A Fusion of Maximum Likelihood and Structural Steganalysis

Andrew Ker

adk@comlab.ox.ac.uk

Royal Society University Research Fellow Oxford University Computing Laboratory

Information Hiding Workshop, St Malo 12 June 2007

A Fusion of Maximum Likelihood and Structural Steganalysis

Outline

- Maximum likelihood & structural steganalysis
- New structural analysis \rightarrow likelihood function
- Maximization
- Experimental results
- Conclusions & further work

Steganalysis of LSB Replacement

Replacement of low-order bits is particularly insecure steganography because of combinatorial structure.

Maximum Likelihood Steganalysis

- 1. Analyse the effect of embedding on histogram/co-occurrence matrix/etc,
- 2. Likelihood function in terms of payload size,
- 3. Maximize likelihood.
- Founded on sound statistical principles,
- Requires knowledge/estimation of cover source PMF/transition matrix/etc,
- Inaccurate estimator in practice.

Dabeer et al, *IEEE Trans. Signal Processing*, 2004. Hogan et al. *SPIE/IS&T Electronic Imaging conference*, 2005. Draper et al. *Information Hiding Workshop*, 2005. Sullivan et al. *IEEE Trans. Information Forensics and Security*, 2006.

Steganalysis of LSB Replacement

Replacement of low-order bits is particularly insecure steganography because of combinatorial structure.

Structural Steganalysis

- 1. Analyse the effect of embedding on pairs/triples/etc of samples,
- 2. Simple assumptions about cover objects,
- 3. Deduce payload size.
- Dubious statistical rigour,
- Requires less knowledge about covers,
- Highly sensitive in practice.

Dumitrescu et al, *IEEE Trans. Signal Processing*, 2003. Lu et al. *Information Hiding Workshop*, 2004. Ker, *Information Hiding Workshop*, 2005. Ker, *IEEE Trans. Information Forensics and Security*, 2007.

Steganalysis of LSB Replacement

Replacement of low-order bits is particularly insecure steganography because of combinatorial structure.

Structural Steganalysis

- 1. Analyse the effect of embedding on pairs/triples/etc of samples,
- 2. Simple assumptions about cover objects,
- 3. Deduce payload size.
- Dubious statistical rigour,
- Requires less knowledge about covers,
- Highly sensitive in practice.

Can we merge the statistical rigour of ML detection with the sensitive features found in structural steganalysis?

Trace Subsets

Every **pair** of adjacent samples is classified according to their values:

$$\begin{array}{cc}
\mathcal{E}_m & \mathcal{O}_m \\
(2k, 2k+m) & (2k+1, 2k+1+m)
\end{array}$$

for example,

4041would be classified
$$\mathcal{E}_1$$
4340would be classified \mathcal{O}_{-3}

It is also useful to write $\mathcal{D}_m = \mathcal{E}_m \cup \mathcal{O}_m$ i.e. pairs (k, k+m)

Trace Subsets

Every **pair** of adjacent samples is classified according to their values:

$$\begin{array}{cc}
\mathcal{E}_m & \mathcal{O}_m \\
(2k, 2k+m) & (2k+1, 2k+1+m)
\end{array}$$

Embedding Process

Suppose a cover of size N.

Uncorrelated payload of size Np embedded by replacing LSBs of a ${\bf pseudo-random}$ selection of values, so

$$\begin{array}{c} \mathcal{E}_{2m} & \xrightarrow{(1-\frac{p}{2})^2} \mathcal{E}_{2m} \\ (2k, 2k+2m) & (2k, 2k+2m) \end{array}$$

flip neither: probability $(1 - \frac{p}{2})^2$

flip both: probability $(\frac{p}{2})^2$

 \mathcal{O}_{2m+3} \mathcal{O}_{2m+3}

New Structural Analysis

Where does $|\mathcal{E}_m| = |\mathcal{O}_m|$ come from?

Recall that $\mathcal{D}_m = \mathcal{E}_m \cup \mathcal{O}_m$. Suppose the partition is random.

i.e., imagine that a cover object is derived from a "pre-cover", in which $|\mathcal{D}_m|$ are fixed, with pairs moving independently at random:

This model is validated in the literature, except for m = -1, 0, 1

A. Ker, *Derivation of Error Distribution in Least-Squares Steganalysis*, IEEE Trans. Information Forensics and Security 2(2): 140-148, 2007.

