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o Optimality

— the square root law of capacity

— Steganographic Fisher Information

o Embedding
— (mod k)-matching

— convex combinations

o Experimental results: optimal embedding



Capacity

The capacity problem is: given fixed

e COVEr Source,
« embedding method,
e limit on “risk” (maximum probability of detection),

what is the largest payload which can safely be embedded?

The square root law says:

the capacity is asymptotically proportional to the
square root of the size of the cover.

« Proved for multiple independent covers (Ker, 2007; Ker, 2008).
o Proved for individual Markov chain covers (Filler, Ker, & Fridrich, 2009).
« Verified empirically (Ker, Pevny, Kodovsky, & Fridrich, 2008).



Optimality

If the cover size is n, the max payload size m follows

m ~ ry/n,
where r is the “root rate”.

Optimal embedding method: gives the highest the root rate.

If P()) is distribution of images from a particular source, embedded with
payload rate A using a particular embedding method, for small A

Dyt (P(0) || P(A)) ~ 1122

I is the Steganographic Fisher Information (SFI) for this embedding w.r.t.
this source. It measures the evidence of embedding.

A. Ker. The Ultimate Steganalysis Benchmark? Proc. ACM Workshop on Multimedia & Security, 2007.



Optimality

If the cover size is n, the max payload size m follows
m ~ ry/n,
where 7 is the “root rate”.

Optimal embedding method: gives the highest the root rate.

If P()) is distribution of images from a particular source, embedded with
payload rate \ using a particular embedding method, for small A

Dyt (P(0) || P(A)) ~ 1122

I is the Steganographic Fisher Information (SFI) for this embedding w.r.t.
this source. It measures the evidence of embedding.

e I determinesr: I oc 1/712, so lowest I is optimal.

e I can be estimated empirically from a large corpus of covers
[assuming that covers are made of independent pixel groups].



(mod k)-matching

« Spatial domain embedding in images.

« Embed one k-ary symbol per location by altering the remainder (mod k)
to nearest correct value.

(mod 3)-matching is fernary embedding. The embedding effect matrix is
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The embedding efficiency is e = log, 3 bits per location.



(mod k)-matching

« Spatial domain embedding in images.

« Embed one k-ary symbol per location by altering the remainder (mod k)
to nearest correct value.

(mod 3)-matching is ternary embedding. Embedding efficiency e = log, 3.
(mod 5)-matching is quinary embedding. Embedding efficiency e = log, 5.

(mod 7)-matching is septenary embedding. Embedding efficiency e = log, 7.



Convex combinations

We can make a continuous interpolation of embedding functions (F1, ..., Fy)
by the following procedure.

« Sender and recipient agree on a secret key which determines a PRNG.

« At each cover location, choose embedding function F; with probability 7;.

If each F; has embedding matrix B;, the combined embedding effect will be
Z 5 Bz .

If each F; has embedding efficiencye;, the combined embedding efficiency
will be > me;.

We seek the optimal mixture of ternary, quinary, and septenary

embedding.



SFIT estimation

The SFI for pixel groups X = (Xy,...,X,,) € X" can be estimated by

> A —n? Ay) =YY P(X=ylu/y;]))B(u.y;)
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where the probabilities P(X =y) are taken from empirical joint n-gram
histograms.

[And the SFI for a convex mixture = of embedding functions is always
convex in t.J



Results

RAW camera images (heavily denoised, saturated images excluded)

2121 images, 4.7Mpixels each, total evidence base 40B pixel groups
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Results

RAW camera images from mixture of cameras (default denoising)

1040 images, 1.5Mpixels each, total evidence base 6B pixel groups

0.45
|

0.40
|

(proportion

_ n, (proportion
quinary)

ternary)

0.35
I

Fisher information

0.30
|

3 2 -1 0 1 2 3

Optimal combination
stego noise density

T3
(proportion septenary)

Optimal mixture: 58% ternary 15% quinary 27% septenary
Root rate 21% higher than pure ternary



Results

RAW camera images (all denoising disabled, saturation allowed)

3200 images, 4.7Mpixels each, total evidence base 15B pixel groups
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Optimal mixture: 80% ternary 7% quinary 13% septenary
Root rate 6% higher than pure ternary



Results

Decompressed JPEGs
10000 images, 0.54Mpixels each, total evidence base 20B pixel groups
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Optimal mixture: 21% ternary 5% quinary 74% septenary
Root rate 50% higher than pure ternary



Conclusions

o This paper aims to illustrate the computation of optimal embedding mixtures:
— Steganographic Fisher Information is the proper metric,

— estimating it has high computational demands.

« We restricted attention to (mod 3)-, (mod 5)-, (mod 7)-matching:
— further work is to extend to wider embedding methods,

— extend to adaptive source coding (results will probably be different).

o The results depend on the cover source:
— not surprising that more noise can be embedded in noisy covers,

— saturation is a significant factor, and needs further study.
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