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Part 3: More Efficient Steganography

• Abstraction of the embedding problem, simple example of efficiency

• Embedding codes

– Syndrome codes: the Hamming code family

• Embedding efficiency bound

• More embedding codes

– Golay code

– The ZZW construction

• Asymptotics
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Abstraction
- separate the embedding operation from the details of what payload is  

embedded where.

Say that 

• the cover consists of a number of locations,

• each location contains one q-ary symbol,

• an embedding change alters the symbol at one location.

Embedding operations might be: replacement of LSB of pixel, adjustment of 

LSB of quantized coefficient, adjustment of remainder (mod q) …

Aim: maximize the amount of information transmitted, while minimizing 

the number of embedding changes.

(Implicitly: all embedding changes are equally risky.)

We stick to binary symbols, 



Embedding efficiency

Regardless of payload size, on average each bit of payload requires 0.5 

embedding changes.

We say that the embedding efficiency            bits per change.

0 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 …

0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1 …

0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1 …

Cover:

Payload:

Stego:



Example of efficient embedding

0 0 1 1 0 1 1 1 1 0 1 1 …

0 0 0 1 1 1or0 0

0 0 1 1 1 0or0 1

0 1 0 1 0 1or1 0

1 0 0 0 1 1or1 1

Cover:

Payload:

Take cover in groups of 3, payload in groups of 2.

Embed a payload group in each cover group using the encoding:

0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 …Stego:

0 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 …



Example of efficient embedding

0 0 1 1 0 1 1 1 1 0 1 1 …

0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 …

Cover:

Payload:

Stego:

Payload rate 

Embedding changes:

with probability 

with probability  

Embedding efficiency                bits per change.

0 0 0 1 1 1or0 0

0 0 1 1 1 0or0 1

0 1 0 1 0 1or1 0

1 0 0 0 1 1or1 1

0 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 …



Embedding codes
A binary embedding code is:

• a partition of               into       subsets 

• an embedding map                                                with

The average embedding distance is      

We say that the code is                                         

It achieves a payload rate of                   with embedding efficiency

e.g.   is with

000 001

100 101

010 011

110 111



Embedding codes

e.g.

is with 

01010011 110010100110 1001

1111

10110111 11101101

0000

00100001 10000100



Syndrome coding
• A linear           code     is a k-dimensional subspace of 

• Its parity check matrix is a                    matrix      s.t.               iff

• For each s in                   the coset leader for s is a vector                   

with least weight (number of 1s) such that 

Matrix Embedding Theorem

Every linear          code generates a                      embedding code by the 

following construction:

Then      is the average weight of all coset leaders.

J. Fridrich & D. Soukal. Matrix Embedding for Large Payloads. IEEE Trans. Information Forensics and 
Security 1(3), 2006.



Hamming code family
For                          we can form a binary               code with parity 

check matrix

These are called Hamming codes. 

All equations of the form             can be solved using an x with a single 

nonzero entry (and              is solved by zero x) so there are            

• coset leaders of weight 1, and

• 1 coset leader of weight 0.

i.e. the average coset leader weight is 

So Hamming codes generate                               embedding codes  

all distinct 

nonzero 

binary strings 

of length p



Embedding efficiency



Efficiency bound
Recall that the average embedding distance, and embedding efficiency, 

Related quantities are the worst-case embedding distance and worst-case 

embedding efficiency

Pick any                      if x can reach all       subsets with        changes,



Binary entropy function



Efficiency bound
Recall that the average embedding distance, and embedding efficiency, 

Related quantities are the worst-case embedding distance and worst-case 

embedding efficiency

Pick any                      if x can reach all       subsets with        changes,

It can be shown that the same bound holds “usually” (or “asymptotically”) 

for the average embedding efficiency eeee, too.



Embedding efficiency



Perfect codes
A code is perfect if spheres around the codewords partition the entire space. 

When converted to an embedding code, this corresponds to no “wasted space”, 

so we might look for perfect codes to make good embedding codes.

