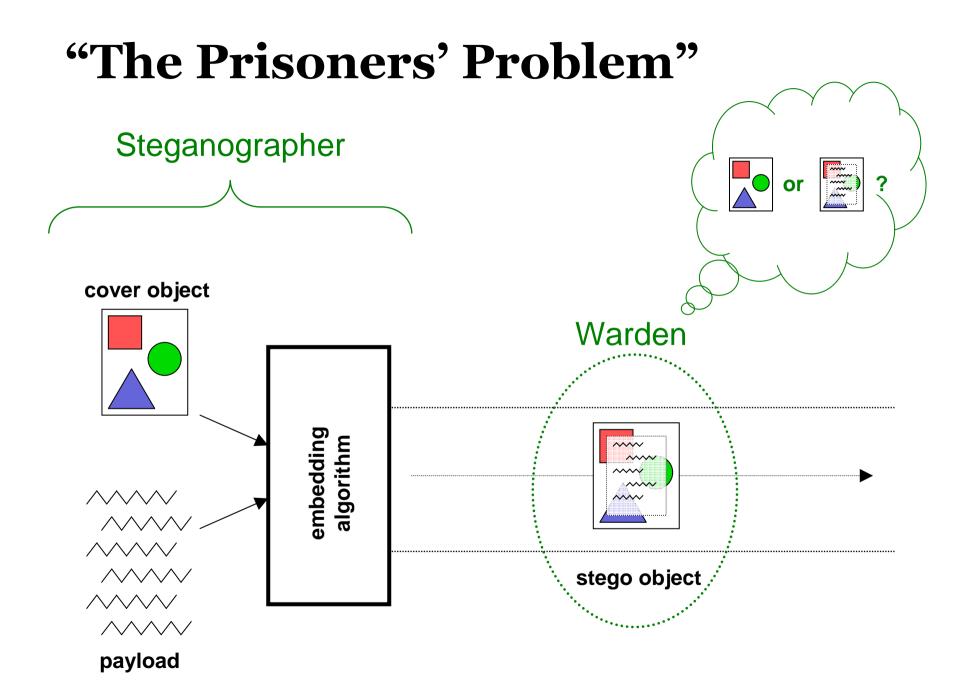
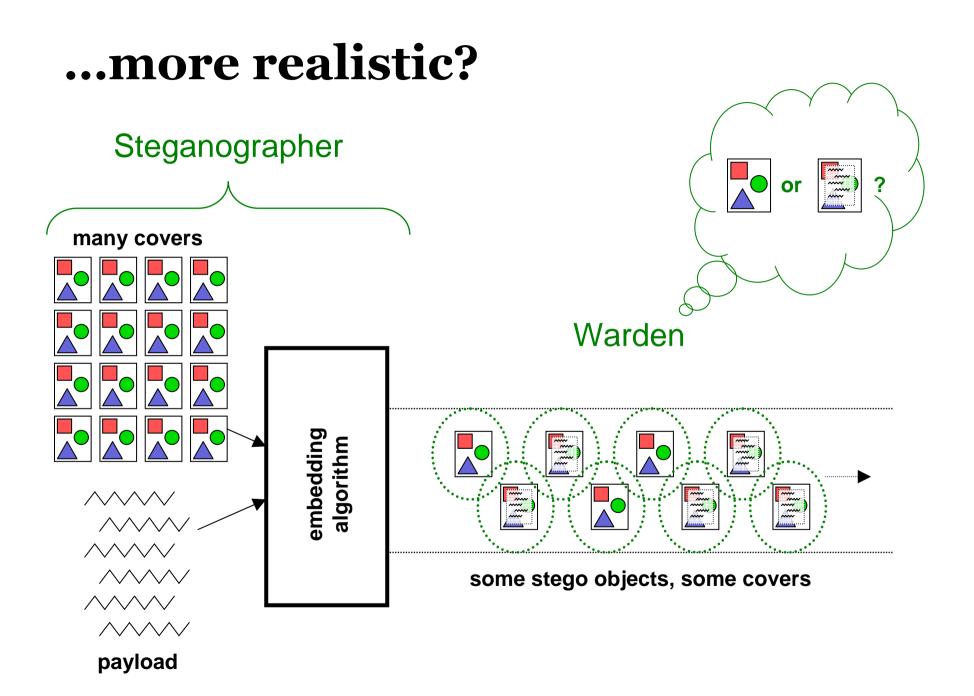
Batch Steganography and Pooled Steganalysis

