The Square Root Law of Steganography: Bringing Theory Closer to Practice

Andrew Ker

adk@cs.ox.ac.uk

University of Oxford Department of Computer Science

5th ACM Workshop on Information Hiding & Multimedia Security Philadelphia, 20 June 2017

The moral of the story

The Steganographer versus the Detector

Suppose a payload of m(n) bits hidden in cover of n 'pixels'.

If m(n) is small enough, and the cover has no deterministic parts, any Detector is unreliable.

If m(n) is too large, and the embedding is imperfect, some Detector will reliably detect it.

The *critical rate* r(n) between these two cases is $O(\sqrt{n})$.

- ► In practice: observed robustly.
- ► In theory: ...

The moral of the story

- Given ▶ a probabilistic cover model,
 - a probabilistic embedding model,

Suppose a payload of m(n) bits hidden in cover of n 'pixels'.

If $m(n)/r(n) \to 0$, and 'no determinism' in the cover model, any Detector has $P_{fp} + P_{fn} \to 1$.

If $m(n)/r(n) \to \infty$, and 'no free bits' in the embedding process, some Detector has $P_{fp} + P_{fn} \to 0$.

The *critical rate* r(n) between these two cases is $O(\sqrt{n})$.

- ► In practice: observed robustly.
- ► In theory: ...

The moral of the story

Cover model

- i.i.d. discrete pixels [*Ker*, 2009] [*Ker*, 2010]
- ► independent pixels [*Ker 2011*]
- i.i.d. continuous signals [Bash, Goeckel, Towsley, 2012]
- ► 1st-order Markov chain [Filler, Ker, Fridrich, 2009]
- ► In practice: observed robustly.
- ► In theory: only proved for very simple models.

Outline

- ► New result for wide class of covers models,
 - ► sketch proof, many details omitted.
- ► Examples.
- ► Conclusions.

New square root law

Cover model	Embedding model	Conditions	Critical Rate
Markov random field (i) of bounded degree, (ii) with exponential decay of local covariance - density of local neighbourhoods $p_i(\mathbf{x})$	use exactly m pixels - density of local neighbourhoods $q_i(\mathbf{x})$	'No cover determinism': $p_i(\mathbf{x}) > \epsilon$ 'No free bits': $\ p_i - q_i\ _1 > \epsilon \frac{m}{n}$	\sqrt{n}

Markov Random Field

Conditional on Os, • is independent of all • s.

Bounded degree: maximum neighbourhood cardinality.

Markov Random Field

Exponential decay of covariance: $Cov[A_i, A_j] \leq Ce^{-cd(i,j)}$

New square root law

Cover model	Embedding model	Conditions	Critical Rate
Markov random field (i) of bounded degree, (ii) with exponential decay of local covariance - density of local neighbourhoods $p_i(\mathbf{x})$	use exactly m pixels - density of local neighbourhoods $q_i(\mathbf{x})$	'No cover determinism': $p_i(\mathbf{x}) > \epsilon$ 'No free bits': $\ p_i - q_i\ _1 > \epsilon \frac{m}{n}$	\sqrt{n}

'lower bound' if $m/\sqrt{n} \to 0$, then

all detectors are asymptotically random,

'upper bound' if $m/\sqrt{n} \to \infty$, then

an asymptotically perfect detector exists.

Sketch proof: lower bound

used pixels (m)

'dummy' pixels (d = O(n))

Sketch proof: lower bound

Conditional on Os, •s and •s are mutually independent.

Detector is asymptotically random if $m/\sqrt{d+m} \to 0$.

Sketch proof: lower bound

- ► Formalize side information argument (uses Total Variation).
- ▶ No item in the shortlist neighbours another. Probability of

tends to zero if $m/\sqrt{n} \to 0$.

► Apply correct Square Root Law for conditionally independent pixels.

