The Square Root Law in Stegosystems with Imperfect Information

Andrew Ker

adk@comlab.ox.ac.uk

Royal Society University Research Fellow Oxford University Computing Laboratory

12th Information Hiding Conference Calgary, Canada, 29 June 2010

Perfect and imperfect embedding

Perfect embedding preserves all statistics of the cover source.

- It is undetectable.
- It has a linear capacity law.

It can be accomplished in two ways:

1. The 'rejection sampler'.

- Unrealistic to achieve nontrivial capacity.

- 2. Match distribution of cover source.
 - Böhme argues that perfect knowledge of a real 'empirical' cover source is impossible.

We contend that **all practical steganography is imperfect**.

• Capacity follows a 'Square Root Law'.

Cover consists of 'pixels', which may be changed into 'stego pixels'.

- Cover pixels: i.i.d. bits, 1 with probability p,
- Stego pixels: i.i.d. bits, 1 with probability q,
- Embedding: overwrite each pixel, independently, with probability γ ,
- p known to the detector, $p \neq 0, 1, p \neq q$.

As cover size $n \to \infty$,

- 1. If $\gamma^2 n \to \infty$ then an asymptotically perfect detector exists.
- 2. If $\gamma^2 n \to 0$ then we have asymptotically perfect security.

The critical rate is $\gamma = O(1/\sqrt{n})$ Usually, payload size $M \propto n\gamma$: $M = O(\sqrt{n})$

Cover consists of 'pixels', which may be changed into 'stego pixels'.

- Cover pixels: i.i.d. with pdf p(x),
- Stego pixels: i.i.d. with pdf q(x),
- Embedding: overwrite each pixel, independently, with probability γ ,
- p(x) known to the detector, $\forall x.p(x) \neq 0, 1, \exists y.p(y) \neq q(y).$

As cover size $n \to \infty$,

- 1. If $\gamma^2 n \to \infty$ then an asymptotically perfect detector exists.
- 2. If $\gamma^2 n \rightarrow 0$ then we have asymptotically perfect security.

The critical rate is $\gamma = O(1/\sqrt{n})$ Usually, payload size $M \propto n\gamma$: $M = O(\sqrt{n})$

Cover consists of 'pixels', which may be changed into 'stego pixels'.

- Cover pixels: realisations of a Markov chain,
- Stego pixels: random function of cover pixels,
- Embedding: change each pixel, independently, with probability γ ,
- Cover source known to the detector, nontrivial, not preserved by stego.

As cover size $n \to \infty$,

- 1. If $\gamma^2 n \to \infty$ then an asymptotically perfect detector exists.
- 2. If $\gamma^2 n \rightarrow 0$ then we have asymptotically perfect security.

The critical rate is $\gamma = O(1/\sqrt{n})$

Usually, payload size $M \propto n\gamma$: $M = O(\sqrt{n})$

Cover consists of 'pixels', which may be changed into 'stego pixels'.

- Cover pixels: i.i.d. bits, 1 with probability p,
- Stego pixels: i.i.d. bits, 1 with probability q,
- Embedding: use randomly selected fixed number γn ,
- p known to the detector, $p \neq 0, 1, p \neq q$.

As cover size $n \to \infty$,

- 1. If $\gamma^2 n \to \infty$ then an asymptotically perfect detector exists.
- 2. If $\gamma^2 n \to 0$ then we have asymptotically perfect security.

The critical rate is $\gamma = O(1/\sqrt{n})$ Usually, payload size $M \propto n\gamma$: $M = O(\sqrt{n})$

- Cover pixels: i.i.d. bits, 1 with probability p,
- Stego pixels: i.i.d. bits, 1 with probability q,
- Embedding: overwrite each pixel, independently, with probability γ ,

The Square Root Law in Stegosystems with Imperfect Information

Outline

- Imperfect steganography
- Square root laws
- Imperfect information
 - Enforcing ignorance
 - Modified square root law
- Embedding with learning

Imperfect information

Assume that the detector has access to a cover oracle, from which they can estimate characteristics of the cover source.

Questions:

- Are finitely many oracle accesses sufficient to restrict the embedder to a square root law? (*No*)
- Are exponentially many oracle accesses required? (*No*)

Imperfect information SRL

- Cover pixels: i.i.d. bits, 1 with probability p,
- Stego pixels: i.i.d. bits, 1 with probability q,
- Embedding: overwrite each pixel, independently, with probability γ ,
- Detector has no prior knowledge of p, $p \neq 0, 1$, $p \neq q$.
- Detector has m bits from a cover oracle, also i.i.d., 1 with probability p.