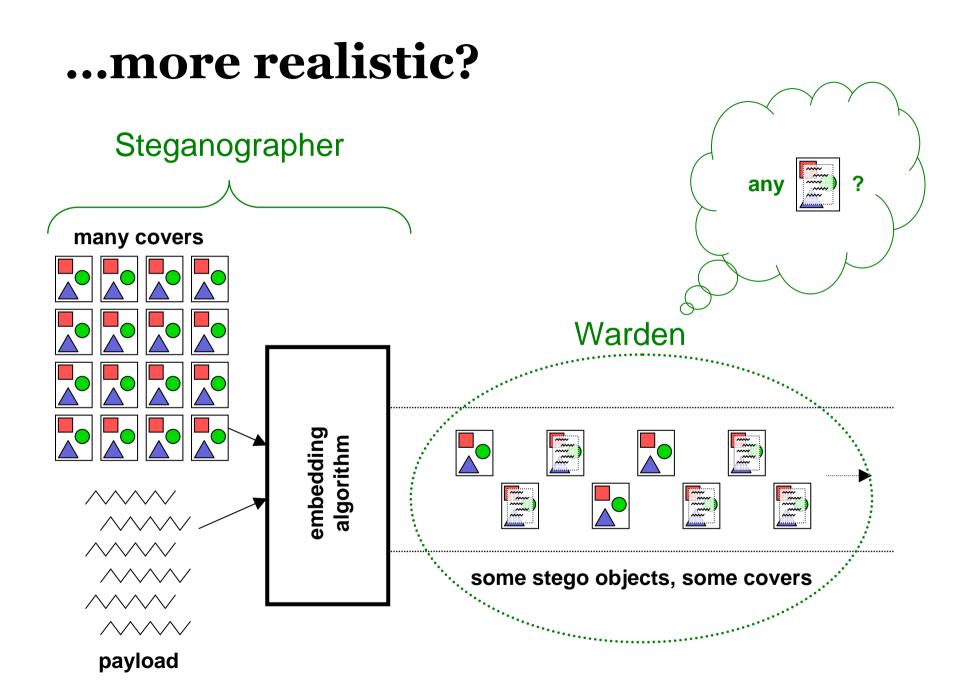
Andrew Ker adk@comlab.ox.ac.uk

Royal Society University Research Fellow Oxford University Computing Laboratory

8th Information Hiding Workshop 11 July 2006







Batch Steganography

The Steganographer:

- has *N* covers each with same capacity *C*,
- wants to embed a payload of *BNC*,

B<1 is the proportional **bandwidth**

• embeds Cp in each of Nr covers, leaving the other N(1-r) alone.

p is the **proportion of capacity** used when a cover is embedded in *r* is the **rate** at which covers are used

constraints: rp = B $p \le 1$ $r \le 1$

Pooled Steganalysis

The Warden:

• has a quantitative steganalysis method which estimates the proportionate payload in each cover: X_1, X_2, \ldots, X_N

• wants to pool this evidence to answer the hypothesis test

$$H_0: r = 0 \ H_1: p, r > 0$$

• for now, does not aim to estimate *B*, *r*, *p* or separate individual stego objects from covers.

Assumptions

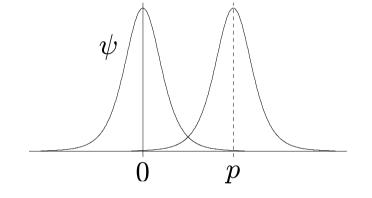
- *N* fixed
- The Shift Hypothesis:

If proportion of capacity p is embedded in cover i,

 $X_i = p + \epsilon_i$

where the error ϵ_i is independent of p

Will write ψ for error pdf Ψ for error cdf



• Assumptions about the shape of ψ :

"Bell shaped" Symmetric about 0 Unimodal Suitably smooth

But we do **not** assume finite variance

Outline

- Three pooling strategies:
 - I: Count positive observations
 - II: Average observation
 - III: Generalised likelihood ratio test
 - for $H_0: r = 0$ $H_1: p, r > 0$
- For each, consider
 - False positive rate @ 50% false negatives,
 - Steganographer's best embedding counterstrategy,
 - How performance depends on *B* and *N*.
- Results of some simulation experiments
- Conclusions

I: Count Positive Observations

This is just the sign test for whether the median of observed dist is greater than 0

- Null distribution: $H_0: \sharp P \sim \operatorname{Bi}(N, \frac{1}{2}) \approx \operatorname{N}(\frac{N}{2}, \frac{N}{4})$
- Stego distribution: $H_1: \sharp P \sim \operatorname{Bi}(N(1-r), \frac{1}{2}) + \operatorname{Bi}(Nr, \Psi(p))$ median $(\sharp P) \approx \frac{1}{2}N + Nr(\Psi(p) - \frac{1}{2})$
- Median p-value: $\Phi\left(-2BN^{\frac{1}{2}}(\frac{\Psi(p)-\frac{1}{2}}{p})\right)$

An increasing function of p; steganographer should take p=1 r=B

II: Average Observation

- Pooled statistic: $\bar{X} = \frac{1}{N} \sum X_i$
- Null distribution: $H_0: \bar{X} \sim \mathrm{N}(0, \sigma^2/N)^{\bigstar}$
- Stego distribution: $H_1 : \text{median}(\bar{X}) \approx rp = B$
- Median p-value: $\Phi(-\frac{1}{\sigma}BN^{\frac{1}{2}})$