Sadly, the only nontrivial perfect binary codes are the Hamming codes and the 

Golay code, with parity check matrix

The Golay code gives a                      embedding code, so



Embedding efficiency



The ZZW construction
Fix positive integer      Split cover into groups of size 

For each group, suppose that the cover bits are                 Compute their XOR

• If this matches next payload bit, change nothing.

(0 embedding changes, 1 bit of information transmitted)

• If the XOR does not match the payload bit, change one of the locations       

Communicate    additional bits by the choice of which to change.

(1 embedding change,           bits of information transmitted)

W. Zhang, X. Zhang, & S. Wang. Maximizing Steganographic Embedding Efficiency by Combining Hamming 
Codes and Wet Paper Codes. In Proc. 10th Information Hiding Workshop, Springer LNCS, 2008.



The ZZW construction
Fix positive integer      Split cover into groups of size 

For each group, suppose that the cover bits are                 Compute their XOR

• If this matches next payload bit, change nothing.

(0 embedding changes, 1 bit of information transmitted)

• If the XOR does not match the payload bit, change one of the locations       

Communicate    additional bits by the choice of which to change.

(1 embedding change,           bits of information transmitted)

Clever bit: how does the recipient know 

which groups had a change? - Wet Paper codes

which of                   was changed? - Hamming codes

On average, we have a                        embedding code.



Embedding efficiency



Embedding efficiency



Embedding 5120 bits in 262144 locations by 

simple replacement: 2560 changes. 



Embedding 5120 bits in 262144 locations by 

ZZW code: 512 changes. 



Asymptotic relationship
Since                           we can deduce an asymptotic relationship between 

cover size n, total number of embedding changes c, and total embedded 

payload p:

(as             )

(as              )



Part 4: Steganographic Capacity

• Concept of capacity

• Capacity of perfect steganography

– The amount of information you can hide is proportional to the cover size

• Capacity of batch steganography

– … proportional to the square root of the number of covers

• Capacity of Markov covers 

– … proportional to  

• Reconciliation, experimental results

Information Hiding 

and Covert Communication



Detector performance

… the more information you hide, the greater the risk of discovery.



Capacity
- the more information you hide, the greater the risk of discovery.

Fix an embedding method & cover source. 

• Given a limit on “risk”, what is the largest payload which can safely be 

embedded?

• How does this safe maximum payload depend on the size of the cover?



Perfect steganography
- steganography with no risk.

For there to be no risk, the cover objects and the stego objects must have 

exactly the same statistical properties.

Theorem

Randomly modulated codes constructed from codes with “order-1 security”

produce perfect steganography.

The amount of information which can be hidden using these randomly 

modulated codes depends on the cover source, but is guaranteed to be         , 

where n is the number of symbols transmitted.

Y. Wang & P. Moulin. Perfectly Secure Steganography: Capacity, Error Exponents, and Code 
Constructions. IEEE Trans. Information Theory 54(6), 2008.



Moral

Given perfect knowledge of the cover source, the amount of information you 

can hide is proportional to the cover size.

but… constructing the perfect embedding code requires complete and 

perfect knowledge of the cover source.

Nobody has perfect knowledge of their cover source!

“Model-based steganography” by Sallee, 2003

… broken by Fridrich in 2004

“Stochastic QIM” by Moulin & Briassouli, 2004 

(described as “robust” and “undetectable”) 

… broken by Wang & Moulin in 2006



Capacity
- the more information you hide, the greater the risk of discovery.

Fix an embedding method & cover source. 

• Given a limit on “risk”, what is the largest payload which can safely be 

embedded?

• How does this safe maximum payload depend on the size of the cover?

Ross Anderson in the 1st Information Hiding Workshop (1996):

“…the more covertext we give the warden [detector], the 
better he will be able to estimate its statistics, and so the 
smaller the rate at which Alice will be able to tweak bits 
safely. The rate might even tend to zero...”



Capacity
- the more information you hide, the greater the risk of discovery.

Fix an embedding method. 

• Given a limit on “risk”, what is the largest payload which can safely be 

embedded?

• How does this safe maximum payload depend on the size of the cover?

… implicitly assumes that the Warden seeks a binary decision. “Safe” can be 

defined in terms of false positive rate α and false negative rate β:

embedding a certain payload is “safe” if any steganalysis detector must 

have more than a certain false positive and false negative rate.



