Fourth-order Structural Steganalysis and Analysis of Cover Assumptions

Andrew Ker
adk@comlab.ox.ac.uk
Royal Society University Research Fellow
Oxford University Computing Laboratory

SPIE EI’06
16 January 2006
LSB Replacement

- Extremely simple
- Quick
- High capacity
- Visually imperceptible
LSB Replacement

- Extremely simple
- Quick
- High capacity
- Visually imperceptible

- Extremely vulnerable to statistical analysis

 RS [Fridrich et al, ACM MMS’01]
 Pairs [Fridrich et al, SPIE EI’03]
 Sample Pairs [Dumitrescu et al, IHW’02]
 Triples [Ker, IHW’05]

 ...
LSB Replacement

- Extremely simple
- Quick
- High capacity
- Visually imperceptible

- Extremely vulnerable to statistical analysis

 \(RS \) [Fridrich et al, ACM MMS'01]
 \(Pairs \) [Fridrich et al, SPIE EI’03]
 \(Sample\ Pairs\) [Dumitrescu et al, IHW’02]
 \(Triples \) [Ker, IHW’05]
 ...

The most sensitive detectors apply \textit{structural steganalysis}.

- Structural property: even cover samples can only be incremented
- odd cover samples can only be decremented

see [Ker, IHW’05]
Trace Subsets

Classify all pairs of pixels

\[\mathcal{E}_m \quad \text{even} \quad +m \quad \mathcal{O}_m \quad \text{odd} \quad +m \]
Trace Subsets

Classify all pairs of pixels

\[\mathcal{E}_m \quad +m \]
\[\text{even} \]

\[\mathcal{O}_m \quad +m \]
\[\text{odd} \]

... and all triples of pixels
Trace Subsets

Classify all pairs of pixels

\[\mathcal{E}_m \quad \text{even} \quad + m \quad \mathcal{O}_m \quad \text{odd} \]

... and all triples of pixels ... and all quadruplets

\[\mathcal{E}_{l,m,n} \quad \text{even} \quad + l \quad + m \quad + n \quad \mathcal{O}_{l,m,n} \quad \text{odd} \]
Trace Subsets

Examples:

\[\mathcal{E}_{1,1,1} \]

\[\mathcal{O}_{3,0,-3} \]
Trace Subsets

Fix a cover. Embed a random message of proportionate length p.

The structural framework in [Ker, IHW’05] relates the sizes of the trace subsets, before and after embedding.

Sizes of \mathcal{E}_m and \mathcal{O}_m

in stego image

\[
\begin{pmatrix}
\vdots \\
E_{-1} \\
O_0 \\
E_0 \\
O_1 \\
E_1 \\
O_2 \\
\vdots
\end{pmatrix}
\approx
\begin{pmatrix}
\vdots \\
e_{-1} \\
o_0 \\
e_0 \\
o_1 \\
e_1 \\
o_2 \\
\vdots
\end{pmatrix}
\]

Sizes of \mathcal{E}_m and \mathcal{O}_m

in cover image
2nd Order Structural Detector

- Uses trace subsets \mathcal{E}_m and \mathcal{O}_m (pairs of pixels)

\[
\begin{pmatrix}
 e_{2m} \\
 o_{2m-1} \\
 e_{2m+1} \\
 o_{2m}
\end{pmatrix} \approx \frac{1}{(1 - 2p)^2} \begin{pmatrix}
 (1-p)^2 & -p(1-p) & -p(1-p) & p^2 \\
 p(1-p) & (1-p)^2 & p^2 & p(1-p) \\
 -p(1-p) & p^2 & (1-p)^2 & -p(1-p) \\
 p^2 & -p(1-p) & -p(1-p) & (1-p)^2
\end{pmatrix} \begin{pmatrix}
 E_{2m} \\
 O_{2m-1} \\
 E_{2m+1} \\
 O_{2m}
\end{pmatrix}
\]

- Cover assumptions: $e_m \approx o_m$ for odd m

→ Well-known estimator for p which we call Couples steganalysis
4th Order Structural Detector

- Uses trace subsets $\mathcal{E}_{l,m,n}$ and $\mathcal{O}_{l,m,n}$ (quadruples of pixels)

