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• Experimental results: optimal embedding



Capacity
The capacity problem is: given fixed

• cover source,

• embedding method,

• limit on “risk” (maximum probability of detection),

what is the largest payload which can safely be embedded?

The square root law says:

the capacity is asymptotically proportional to the              

square root of the size of the cover.

• Proved for multiple independent covers (Ker, 2007; Ker, 2008).

• Proved for individual Markov chain covers (Filler, Ker, & Fridrich, 2009).

• Verified empirically (Ker, Pevný, Kodovský, & Fridrich, 2008).



Optimality
If the cover size is n, the max payload size m follows

where r is the “root rate”. 

Optimal embedding method: gives the highest the root rate.

If P (λ) is distribution of images from a particular source, embedded with 

payload rate λ using a particular embedding method, for small λ

I is the Steganographic Fisher Information (SFI) for this embedding w.r.t. 

this source. It measures the evidence of embedding.

A. Ker. The Ultimate Steganalysis Benchmark? Proc. ACM Workshop on Multimedia & Security, 2007.



Optimality
If the cover size is n, the max payload size m follows

where r is the “root rate”. 

Optimal embedding method: gives the highest the root rate.

If P (λ) is distribution of images from a particular source, embedded with 

payload rate λ using a particular embedding method, for small λ

I is the Steganographic Fisher Information (SFI) for this embedding w.r.t. 

this source. It measures the evidence of embedding.

• IIII determines r:  IIII so lowest I is optimal.

• IIII can be estimated empirically from a large corpus of covers
[assuming that covers are made of independent pixel groups].



(mod k)-matching
• Spatial domain embedding in images.

• Embed one k-ary symbol per location by altering the remainder (mod k) 

to nearest correct value.

(mod 3)-matching is ternary embedding. The embedding effect matrix is

The embedding efficiency is                  bits per location.
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(mod k)-matching
• Spatial domain embedding in images.

• Embed one k-ary symbol per location by altering the remainder (mod k) 

to nearest correct value.

(mod 3)-matching is ternary embedding. Embedding efficiency 

(mod 5)-matching is quinary embedding. Embedding efficiency 

(mod 7)-matching is septenary embedding. Embedding efficiency 

…



Convex combinations
We can make a continuous interpolation of embedding functions  

by the following procedure.

• Sender and recipient agree on a secret key which determines a PRNG. 

• At each cover location, choose embedding function with probability 

If each      has embedding matrix     , the combined embedding effect will be

If each      has embedding efficiency    , the combined embedding efficiency 

will be

We seek the optimal mixture of ternary, quinary, and septenary

embedding.



SFI estimation
The SFI for pixel groups                                        can be estimated by

where the probabilities                are taken from empirical joint n-gram 

histograms.

[And the SFI for a convex mixture     of embedding functions is always 

convex in    .] 

embedding efficiency
embedding effect probability



Results
RAW camera images (heavily denoised, saturated images excluded)

2121 images, 4.7Mpixels each, total evidence base 40B pixel groups

Optimal mixture: pure ternary

Optimal combination 
stego noise density
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Results
RAW camera images from mixture of cameras (default denoising)

1040 images, 1.5Mpixels each, total evidence base 6B pixel groups

Optimal mixture: 58% ternary 15% quinary 27% septenary

Root rate 21% higher than pure ternary

Optimal combination 
stego noise density
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Results
RAW camera images (all denoising disabled, saturation allowed)

3200 images, 4.7Mpixels each, total evidence base 15B pixel groups

Optimal mixture: 80% ternary 7% quinary 13% septenary

Root rate 6% higher than pure ternary

Optimal combination 
stego noise density
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Results
Decompressed JPEGs

10000 images, 0.54Mpixels each, total evidence base 20B pixel groups

Optimal mixture: 21% ternary 5% quinary 74% septenary

Root rate 50% higher than pure ternary

Optimal combination 
stego noise density

F
is
h
er

 i
n
fo

rm
at

io
n

(proportion 
ternary)

(proportion 
quinary).

(proportion septenary)



Conclusions
• This paper aims to illustrate the computation of optimal embedding mixtures:

– Steganographic Fisher Information is the proper metric,

– estimating it has high computational demands.

• We restricted attention to (mod 3)-, (mod 5)-, (mod 7)-matching:

– further work is to extend to wider embedding methods,

– extend to adaptive source coding (results will probably be different).

• The results depend on the cover source:

– not surprising that more noise can be embedded in noisy covers,

– saturation is a significant factor, and needs further study. 
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