Information theoretic bounds
- bounds detection performance using Kullback-Leibler divergence. 

If X has density function f, and Y has density function g, then the KL 

divergence from X to Y is 

Information Processing Theorem:

Therefore, if trying to separate an instance of X from one of Y, the false 

positive (Y) rate α and false negative (X) rate β must satisfy

C. Cachin. An Information-Theoretic Model for Steganography. Information and Computation 192(1), 
2004.



Information theoretic bounds
- bounds detection performance using Kullback-Leibler divergence. 

If X has density function f, and Y has density function g, then the KL 

divergence from X to Y is 

Information Processing Theorem:

Therefore, if trying to separate an instance of X from one of Y, the false 

positive (Y) rate α and false negative (X) rate β must satisfy

To apply this, we need to know 

We have already seen that statistical models for covers are inaccurate.



Batch steganography
- instead of performing steganography and steganalysis in isolated 

objects, consider a large number of covers.

A. Ker. Batch Steganography & Pooled Steganalysis. In Proc. 8th Information Hiding Workshop, 
Springer LNCS, 2006.
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Batch steganographic capacity
A tractable and interesting capacity question:

How does maximum secure capacity depend on the number of covers n?

It turns out that the order of growth is independent of all the other capacity 

factors.

A. Ker. A Capacity Result for Batch Steganography. IEEE Signal Processing Letters 14(8), 2007.



Theorem
Assuming � Alice’s covers are of bounded size,

� independent,

� with positive measure such that                         on

�

No matter what the acceptable false positive rate α and false negative rate β,

1. There is a pooling strategy for the Warden such that, no matter what 

Alice’s embedding strategy,  if as then for sufficiently 

large n Alice’s risk is unacceptable.

2. There is an embedding strategy for Alice such that, no matter what the 

Warden’s pooling strategy, if as              then for sufficiently 

large n Alice’s risk is acceptable.



Proof sketch
1. There is a pooling strategy for the Warden such that… if                     

then… Alice [will be eventually caught].

The pooling strategy is: 

payload detected if                                 is greater than a critical threshold 

By the Berry-Esséen Theorem (& independence):

Detector performance tends to perfect, as n →→→→∞∞∞∞



Proof sketch
2. There is an embedding strategy for Alice such that… if then…

Alice [will not be caught].

The embedding strategy is:

spread the payload m equally amongst the n covers:              for all i

By the information processing theorem, any pooling strategy has 

false positive rate α and false negative rate β satisfying



Proof sketch

Detector performance tends to random, as n →→→→∞∞∞∞



Theorem
Assuming � Alice’s covers are of bounded size,

� independent,

� with positive measure such that                         on

�

No matter what the acceptable false positive rate α and false negative rate β,

1. There is a pooling strategy for the Warden such that, no matter what 

Alice’s embedding strategy,  if as then for sufficiently 

large n Alice’s risk is unacceptable.

2. There is an embedding strategy for Alice such that, no matter what the 

Warden’s pooling strategy, if as              then for sufficiently 

large n Alice’s risk is acceptable.

Common sense
Embedding 

makes something 

more (or less) 

likely

Finite Fisher Information



Theorem
Assuming � Alice’s covers are of bounded size,

� independent,

� with positive measure such that                         on

�

No matter what the acceptable false positive rate α and false negative rate β,

1. There is a pooling strategy for the Warden such that, no matter what 

Alice’s embedding strategy,  if as then for sufficiently 

large n Alice’s risk is unacceptable.

2. There is an embedding strategy for Alice such that, no matter what the 

Warden’s pooling strategy, if as              then for sufficiently 

large n Alice’s risk is acceptable.

3. What if                       ?

Common sense
Embedding 

makes something 

more (or less) 

likely

Finite Fisher Information



Moral

Given some conditions on the covers, the amount of information you can hide 

is proportional to the square root of the number of covers.

but… what about individual covers?



Steganography in Markov chains
- turn to single cover objects, with a very general model.

• Model the cover source as a Markov chain, a memoryless finite state 

machine moving at random from state to state. 

