difficulties with avoiding zeros).

JPEG cover 66KB

Stego object with 8.1KB payload

Can hide information in...

- uncompressed images,
- compressed images,
- audio,
- movies,
- 3D meshes,
- screen savers,
- fonts,
- source code,
- byte code,
- text,
- DNA (!),
- ...

Information Hiding and Covert Communication

Part 2: Steganalysis

- Aims & general overview
 - "Chi-Square" detector for LSB replacement in uncompressed images
- Detection using combinatorial analysis of embedding
 - "Couples" detector for LSB replacement in uncompressed images
- Detection using machine learning
 - "Extended DCT" detector for F5 embedding in JPEG images

Steganalysis

Aim: to detect whether an object contains a covert payload or not.

Steganalysis can be...

- targeted at a particular embedding method (most common), or
- blind, with potential to unmask even unknown embedding methods (rare, usually weak).

The output can be...

- **simple binary**: yes or no to the presence of payload, or
- **quantitative**, estimating the size of the payload.

Most steganalysers use one of two methodologies:

- 1. Combinatorial analysis of embedding operation (must be targeted).
- 2. An application of machine learning techniques.

Chi-Square detector

Measure closeness of pairs by the "Chi-Square" statistic:

$$X^{2} = \sum_{i=0}^{127} \frac{\left(f[2i] - f[2i+1]\right)^{2}}{f[2i] + f[2i+1]}$$

(Have to exclude terms with zero or very small denominator.) High value of $X^2 \longrightarrow$ no payload Low value of $X^2 \longrightarrow$ suspect payload

A. Westfeld & A. Pfitzmann. *Attacks on Steganographic Systems*. In Proc. 3rd Information Hiding Workshop, Springer LNCS, 1999.

Steganalysis

Aim: to detect whether an object contains a covert payload or not.

Steganalysis can be...

- **targeted** at a particular embedding method (most common), or
- **blind**, with potential to unmask even unknown embedding methods (rare, usually weak).

The output can be...

- **simple binary**: yes or no to the presence of payload, or
- quantitative, estimating the size of the payload.

Most steganalysers use one of two methodologies:

- 1. Combinatorial analysis of embedding operation (must be targeted).
- 2. An application of machine learning techniques.

Measuring performance

Binary detectors are benchmarked by their false positive / false negative tradeoff "Receiver Operating Characteristic" curve.

Image library

In the absence of a perfect model for covers, we must estimate the ROC empirically.

Here we will use a library of 1600 cover images, each 3 Mpixels, taken in RAW format using a digital camera.

NB: performance might be highly dependent on the characteristics of the covers. Good researchers test on multiple, independent, sets of covers.

R. Böhme & A. Ker. *A Two-Factor Error Model for Quantitative Steganalysis*. In Proc. Electronic Imaging 2006, SPIE.

Performance of Chi-Square

Performance of Chi-Square

Chi-Square is only a weak detector for LSB replacement steganography, if

- the payload size is smaller than maximum, and
- the payload is spread pseudorandomly through the cover.

Couples detector

"Couples" is a more recent detector for LSB replacement in uncompressed images. It differs from Chi-Square in that:

1. It has a specific model for certain statistical properties of cover images.

2. It is quantitative (estimates the size of payload).

The detector uses properties of **adjacent pairs** of pixels, to estimate the proportionate payload size.

S. Dumitrescu, X. Wu, & Z. Wang. *Detection of LSB Steganography via Sample Pair Analysis*. In Proc. 5th Information Hiding Workshop, Springer LNCS, 2002.

A. Ker. *A General Framework for the Structural Steganalysis of LSB Replacement*. In Proc. 7th Information Hiding Workshop, Springer LNCS, 2005.

Steganalysis

Aim: to detect whether an object contains a covert payload or not.

Steganalysis can be...

- **targeted** at a particular embedding method (most common), or
- **blind**, with potential to unmask even unknown embedding methods (rare, usually weak).

The output can be...

- **simple binary**: yes or no to the presence of payload, or
- **quantitative**, estimating the size of the payload.

Most steganalysers use one of two methodologies:

- 1. Combinatorial analysis of embedding operation (must be targeted).
- 2. An application of machine learning techniques.

Couples detector

We look at *adjacent pairs of pixels*, and the effects of LSB operations on them.

Definitions (classification of pixel pairs)

 \mathcal{P} all adjacent pixel value pairs (x, y).

 \mathcal{C}_m pairs with values (x, y) such that $\lfloor x/2 \rfloor - \lfloor y/2 \rfloor = m$.

 \mathcal{E}_m pairs with values (2k, 2k+m).

 \mathcal{O}_m pairs of the form (2k+1, 2k+1+m).

e.g. if 66 and 72 are the values of two adjacent pixels then this pair is in $\mathcal{P}, \mathcal{C}_3$, and \mathcal{E}_6 .

Trace sets

- \mathcal{P} all adjacent pixel value pairs (x, y).
- \mathcal{C}_m pairs with values (x, y) such that $\lfloor x/2 \rfloor \lfloor y/2 \rfloor = m$.
- \mathcal{E}_m pairs with values (2k, 2k+m).
- \mathcal{O}_m pairs of the form (2k+1, 2k+1+m).

