Improved Detection of LSB Steganography in Grayscale Images

Andrew Ker

adk@comlab.ox.ac.uk

Royal Society University Research Fellow at Oxford University Computing Laboratory

Information Hiding Workshop 2004

# Summary

This presentation will tell you about:

- 1. A project to **evaluate** the reliability of steganalytic algorithms;
- 2. Some potential pitfalls in this area;
- 3. Improved steganalysis methods:

exploiting uncorrelated estimators, simplifying, by dropping the message length estimate, (applying discriminators to a segmented image);

4. Experimental evidence of improvement.

# "Reliability"

The primary aim of an Information Security Officer (Warden) is to perform a reliable hypothesis test:

 $H_0$ : No data is hidden in a given image

 $H_1$ : Data is hidden (for experiments we posit a fixed amount/proportion)

(as opposed to forming an estimate of the amount of hidden data, or recovering the hidden data)

A steganalysis method is a discriminating statistic for this test; by adjusting the sensitivity of the hypothesis test, false positive (type I error) and false negative (type II error) rates may be traded.

Reliability is a "ROC" curve showing how false positives and false negatives are related.

#### **Distributed Steganalysis Evaluation Project**

#### Applied systematically

Over 200 variants of steganalysis statistics tested so far

#### Very large image libraries are used

Currently over 90,000 images in total, with more to come Images come in "sets" with similar characteristics.

#### Results are produced quickly

Computation performed by a heterogeneous cluster of 7-50 machines Calculations queued and results stored in a relational database Currently over 16 million rows of data, will grow to 100+ million

# **Scope of This Work**

#### Covers

Grayscale bitmaps (which quite likely were previously subject to JPEG compression)

#### Embedding method

LSB steganography in the spatial domain using various proportions of evenly-spread pixels

Particular interest in very low embedding rates (0.01-0.1 secret bits per cover pixel)

#### Aiming to improve the closely-related steganalysis statistics

"Pairs" [Fridrich *et al,* SPIE EI'03] "RS" a.k.a. "dual statistics" [Fridrich *et al,* ACM Workshop '01] "Sample Pairs" [Dumitrescu *et al,* IHW'02] a.k.a. "Couples"

# The world's smallest steganography software perl -n0777e '\$\_=unpack"b\*",\$\_;split/(\s+)/,<STDIN>,5; @\_[8]=~s{.}{\$&&v254|chop()&v1}ge;print@\_' <input.pgm >output.pgm stegotext



Histograms of the standard "Couples" statistic, generated from 5000 JPEG images





# Some Warning Examples



#### Conclusion

• The size of the cover images affects the reliability of the detector, even for a fixed embedding rate

# Some Warning Examples



#### Conclusion

• The size of the cover images affects the reliability of the detector, even for a fixed embedding rate.

#### In [Ker, SPIE EI'04] we also showed that

- Whether and how much covers had been previously JPEG compressed affects reliability, sometimes a great deal.
- This effect persists even when the images are quite substantially shrunk after compression.
- Different resampling algorithms in the shrinking process can themselves affect reliability.

## **Good Methodology for Evaluation**

- We have to concede that there is no single "reliability" for a particular detector.
- One should test reliability with more than one large set of cover images.
- It is important to report:
  - a. How much data was hidden;
  - b. The size of the covers;
  - c. Whether they have ever been JPEG compressed, or undergone any other manipulation.
- Take great care in "simulating" uncompressed images.

Simulate LSB replacement in proportion 2p of pixels by flipping the LSBs of p at random.

Example cover image:



As *p* varies, compute:

 $E_i$  = number of adjacent pixels whose value differs by *i*, and the lower value is even  $O_i$  = number of adjacent pixels whose value differs by *i*, and the lower value is odd



- Both curves quadratic in *p*
- Meet at p=0

The pairs of measures  $E_3 \& O_3$   $E_5 \& O_5$   $\vdots$  $\sum_{odd i} E_i \& \sum_{odd i} O_i$ 

all have the same properties.