The sequence of states is denoted

The states could represent the pixels of a cover image, or the quantized 

DCT coefficients, or groups of pixels, etc.

• We model the embedding process as random substitution of states described 

by a matrix         : if the stego object is                          and the embedding 
change rate is  

T. Filler, A. Ker, & J. Fridrich. The Square Root Law of Steganographic Capacity for Markov
Covers. To appear in Proc. Electronic Imaging 2009, SPIE.



Steganography in Markov chains
- turn to single cover objects, with a very general model.

• Model the cover source as a Markov chain, a memoryless finite state 

machine moving at random from state to state. 

The sequence of states is denoted

The states could represent the pixels of a cover image, or the quantized 

DCT coefficients, or groups of pixels, etc.

• We model the embedding process as random substitution of states described 

by a matrix         : if the stego object is                          and the embedding 
change rate is  

(We must have                   for all x. If also                   for all y, the embedding 

is called doubly stochastic.)



Theorem
Assuming � Markov chain is irreducible,

� Embedding is independent of cover,

� Embedding is doubly stochastic,

� There is some sequence such that

No matter what the acceptable false positive rate α and false negative rate β,

1. There exists a detector such that, if the embedding rate γ satisfies 

as then for sufficiently large n Alice’s risk is unacceptable.

2. For any detector, if the number of embedding rate γ satisfies

as              then for sufficiently large n Alice’s risk is acceptable.



Theorem
Assuming � Markov chain is irreducible,

� Embedding is independent of cover,

� Embedding is doubly stochastic,

� There is some sequence such that

No matter what the acceptable false positive rate α and false negative rate β,

1. There exists a detector such that, if the embedding rate γ satisfies 

as then for sufficiently large n Alice’s risk is unacceptable.

2. For any detector, if the number of embedding rate γ satisfies

as              then for sufficiently large n Alice’s risk is acceptable.

Common sense

Embedding 

makes something 

more (or less) 

likely

Ensures convergence to 

equilibrium

# embedding changes



Moral

Given a Markov cover source and random embedding satisfying some weak 

conditions, the number of embedding changes you can make is proportional to 

the square root of the cover size.

Recall, with asymptotically efficient embedding codes, the payload size p and 

the number of embedding changes c can satisfy

Then                     implies



Reconciliation
Moulin’s theorem says:

Steganographic capacity is linear, 

if Alice knows her cover source perfectly.

Batch steganographic theorem says:

Steganographic capacity is a square root law, 

if (roughly) Alice’s embedding is imperfect (and non-adaptive).

Markov chain capacity theorem says:

Steganographic capacity measured in embedding changes is a square root law, 

if (roughly) Alice’s embedding is imperfect (and non-adaptive).



Experimental results
We would like to test some contemporary steganography and steganalysis

methods, to see if a square root law is observed.

Idea:

• Create image sets of different sizes.

• Embed lots of different-size payloads in each set, perform steganalysis.

• Look for the relationship between cover and payload size and detectability.

It is difficult to make image sets of different sizes which do not also have 

different characteristics: noise, density, etc. 

The best we can do is crop down large images to smaller ones, choosing the 

crop region to preserve local variance or a similar noise statistic.

A. Ker, T. Pevný, J. Kodovský, & J. Fridrich. The Square Root Law of Steganographic Capacity. To 
appear in Proc. Multimedia & Security Workshop 2008, ACM.



Experimental results
LSB replacement steganography & Couples steganalysis



Experimental results
F5 steganography & “Merged features” SVM steganalysis



Conclusions
• The complete square root law for capacity will be a suite of theorems, 

proving the result under different circumstances. 

We already know some conditions under which it holds, and it appears 

to hold in practice too.

• Although many authors describe steganography and steganalysis payloads 

in terms of “bits per pixel” or “bits per nonzero DCT coefficient”, it is more 

accurate to think in terms of “bits per square root pixel,” etc.

• A big outstanding question: what is the multiplicative constant in the square 

root law?

It will depend on the cover source and the embedding method:

– could use this to compare the security of different embedders,

– could also compare the security of different cover sources.