Trace sets

Structural Property:

LSB replacement moves pairs between trace subsets, but the trace sets are fixed.

Fix *m*. How are the trace subsets of C_m affected by LSB operations?

Example: some pairs for m = 3

When proportion p LSBs are flipped (at random).

Fix a cover of size N. Embed a random message of length 2pN.

Define

 $e_m = \text{#pairs in } \mathcal{E}_m \text{ in cover}$ $o_m = \text{#pairs in } \mathcal{O}_m \text{ in cover}$ $e'_m = \text{#pairs in } \mathcal{E}_m \text{ after embedding}$ $o'_m = \text{#pairs in } \mathcal{O}_m \text{ after embedding}$

Then

$$e'_{2m} \approx (1-p)^2 e_{2m} + p(1-p)o_{2m-1} + p(1-p)e_{2m+1} + p^2 o_{2m}.$$

this is really the expectation of a random variable)

Fix a cover of size N. Embed a random message of length 2pN.

Define

 $(1-p)^2$

p(1-p)

 \mathcal{O}_{2m}

 $(1-p)^2$

 \mathcal{E}_{2m+1}

Fix a cover of size N. Embed a random message of length 2pN.

Define

 $(1-p)^2$

p(1-p)

 \mathcal{O}_{2m}

 $(1-p)^2$

 \mathcal{E}_{2m+1}

Fix a cover of size N. Embed a random message of length 2pN.

Define

 $(1-p)^2$

p(1-p)

 \mathcal{O}_{2m}

 $(1-p)^2$

 \mathcal{E}_{2m+1}

Inverting the transitions

We derive:

$$\begin{pmatrix} e'_{2m} \\ o'_{2m-1} \\ e'_{2m+1} \\ o'_{2m} \end{pmatrix} \approx \begin{pmatrix} (1-p)^2 & p(1-p) & p(1-p) & p^2 \\ p(1-p) & (1-p)^2 & p^2 & p(1-p) \\ p(1-p) & p^2 & (1-p)^2 & p(1-p) \\ p^2 & p(1-p) & p(1-p) & (1-p)^2 \end{pmatrix} \begin{pmatrix} e_{2m} \\ o_{2m-1} \\ e_{2m+1} \\ o_{2m} \end{pmatrix}$$

$$\uparrow$$
stego
$$\downarrow$$
Cover

Inverting,

$$\begin{pmatrix} e_{2m} \\ o_{2m-1} \\ e_{2m+1} \\ o_{2m} \end{pmatrix} \approx \frac{1}{(1-2p)^2} \begin{pmatrix} (1-p)^2 & -p(1-p) & -p(1-p) & p^2 \\ -p(1-p) & (1-p)^2 & p^2 & -p(1-p) \\ -p(1-p) & p^2 & (1-p)^2 & -p(1-p) \\ p^2 & -p(1-p) & -p(1-p) & (1-p)^2 \end{pmatrix} \begin{pmatrix} e'_{2m} \\ o'_{2m-1} \\ e'_{2m+1} \\ o'_{2m} \end{pmatrix}$$

$$\uparrow$$
cover
$$stego$$

Inverting the transitions

We derive:

Inverting,

$$e_m \approx \phi_m(p, e', o')$$

$$o_m \approx \psi_m(p, e', o')$$

$$\uparrow \qquad \uparrow$$

cover stego

Cover model

In natural images, we believe that $e_m \approx o_m$.

(Why? The difference between the values of each pair should be independent of the parity.)

Cover model

In natural images, we believe that $e_m \approx o_m$.

Cover model

In natural images, we believe that $e_m \approx o_m$.

Creating the estimator

For each m, we have

$$e_m \approx o_m$$
$$e_m \approx \phi_m(p, e', o')$$
$$o_m \approx \psi_m(p, e', o')$$

SO

$$0 \approx e_m - o_m \approx \phi_m(p, e', o') - \psi_m(p, e', o')$$

The Couples estimator for p is the (lower) root of the equation

$$0 = \sum_m \phi_m(p, e', o') - \psi_m(p, e', o')$$

Estimator performance

Estimates from 150 images: some had zero LSB payload, some 0.5bpp, some 1bpp.

Detector performance

Other detectors for LSB embedding

"Histogram Characteristic Function" "Higher Order Statistics"

"Chi-Square" "Raw Quick Pairs"

"RS" "Difference Histogram" "Pairs" (for palette images) "Triples" "Couples/ML" Harmsen, 2002; Ker, 2005; ... Lyu & Farid, 2002 Westfeld & Pfitzmann, 1999 Fridrich et al., 2000

Fridrich et al., 2001 Zhang & Ping, 2003 Fridrich et al., 2003 Ker, 2005 Ker, 2007

"2Couples" (for embedding in 2 LSBs) Ker, 2007

Fridrich & Goljan, 2004; Ker & Böhme, 2008; Böhme, 2008

Detector performance

F5 steganography

... uses the LSBs of the nonzero quantized coefficients.