Sketch proof: upper bound

$$\operatorname{Var}_{\operatorname{cov}}\left[\sum_{i} A_{i}\right] = \sum_{i,j} \operatorname{Cov}_{\operatorname{cov}}\left[A_{i}, A_{j}\right]$$

$$\leq \sum_{i,j} Ce^{-cd(i,j)}$$

$$= O(n)$$

(1) or bounded degree,

(it) with exponential decay of local covariance

- density of local neighbourhoods $p_i(\mathbf{x})$

- density of local neighbourhoods $q_i(\mathbf{x})$

For each neighbourhood i there is an indicator A_i with

$$E_{\text{steg}}[A_i] - E_{\text{cov}}[A_i] > \epsilon \frac{m}{n}$$

$$\sum_{i \in \text{Steg}} \left[\sum_{i} A_{i} \right] - \sum_{\text{cov}} \left[\sum_{i} A_{i} \right] > \epsilon m$$

'No free bits':

$$||p_i - q_i||_1 > \epsilon \frac{m}{n}$$

$$deflection(\sum_{i} A_{i}) \ge \frac{\Omega(m)}{O(\sqrt{n})}$$

so if $m/\sqrt{n} \to \infty$, $\sum_{i} A_{i}$ is an asymptotically perfect detector.

Markov chain

Bounded maximum degree

Exponential decay of covariance

No determinism

No free bits

√ 2

✓ *follows from geometric ergodicity*

 \checkmark if all $p_{ij} > 0$

✓ as long as embedding not perfect

Inhomogeneous Markov chain

Bounded maximum degree

Exponential decay of covariance

No determinism

No free bits

√ 2

✓ follows from exponential forgetting

 \checkmark if all $p_{ij}^k > \epsilon$

✓ as long as embedding not perfect

Ising model

$$x_{ij} \in \{-1, +1\}; \text{ density } \propto$$

$$\exp\left(\beta H \sum_{i,j} x_{ij} + \beta J \sum_{\substack{|i-i'|+\\|j-j'|=1}} x_{ij} x_{i'j'}\right)$$

higher $\beta H \to +1$ more likely higher $\beta J \to$ neighbours more equal

Ising model

$$x_{ij} \in \{-1, +1\}; \text{ density } \propto$$

$$\exp\left(\beta H \sum_{i,j} x_{ij} + \beta J \sum_{\substack{|i-i'|+\\|j-j'|=1}} x_{ij} x_{i'j'}\right)$$

higher $\beta H \to +1$ more likely higher $\beta J \to$ neighbours more equal

Bounded maximum degree

Exponential decay of covariance

No determinism / no free bits

✓ from 'Dobrushin's condition' if $\beta H = 0$ and $|\beta J|$ small, or $|\beta H|$ large

✓ unless
$$\beta H = \infty$$
, $\beta J = \infty$, or $\beta H = \beta J = 0$

i.e. a deterministic function of random 'pre-cover'

Hidden-layer model

latent variables (random)

observed pixels

i.e. a deterministic function of random 'pre-cover'

Bounded maximum degree

Exponential decay of covariance

No determinism / no free bits

$$\checkmark \operatorname{Cov}[x_i, x_j] = 0 \text{ for } |i - j| > k$$

✓ unless degenerate

Conclusions

► There has been a gap between

theory: SRL for i.i.d. or 1st-order Markov covers,

and practice: SRL observed in real digital media objects.

- ► New square root law for class of Markov Random Fields, including
 - ▶ (inhomogeneous / *k*-order) Markov chains,
 - ► some Ising models,
 - ► hidden-layer models.

'Local randomness, no long-range dependency'

- Plenty of further directions...
- adaptive embedding / source coding,
- detector with imperfect information,
- 'root rate'.

Conclusions

► There has been a gap between

theory: *SRL for i.i.d. or 1st-order Markov covers*,

and practice: SRL observed in real digital media objects.

- ► New square root law for class of Markov Random Fields, including
 - ▶ (inhomogeneous / *k*-order) Markov chains,
 - ► some Ising models,
 - ► hidden-layer models.

'Local randomness, no long-range dependency'

- ► Plenty of further directions...
- ► There are also some interesting **non-examples** of the SRL. *to be continued...*