Likelihood Function

Given the sizes of the trace subsets in the pre-cover d, and p, the distribution of A is a sum of multinomials:

$$oldsymbol{A}\sim\sum_m\mathcal{M}(d_m,oldsymbol{p_m})$$

well-approximated by

$$A \approx N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$\boldsymbol{\mu} = \sum_{m} d_{m} \boldsymbol{p_{m}}$$

$$\boldsymbol{\Sigma} = \sum_{m} d_{m} (\boldsymbol{\Delta}_{\boldsymbol{p_{m}}} - \boldsymbol{p_{m}} \boldsymbol{p_{m}}^{T})$$

The log-likelihood of an observation a of A is therefore

$$l(\boldsymbol{a}; p, \boldsymbol{d}) = -\frac{L}{2} \log(2\pi) - \frac{1}{2} \log|\boldsymbol{\Sigma}| - \frac{1}{2} (\boldsymbol{a} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{a} - \boldsymbol{\mu})$$

where L is the length of the vector A.

Σ	$\pi_i = \frac{1}{2} (\frac{p}{2})^i (1 - \frac{p}{2})^{2-i} \sigma = \pi_0 + \pi_2$			
	O_{2m-1}	E_{2m}	O_{2m}	E_{2m+1}
O_{2m-3}	$-\pi_0\pi_2 d_{2m-1}$	$-\pi_1\pi_2 d_{2m-1}$	$-\pi_1\pi_2 d_{2m-1}$	$-\pi_2^2 d_{2m-1}$
E_{2m-2}	$-\pi_0\pi_1d_{2m-1}$	$-\pi_1^2 d_{2m-1}$	$-\pi_1^2 d_{2m-1}$	$-\pi_1\pi_2d_{2m-1}$
O_{2m-2}	$-\pi_0\pi_1d_{2m-1}$	$-\pi_1^2 d_{2m-1}$	$-\pi_1^2 d_{2m-1}$	$-\pi_1\pi_2d_{2m-1}$
E_{2m-1}	$-\pi_0^2 d_{2m-1}$	$-\pi_0\pi_1d_{2m-1}$	$-\pi_0\pi_1 d_{2m-1}$	$-\pi_0\pi_2 d_{2m-1}$
O_{2m-1}	$egin{aligned} &\pi_0(1{-}\pi_0)d_{2m-1}\ &+2\pi_1(1{-}2\pi_1)d_{2m}\ &+\pi_2(1{-}\pi_2)d_{2m+1} \end{aligned}$	$-\pi_0 \pi_1 d_{2m-1} -2\pi_1 \sigma d_{2m} -\pi_1 \pi_2 d_{2m+1}$	$-\pi_0 \pi_1 d_{2m-1} -2\pi_1 \sigma d_{2m} -\pi_1 \pi_2 d_{2m+1}$	$-\pi_0 \pi_2 d_{2m-1} -4\pi_1^2 d_{2m} -\pi_0 \pi_2 d_{2m+1}$
E_{2m}	$-\pi_0 \pi_1 d_{2m-1} -2\pi_1 \sigma d_{2m} -\pi_1 \pi_2 d_{2m+1}$	$\pi_1(1-\pi_1)d_{2m-1} \ +\sigma(1-\sigma)d_{2m} \ +\pi_1(1-\pi_1)d_{2m+1}$	$\begin{array}{c} -\pi_1^2 d_{2m-1} \\ -\sigma^2 d_{2m} \\ -\pi_1^2 d_{2m+1} \end{array}$	$-\pi_1 \pi_2 d_{2m-1} \\ -2\pi_1 \sigma d_{2m} \\ -\pi_0 \pi_1 d_{2m+1}$
O_{2m}	$-\pi_0 \pi_1 d_{2m-1} -2\pi_1 \sigma d_{2m} -\pi_1 \pi_2 d_{2m+1}$	$-\pi_1^2 d_{2m-1} -\sigma^2 d_{2m} -\pi_1^2 d_{2m+1}$	$ \begin{aligned} &\pi_1(1-\pi_1)d_{2m-1} \\ &+\sigma(1-\sigma)d_{2m} \\ &+\pi_1(1-\pi_1)d_{2m+1} \end{aligned} $	$-\pi_1 \pi_2 d_{2m-1} -2\pi_1 \sigma d_{2m} -\pi_0 \pi_1 d_{2m+1}$
E_{2m+1}	$-\pi_0 \pi_2 d_{2m-1} -4\pi_1^2 d_{2m} -\pi_0 \pi_2 d_{2m+1}$	$-\pi_1 \pi_2 d_{2m-1} -2\pi_1 \sigma d_{2m} -\pi_0 \pi_1 d_{2m+1}$	$-\pi_1 \pi_2 d_{2m-1} \\ -2\pi_1 \sigma d_{2m} \\ -\pi_0 \pi_1 d_{2m+1}$	$ \begin{array}{l} \pi_2(1-\pi_2)d_{2m-1} \\ +2\pi_1(1-2\pi_1)d_{2m} \\ +\pi_0(1-\pi_0)d_{2m+1} \end{array} $
O_{2m+1}	$-\pi_0\pi_2 d_{2m+1}$	$-\pi_0\pi_1d_{2m+1}$	$-\pi_0\pi_1d_{2m+1}$	$-\pi_0^2 d_{2m+1}$
E_{2m+2}	$-\pi_1\pi_2d_{2m+1}$	$-\pi_1^2 d_{2m+1}$	$-\pi_1^2 d_{2m+1}$	$-\pi_0\pi_1d_{2m+1}$
O_{2m+2}	$-\pi_1\pi_2d_{2m+1}$	$-\pi_1^2 d_{2m+1}$	$-\pi_1^2 d_{2m+1}$	$-\pi_0\pi_1d_{2m+1}$
E_{2m+3}	$-\pi_2^2 d_{2m+1}$	$-\pi_1\pi_2d_{2m+1}$	$-\pi_1\pi_2d_{2m+1}$	$-\pi_0\pi_2 d_{2m+1}$