Independent of choice of p

III: Likelihood Ratio

• Pooled statistic:

$$\boldsymbol{\ell} = \log \frac{L(X_1, \dots, X_N; \hat{r}, \hat{p})}{L(X_1, \dots, X_N; r = 0, p = 0)}$$

Likelihood function based on *mixture* pdf $f(x) = (1 - r)\psi(x) + r\psi(x - p)$

• Null distribution: $\ell \sim \lambda \chi_d^2 \bigstar$

Theorem [see Appendix] Under some assumptions... (omitted here) In the limit as $N \to \infty$, for small B, $E[\ell]$ is maximized when p=1, r=B, and then $E[\ell] \sim \frac{NB^2}{2} \int \frac{\psi'(x)^2}{\psi(x)} + \psi''(x) \, dx$

• Median (mean) p-value: maximized when p=1, r=Bfunction of NB^2

Strategies Summarised

Pooling strategy	Best steg. strategy	False +ve rate at 50% false –ve	Total capacity $\propto BN \propto$
Count positive observations	p = 1 $r = B$	decreasing function of $BN^{\frac{1}{2}}$	$N^{rac{1}{2}}$
Average observation	any	decreasing function of $BN^{rac{1}{2}}$	$N^{rac{1}{2}} \bigstar$
Generalised Likelihood Ratio Test (ψ known)	p = 1 r = B (for small <i>B</i>)	decreasing function of B^2N	$N^{rac{1}{2}}$

Experimental Results

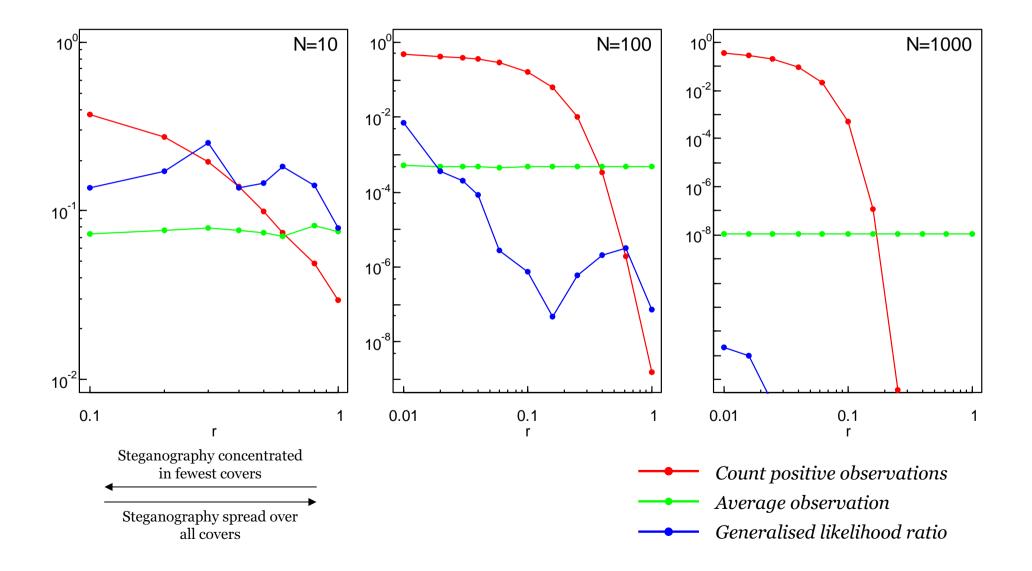
- Covers: A set of 14000 grayscale images
- Steganography: LSB Replacement
- Steganalysis:
- N=10, 100, 1000

For a random batch of size *N*, compute $\sharp P, \overline{X}, \ell$ 5000 samples with no steganography, to fit null distributions 500 samples each with a range of *p*, *r* such that rp=B=0.01

"Sample Pairs" [Dumitrescu, IHW 2002]

Measure false positive rate @ 50% false negatives

Experimental Results: B = 0.01



Not in this talk

- \bigstar Technical statistical difficulties.
- Empirical investigation of relationship between *B* and *N*.
- A critical problem: bias in the quantitative steganalysis method.

Further Work

- Other strategies for Warden
 - e.g. "count observations greater than some threshold t"
- Try to relax some of the assumptions Uniformity of covers/embedding
 - Shift hypothesis

Conclusions

• Batch steganography and pooled steganalysis are interesting and relevant problems.

Complicated by the plethora of possible pooling strategies for the Warden. Mathematical analysis can be intractable.

• Common theme: *B* should shrink as *N* grows, for fixed risk.

Conjecture: Steganographic capacity is proportional to the **square root** of the total cover size.

• Common theme: Steganographer should concentrate the steganography.

Not true for all pooling strategies! Nonetheless, seems to be true for all "sensible" pooling strategies... Lessons for adaptive embedding?

adk@comlab.ox.ac.uk