## **Choice of Discriminators**

Unlike Pairs and RS, Couples has a number of estimators for the proportion of hidden data:

$$\hat{p}_{0}$$
 from  $E_{1}$  and  $O_{1}$   
 $\hat{p}_{1}$  from  $E_{3}$  and  $O_{3}$   
 $\hat{p}_{2}$  from  $E_{5}$  and  $O_{5}$   
 $\vdots$   
 $\hat{p}$  from  $\sum_{odd i} E_{i}$  and  $\sum_{odd i} C_{i}$ 

The last one is used in [Dumitrescu *et al*, IHW'02]

#### **Choice of Discriminators**

 $\hat{p}_0$  from  $E_1$  and  $O_1$   $\hat{p}_1$  from  $E_3$  and  $O_3$   $\hat{p}_2$  from  $E_5$  and  $O_5$   $\vdots$  $\hat{p}$  from  $\sum_{odd i} E_i$  and  $\sum_{odd i} O_i$ 



ROC curves generated from 5000 JPEG images of high quality. 5% embedding (0.05bpp).

#### **Estimators are Uncorrelated**

We observe that the estimators  $\hat{p}_i$  are very loosely correlated.

Scattergram shows  $\hat{p}_0 \& \hat{p}_1$ when no data embedded in 5000 high-quality JPEG images; the correlation coefficient is **-0.036** 

 $\hat{p}_0 \& \hat{p}_1$  form independent discriminators





ROC curves generated from 5000 JPEG images of high quality. 5% embedding (0.05bpp).

# **Dropping the Message-Length Estimate**

There is a much simpler sign that data has been embedded, which does not involve solving a quadratic equation:



## **Dropping the Message-Length Estimate**

There is a much simpler sign that data has been embedded, which does not involve solving a quadratic equation:





## **Splitting into Segments**

Using the standard RS method this image, which has no hidden data, estimates an embedding rate of 6.5%.



## **Splitting into Segments**

Segment the image using the technique in [Felzenszwalb & Huttenlocher, IEEE CVPR '98] and compute the RS statistic for each segment.



Taking the median gives a more robust estimate, in this case of 0.5%.

## **Result of Segmenting**

Segmenting is a "bolt on" which can be added to any other estimator. Here, to the modified RS method which computes the relative difference between *R* and *R*' (analogous to  $E_1$  and  $O_1$ ).



## **Experimental Evidence of Improvements**

We have computed very many ROC curves which depend on:

- which cover image set was used;
- (if not JPEG compressed already) how much JPEG pre-compression applied;
- how much data was hidden;
- which detection statistic is used as a discriminator.

There are too many curves. The database of statistic computations is 4.3Gb! ... How to display all this data?

We make an arbitrary decision that a "reliable" statistic is one which makes false positive errors at less than 5% when false negatives are 50%.

For each statistic and image set display the lowest embedding rate at which this reliability is achieved.

| ich <i>et al,</i> SPIE EI'03]<br>ich <i>et al,</i> ACM Workshop '01]<br>itrescu <i>et al,</i> IHW'02]   |
|---------------------------------------------------------------------------------------------------------|
| ich <i>et al,</i> SPIE EI'03]<br>ich <i>et al,</i> ACM Workshop '01]<br>itrescu <i>et al,</i> IHW'02]   |
| rich <i>et al,</i> SPIE EI'03]<br>rich <i>et al,</i> ACM Workshop '01]<br>itrescu <i>et al,</i> IHW'02] |
| rich <i>et al,</i> ACM Workshop '01]<br>itrescu <i>et al,</i> IHW'02]                                   |
| itrescu <i>et al,</i> IHW'02]                                                                           |
|                                                                                                         |
|                                                                                                         |
| SPIE EI 04J                                                                                             |
|                                                                                                         |
|                                                                                                         |
|                                                                                                         |
| nted here                                                                                               |
|                                                                                                         |
|                                                                                                         |
|                                                                                                         |
| Ì                                                                                                       |