As cover size $n \to \infty$,

- 1. If ... then an asymptotically perfect detector exists.
- 2. If ... then we have asymptotically perfect security.

Imperfect information SRL

- Cover pixels: i.i.d. bits, 1 with probability p,
- Stego pixels: i.i.d. bits, 1 with probability q,
- Embedding: overwrite each pixel, independently, with probability γ ,
- Detector has no prior knowledge of p, $p \neq 0, 1$, $p \neq q$.
- Detector has m bits from a cover oracle, also i.i.d., 1 with probability p.

Detector sees:

m cover oracle bits (X_1, \ldots, X_m) $X_i \sim \operatorname{Ber}(p)$ n suspect bits (Y_1, \ldots, Y_n) $Y_i \sim \operatorname{Ber}(p + \gamma(q - p))$

and wants to know whether $\gamma > 0$.

Asymptotic security is usually proved by showing that

 $D_{KL}(\text{cover objects} \parallel \text{stego objects}) \rightarrow 0$

as $n \to \infty$.

Fails: cannot take account of a lack of knowledge by the detector.

Asymptotic security is usually proved by showing that

 $D_{KL}(\text{cover objects} \parallel \text{stego objects}) \rightarrow 0$

as $n \to \infty$.

Fails: cannot take account of a lack of knowledge by the detector.

Even if m = 0, the KLD is positive.

Detector sees:

m cover oracle bits (X_1, \ldots, X_m) $X_i \sim \operatorname{Ber}(p)$ n suspect bits (Y_1, \ldots, Y_n) $Y_i \sim \operatorname{Ber}(p + \gamma(q - p))$

and wants to know whether $\gamma > 0$.

Try imposing a uniform prior on p?

Fails: If *p* were random we could repeat the experiment to test $p + \gamma(q - p)$ for uniformity.

Distribution of
$$p + \gamma(q - p)$$
 if $\gamma = 0$:

Try imposing a uniform prior on p?

Fails: If *p* were random we could repeat the experiment to test $p + \gamma(q - p)$ for uniformity.

Distribution of
$$p + \gamma(q - p)$$
 if $\gamma = 0$:

Even if m = 0, the KLD is positive.

Detector sees:

m cover oracle bits (X_1, \ldots, X_m) $X_i \sim \operatorname{Ber}(p)$ n suspect bits (Y_1, \ldots, Y_n) $Y_i \sim \operatorname{Ber}(p + \gamma(q - p))$

and wants to know whether $\gamma > 0$.

Impose unbiasedness:

```
A detector is unbiased if, no matter what p,

Pr(true + ve) \ge Pr(false + ve).
```

The statistics literature tells us that the most powerful (optimal) unbiased test for Bernoulli probabilities depends only on $\sum Y_i \mid (\sum X_i + \sum Y_i)$.

Imperfect information SRL

- Cover pixels: i.i.d. bits, 1 with probability p,
- Stego pixels: i.i.d. bits, 1 with probability q,
- Embedding: overwrite each pixel, independently, with probability γ ,
- Detector unbiased for $p, p \neq 0, 1, p \neq q$,
- Detector has m bits from a cover oracle, also i.i.d., 1 with probability p.

As cover size $n \to \infty$,

1. If $\gamma^2 \frac{n m}{n+m} \to \infty$ then an asymptotically perfect detector exists.

2. If $\gamma^2 \frac{n m}{n+m} \to 0$ then we have asymptotically perfect security.

The critical rate is $\gamma = O(1/\sqrt{1/m + 1/n})$

Interpretation

The critical rate is $\gamma = O(1/\sqrt{1/m + 1/n})$

If *m* is finite (does not grow with *n*) then the critical rate is $\gamma = O(1)$:

- finite information at the detector leads to linear capacity.

If *m* is at least linear in *n*, then the critical rate is $\gamma = O(1/\sqrt{n})$:

linearly many oracle accesses suffice to restrict the embedder to a square root law.

If m is sublinear in n, then the critical rate is intermediate.

Conclusions

- Reasoning about imperfect information is difficult.
 - KL divergence alone is not sufficient.
 - Statistical concepts of unbiasedness and invariance may be useful.
- The square root law still holds in the imperfect information case...
 ... as long as the detector has linearly many cover oracle accesses.
- 'Embedding with learning' needs more theoretical scrutiny.
 - We may be heading back towards a linear capacity law.
- Consider the epistemology of steganography.
 - Assuming perfect knowledge of the cover source is unrealistic.
 - Kerckhoffs' Principle should not be used blindly.
 - There may be many variants of the 'steganography problem'.