- Linear system

\[
\begin{pmatrix}
\mathcal{E}_{l,2m,2n} \\
\mathcal{O}_{l,-1,2m,2n} \\
\mathcal{E}_{l,1,2m,-1,2n} \\
\mathcal{O}_{l,2m,1,2n-1} \\
\mathcal{E}_{l,2,2m-1,2n} \\
\mathcal{O}_{l,-1,2m,2n+1} \\
\mathcal{E}_{l,1,2m,2n+1} \\
\mathcal{O}_{l,2m,1,2n+1} \\
\mathcal{E}_{l,2,2m,1,2n} \\
\mathcal{O}_{l,-1,2m+1,2n} \\
\mathcal{E}_{l,1,2m+1,2n} \\
\mathcal{O}_{l,2m,1,2n+1}
\end{pmatrix}
\approx
\begin{pmatrix}
\mathcal{E}_{2l,2m,2n} \\
\mathcal{O}_{2l,-1,2m,2n} \\
\mathcal{E}_{2l+1,2m,-1,2n} \\
\mathcal{O}_{2l,2m-1,2n-1} \\
\mathcal{E}_{2l,2m+1,2n-1} \\
\mathcal{O}_{2l-1,2m,2n+1} \\
\mathcal{E}_{2l+1,2m,2n+1} \\
\mathcal{O}_{2l,2m+1,2n+1} \\
\mathcal{E}_{2l,2m,1,2n} \\
\mathcal{O}_{2l+1,2m,1,2n} \\
\mathcal{E}_{2l,2m+1,1,2n} \\
\mathcal{O}_{2l+1,2m,1,2n+1}
\end{pmatrix}
\]

\[
\text{16} \times \text{16 matrix parameterized by } \mu
\]

- Cover assumptions: \mathcal{E}
We say that $e_{0,1,2} \approx o_{0,1,2}$ is a symmetry.

Source: 3000 grayscale never-compressed images
Cover Symmetries

Not a symmetry

Source: 3000 grayscale never-compressed images
A Search for all Symmetries

Using a set of 3000 natural images,

- computed each $e_{l,m,n}$ and $o_{l,m,n}$
 (for l, m, n in the range -4 to 4: about 1500 trace subsets)

- for every pair of trace subsets computed the “closeness”*.
 (about 1 million pairs)

- tried to find a small set of rules explaining all close trace subsets.

*sensible definition of closeness requires some care
A Search for all Symmetries

All the symmetries we found were generated by:

- **Parity Symmetry:** \(e_{l,m,n} \approx o_{l,m,n} \)
- **Inversion Symmetry:** \(e_{l,m,n} \approx o_{-l,-m,-n} \)
- **Permutative Symmetry:** \(e_{l,m,n} \approx e_{\pi(l,m,n)} \)

for all cyclic permutations \(\pi \)

(not quite the whole story, see paper for details)
Source: 3000 grayscale never-compressed images
$e_{0,1,1} \approx o_{0,1,1}$ does not discriminate covers from stego images.
$e_{0,1,1} \approx o_{0,1,1}$ does not discriminate covers from stego images

$e_{0,-1,1} \approx o_{0,-1,1}$ does discriminate covers from stego images
Why Some Symmetries Fail To Discriminate

\[\mathcal{E}_{0,1,1} \]

\[\mathcal{O}_{0,1,1} \]

\[e_{0,1,1} \approx o_{0,1,1} \]
Why Some Symmetries Fail To Discriminate

\[E_{0,1,1} \xrightarrow{\text{Flip all LSBs}} O_{0,-1,3} \]

\[O_{0,1,1} \xrightarrow{\text{Flip all LSBs}} E_{0,3,-1} \]

\[e_{0,1,1} \approx o_{0,1,1} \]

\[o_{0,-1,3} \approx e_{0,-1,3} \quad \text{(parity symmetry)} \]

\[\approx e_{0,3,-1} \quad \text{(permutative symmetry)} \]
A Search for All Symmetries

All the symmetries we found were generated by:

- Parity Symmetry: \(e_{l,m,n} \approx o_{l,m,n} \)
- Inversion Symmetry: \(e_{l,m,n} \approx o_{-l,-m,-n} \)
- Permutative Symmetry: \(e_{l,m,n} \approx e_{\pi(l,m,n)} \)
 for all cyclic permutations \(\pi \)
A Search for All Symmetries

All the discriminating symmetries we found were generated by:

- Parity Symmetry: \(e_{l,m,n} \approx o_{l,m,n} \)
 if one or three of \(l, m \) and \(n \) are odd, or two of them are odd and not equal

- Inversion Symmetry: \(e_{l,m,n} \approx o_{-l,-m,-n} \)

- Permutative Symmetry: \(e_{l,m,n} \approx e_{\pi(l,m,n)} \)
 for all cyclic permutations \(\pi \) such that (a fairly complex condition holds)
A Search for All Symmetries

All the **discriminating** symmetries we found were generated by:

- **Parity Symmetry:**

 \[e_{l,m,n} \approx o_{l,m,n} \]

 if one or three of \(l, m \) and \(n \) are odd, or two of them are odd and not equal

- **Inversion Symmetry:**

 \[e_{l,m,n} \approx o_{-l,-m,-n} \]

- **Permutative Symmetry:**

 \[e_{l,m,n} \approx e_{\pi(l,m,n)} \]

 for all cyclic permutations \(\pi \) such that (a fairly complex condition holds)

Also in the paper: variance stabilization, and independence, of deviation from cover symmetries
4th Order Structural Detector

- Uses trace subsets $\mathcal{E}_{l,m,n}$ and $\mathcal{O}_{l,m,n}$ (quadruples of pixels)

<table>
<thead>
<tr>
<th>$\mathcal{E}_{l,m,n}$</th>
<th>$\mathcal{O}_{l,m,n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{E}_{l+1,2m-1,2n}$</td>
<td>$\mathcal{O}_{l+1,2m-1,2n}$</td>
</tr>
<tr>
<td>$\mathcal{E}_{l,2m-1,2n}$</td>
<td>$\mathcal{O}_{l,2m-1,2n}$</td>
</tr>
<tr>
<td>$\mathcal{E}_{l-1,2m+1,2n}$</td>
<td>$\mathcal{O}_{l-1,2m+1,2n}$</td>
</tr>
<tr>
<td>$\mathcal{E}_{l,2m+1,2n}$</td>
<td>$\mathcal{O}_{l,2m+1,2n}$</td>
</tr>
</tbody>
</table>

- Linear system

\[16 \times 16 \text{ matrix parameterized by } \rho \]

- Cover assumptions:
 \[e_{l,m,n} \approx O_{l,m,n} \quad \text{for } l, m, n \text{ such that ...} \]
 \[e_{l,m,n} \approx e_{\pi(l,m,n)} \quad \text{for } l, m, n, \pi \text{ such that ...} \]
4th Order Structural Detector

- Cover assumptions:
 \[e_{l,m,n} \approx o_{l,m,n} \quad \text{for } l, m, n \text{ such that ...} \]
 \[e_{l,m,n} \approx e_{\pi(l,m,n)} \quad \text{for } l, m, n, \pi \text{ such that ...} \]

(also restricting to low values of \(l, m, n \))

gives rise to 400 discriminating cover symmetries.
4th Order Structural Detector

- Cover assumptions:
 \[e_{l,m,n} \approx o_{l,m,n} \] for \(l, m, n \) such that ...
 \[e_{l,m,n} \approx e_{\pi(l,m,n)} \] for \(l, m, n, \pi \) such that ...

(also restricting to low values of \(l, m, n \))

This gives rise to 400 discriminating cover symmetries.

Each symmetry gives an equation for \(p \); take all 400 and throw out:

- equations with no real root
- equations giving obviously-wrong answers (\(p << o \) or \(p >> 1 \))

and take the mean or median of all remaining individual estimators for \(p \).
Detector Response

True embedding rate $p=0.1$

Source: 3000 colour never-compressed images
Observed Bias

Source: 3000 colour never-compressed images
Estimator Dispersion

Source: 3000 colour never-compressed images
Conclusions

• Have successfully made a structural detector based on quadruplets of pixels.

 The difficulty was in deciding the cover assumptions, which we determined by searching for symmetries in a set of natural images.

• The detector is not fully mature.

 Can we explain/correct the negative bias? Is there a better way to treat the hundreds of different equations estimating p?

• There is experimental evidence of (somewhat) improved performance.

 Further extension (“Quintuples Steganalysis”) might not be valuable. Perhaps combination of trace subsets will provide progress.
Final Comparison

Table shows standard deviations of various estimators for no embedding (NB: Quads performance decreases as embedding rate increases)

<table>
<thead>
<tr>
<th></th>
<th>Never-compressed images</th>
<th>JPEG compressed images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grayscale</td>
<td>Colour</td>
</tr>
<tr>
<td>RS</td>
<td>3.25</td>
<td>2.67</td>
</tr>
<tr>
<td>Couples (Sample Pairs)</td>
<td>3.29</td>
<td>2.56</td>
</tr>
<tr>
<td>Triples</td>
<td>3.45</td>
<td>2.36</td>
</tr>
<tr>
<td>Quadruples/mean</td>
<td>2.73</td>
<td>1.56</td>
</tr>
<tr>
<td>Quadruples/median</td>
<td>2.56</td>
<td>1.45</td>
</tr>
</tbody>
</table>

The End

adk@comlab.ox.ac.uk