 $\pi_i = \frac{1}{2} (\frac{p}{2})^i (1 - \frac{p}{2})^{2-i} \quad \sigma = \pi_0 + \pi_2$

Maximum Likelihood

Estimator: find p (and d) to maximize

$$l(\boldsymbol{a}; p, \boldsymbol{d}) = -\frac{L}{2}\log(2\pi) - \frac{1}{2}\log|\boldsymbol{\Sigma}| - \frac{1}{2}(\boldsymbol{a} - \boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{a} - \boldsymbol{\mu})$$

Maximum Likelihood

Estimator: find p (and d) to maximize

$$l(\boldsymbol{a}; p, \boldsymbol{d}) = -\frac{L}{2} \log(2\pi) - \frac{1}{2} \log|\boldsymbol{\Sigma}| - \frac{1}{2} (\boldsymbol{a} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{a} - \boldsymbol{\mu})$$

Difficulties:

- No analytical maximum (can't even differentiate!) *Must use slow numerical methods.*
- Dimensionality:
- 24 512 dimensional maximization problem
 each likelihood evaluation involves a quadratic form of length 1020 44 33 *Consider only* D₋₁₁ to D₊₁₁.
- Overfitting

Convert to MAP estimator with Gaussian prior for p.

Experimental Results

Experiments conducted on 3000 never-compressed grayscale bitmap images, size 0.3Mpixels.

Compared Structural/ML estimators with standard structural estimators by *mean square estimator error* (as estimates for p).

Experimental Results

¹S. Dumitrescu *et al. Detection of LSB steganography via sample pair analysis.* IEEE Transactions on Signal Processing 51(7): 1995–2007. 2003.

²P. Lu *et al. An improved sample pairs method for detection of LSB embedding*. 6th Information Hiding Workshop, Springer LNCS 3200: 116–127. 2004

Experimental Results

For 1 Mpixel images, benchmarks:

- SPA and Least Squares SPA: 21 images/sec
- ML Pairs: 0.4 images/sec

Widening the Application

Other structural steganalyses, e.g.

- of LSB replacement in triplets of pixels¹
- of replacement of two-least significant bits² ("2LSB") can receive the same treatment.

Sketch details in the paper; principles the same, algebra even more complex.

¹A. Ker. *A general framework for the structural steganalysis of LSB replacement*. 7th Information Hiding Workshop, Springer LNCS 3727: 296–311. 2005.

²A. Ker. *Steganalysis of Embedding in Two Least Significant Bits*. IEEE Trans. Information Forensics and Security 2(1): 46–54. 2007.

Experimental Results (2LSB)

¹X. Yu *et al. Extended optimization method of LSB steganalysis*. IEEE International Conference on Image Processing, vol. 2: 1102–1105. 2005

²A. Ker. *Steganalysis of Embedding in Two Least Significant Bits*. IEEE Trans. Information Forensics and Security 2(1): 46–54. 2007.

This model is validated in the literature, except for m = -1, 0, 1

Conclusions

• It is possible to produce a statistically-rigorous likelihood analysis of the structure of bit replacement.

The method presented here extends to other structural analyses.

• Estimation via the ML/structural combination is usually more accurate than ML or structural steganalysis alone...

but the algebraic complexity and computational costs are inflated.

- Sometimes the maximization is computationally infeasible. *This is a subject for further work:*
 - *model pre-cover parametrically?*
 - use derivative in optimization algorithm?
- Need to refine the cover model to improve performance on large payloads. *This is a subject for further work.*

End

adk@comlab.ox.ac.uk