| Lowest embedding rate for which 50% j                                                                                                                                                                                             | alse negatives achieved | with no more than 5% false positives: |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------|
|                                                                                                                                                                                                                                   | 2200 bitmaps            |                                       |
| Conventional Pairs                                                                                                                                                                                                                | 10%                     |                                       |
| Conventional RS                                                                                                                                                                                                                   | 11%                     |                                       |
| Conventional Couples                                                                                                                                                                                                              | 9%                      |                                       |
| RS w/ optimal mask                                                                                                                                                                                                                | 10%                     |                                       |
| Improved Pairs                                                                                                                                                                                                                    | 8%                      |                                       |
| Improved Couples min $(\hat{p}_0, \hat{p}_1, \hat{p}_2)$                                                                                                                                                                          | 3.2%                    |                                       |
| <b>Relative difference</b> of $E_1 \& O_1$ (using non-overlapping pixel groups)                                                                                                                                                   | 8.5%                    |                                       |
| <b>Relative difference</b> of <i>R</i> , <i>R'</i><br>(using optimal mask and non-overlapping pixel<br>groups and segmenting the image into 6-12<br>groups, taking 30 <sup>th</sup> percentile of the per-<br>segment statistics) |                         |                                       |

Lowest embedding rate for which 50% false negatives achieved with no more than 5% false positives:

|                                                                                                                                                                                                                                    | 2200 bitmaps + JPEG compression |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------|
|                                                                                                                                                                                                                                    | none                            | q.f. 50 |
| Conventional Pairs                                                                                                                                                                                                                 | 10%                             | 6%      |
| Conventional RS                                                                                                                                                                                                                    | 11%                             | 5.5%    |
| Conventional Couples                                                                                                                                                                                                               | 9%                              | 5%      |
| RS w/ optimal mask                                                                                                                                                                                                                 | 10%                             | 5%      |
| Improved Pairs                                                                                                                                                                                                                     | 8%                              | 2.8%    |
| Improved Couples min $(\hat{p}_0, \hat{p}_1, \hat{p}_2)$                                                                                                                                                                           | 3.2%                            | 1.8%    |
| <b>Relative difference</b> of $E_1 \& O_1$ (using non-overlapping pixel groups)                                                                                                                                                    | 8.5%                            | 0.8%    |
| <b>Relative difference of</b> <i>R</i> , <i>R</i> '<br>(using optimal mask and non-overlapping pixel<br>groups and segmenting the image into 6-12<br>groups, taking 30 <sup>th</sup> percentile of the per-<br>segment statistics) |                                 |         |

Lowest embedding rate for which 50% false negatives achieved with no more than 5% false positives:

|                                                                                                                                                                        | 2200 bitmaps + JPEG compression |         | 5000 JPEGs       | 10000 JPEGs   | 7500 JPEGs   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------|------------------|---------------|--------------|
|                                                                                                                                                                        | none                            | q.f. 50 | - (high quality) | (low quality) | (very mixed) |
| Conventional Pairs                                                                                                                                                     | 10%                             | 6%      | 4%               | 1.8%          | 7%           |
| Conventional RS                                                                                                                                                        | 11%                             | 5.5%    | 2.8%             | 1.6%          | 7%           |
| Conventional Couples                                                                                                                                                   | 9%                              | 5%      | 3%               | 1.4%          | 6.5%         |
| RS w/ optimal mask                                                                                                                                                     | 10%                             | 5%      | 2.2%             | 1.2%          | 5.5%         |
| Improved Pairs                                                                                                                                                         | 8%                              | 2.8%    | 3%               | 1.2%          | 5%           |
| Improved Couples min $(\hat{p}_0, \hat{p}_1, \hat{p}_2)$                                                                                                               | 3.2%                            | 1.8%    | 2%               | 3.8%          | 3.6%         |
| <b>Relative difference of</b> $E_1 \& O_1$ (using non-overlapping pixel groups)                                                                                        | 8.5%                            | 0.8%    | 2.4%             | 0.6%          | 2.8%         |
| Relative difference of <i>R</i> , <i>R</i> '                                                                                                                           |                                 |         |                  |               |              |
| <i>(using optimal mask and non-overlapping pixel groups and segmenting the image into 6-12 groups, taking 30<sup>th</sup> percentile of the persegment statistics)</i> |                                 |         | 1.4%             | 0.5%          | 2.0%         |