 $d^{(i,j,k)}[\mathbf{I}] =$ Quantized coefficient at mode(i,j) in 8×8 block k

A. Westfeld. *F5—A Steganographic Algorithm.* In Proc. 4th Information Hiding Workshop, Springer LNCS, 2001.

F5 detector

- a simplification of the "Extended DCT Feature" classifier due to Pevný & Fridrich.

Rather than examine the F5 embedding operation in detail, this detector uses machine learning (supervised learning for classification) techniques.

T. Pevný & J. Fridrich. *Merging Markov and DCT Features for Multi-Class JPEG Steganalysis*. In Proc. Electronic Imaging 2007, SPIE.

Steganalysis

Aim: to detect whether an object contains a covert payload or not.

Steganalysis can be...

- **targeted** at a particular embedding method (most common), or
- **blind**, with potential to unmask even unknown embedding methods (rare, usually weak).

The output can be...

- **simple binary**: yes or no to the presence of payload, or
- quantitative, estimating the size of the payload.

Most steganalysers use one of two methodologies:

- 1. Combinatorial analysis of embedding operation (must be targeted).
- 2. An application of machine learning techniques.

Supervised learning for classification

Suppose a universe of objects which fall into discrete, disjoint, classes.

Key elements:

- Select feature vector
 Each object is projected onto a vector of (hopefully) relevant features
- Training phase

Separate feature space into class regions based on known objects

• Application

Predict class of new objects, based on their features

Ideal

DCT features

For features we use the **histogram** of coefficients (for each DCT mode separately):

$$h_{(i,j)}^{n}[\mathbf{I}] = \frac{\#\{d^{(i,j,k)}[\mathbf{I}] = n \mid 1 \le k \le B\}}{B}$$

And also the **"dual histogram"**:

$$g_{(i,j)}^{n} \left[\mathbf{I} \right] = \frac{\#\{d^{(i,j,k)}[\mathbf{I}] = n \mid 1 \le k \le B\}}{\#\{d^{(i,j,k)}[\mathbf{I}] = n \mid 1 \le k \le B, 1 \le i', j' \le 8\}}$$

To keep the dimensionality down, we consider only

$$(i,j) \in \{(2,1), (1,2), (2,2), (3,1), (1,3)\} \ -5 \leq n \leq 5$$

for a total of 110 features.

Classification engines

Popular methods to determine the class regions from the training data include:

- Fisher Linear Discriminator
- Multi-layer Perceptron (a.k.a. Neural Network)
- Support Vector Machine
- k-Nearest Neighbours

In most cases the classes are separated by hyperplanes, but the "kernel trick" allows certain types of nonlinear classification at little extra cost.

Support Vector Machine

A SVM finds a separating hyperplane with maximum margin between the classes.

- When no such hyperplane exists "soft margin" SVMs can be used.
- The "kernel trick" allows nonlinear boundaries.

Performance

To make a steganography detector,

1. Take a set of cover images, and create a set of stego images.

2. Compute the 110 features for every image.

3. Train a SVM on this data (also optimizing the learning parameters).

Test the trained SVM on fresh images. Result... hopeless performance.

Calibration

We need a rough estimate for feature values of the cover, given the stego object.

Decompress stego object

Ι

Crop 4 rows & columns, recompress with same JPEG parameters

"Calibration image"

Calibration

We need a rough estimate for feature values of the cover, given the stego object.

Calibrated features

We use the **calibrated histogram**:

$$h_{(i,j)}^{n}\left[\mathbf{I}\right] - h_{(i,j)}^{n}\left[\widetilde{\mathbf{I}}\right]$$

And also the **calibrated dual histogram**:

$$g_{(i,j)}^n\big[\,\mathbf{I}\,\big] - g_{(i,j)}^n\big[\,\widetilde{\mathbf{I}}\,\big]$$

For

$$(i,j) \in \{(2,1),(1,2),(2,2),(3,1),(1,3)\} \ -5 \leq n \leq 5$$

Performance

To make a steganography detector,

- 1. Take a set of cover images, and create a set of stego images.
- 2. Compute the 110 calibrated features for every image.
- 3. Train a SVM on this data (also optimizing the learning parameters).

Test the trained SVM on fresh images. Result...

Performance

payload size (bits per nonzero coefficient)

Other detectors for F5

(most work for other JPEG embedders too)

Category attack

Lee & Westfeld, 2006 & 2007

"Binary Similarity Measures""Higher Order Statistics""KFD"

23 "DCT features"

"Markov features"

"Merged features" (Markov + DCT)

Avcibas et al., 2001 Lyu & Farid, 2002 Harmsen & Pearlman, 2004 Fridrich, 2004 Shi et al., 2005 Pevný & Fridrich, 2007

Steganalysis

Most steganalysers use one of two methodologies:

1. Combinatorial analysis of embedding operation.

Advantages

often highly sensitive usually of low computational complexity applicable to many cover types

Disadvantages

difficult to find cover properties can be complex to derive a detector

2. An application of machine learning techniques.

Advantages

embedding need not be fully understood can utilize standard techniques easy to add new features

Disadvantages

easy to include too many useless features often computationally expensive different cover types need separate training