Batch Steganography and the Threshold Game

Andrew Ker

adk@comlab.ox.ac.uk

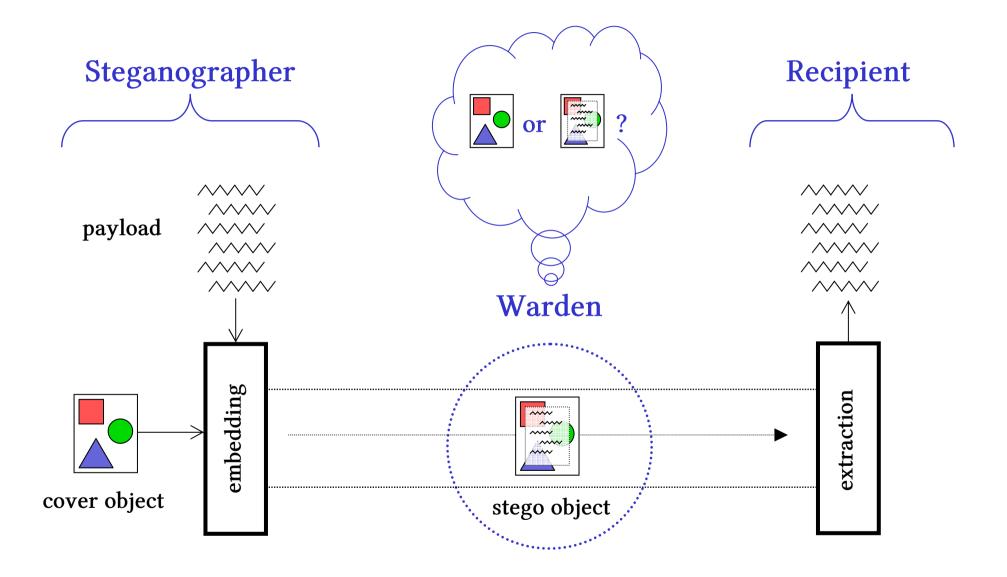
Royal Society University Research Fellow Oxford University Computing Laboratory

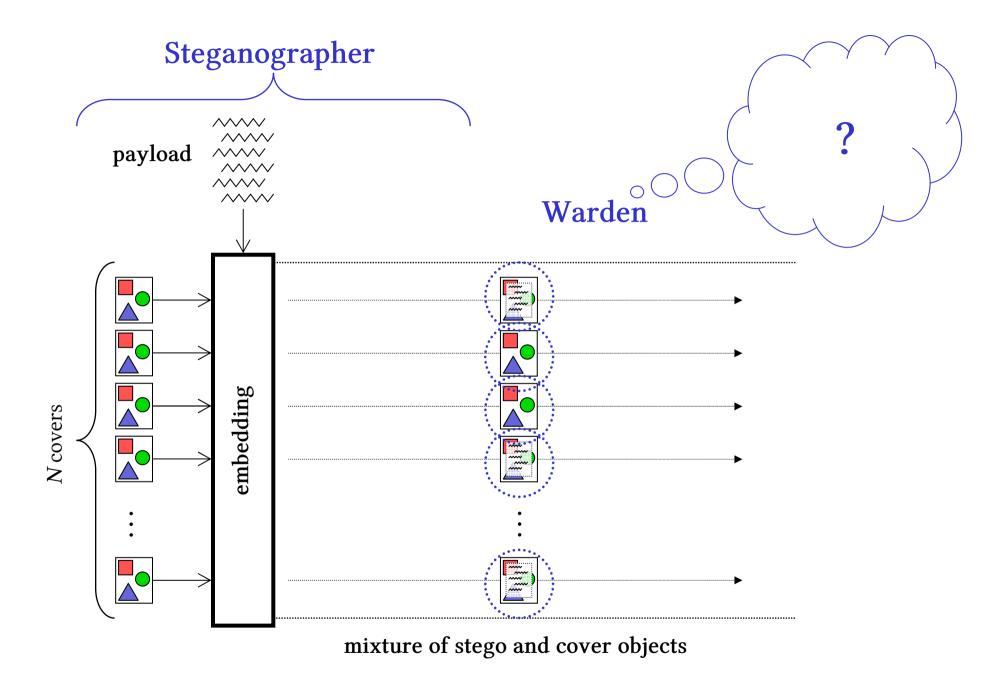
SPIE/IS&T EI 2007 29 January 2007

Batch Steganography and the Threshold Game

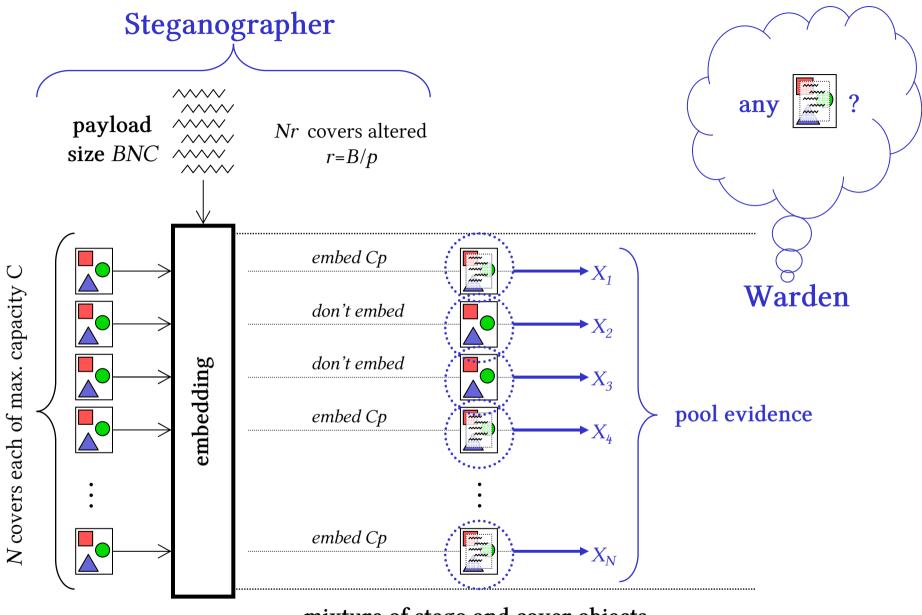
Outline

- Batch steganography
- Definition of the "Threshold Game"
- Optimal strategies
- Experimental results
- Conclusions



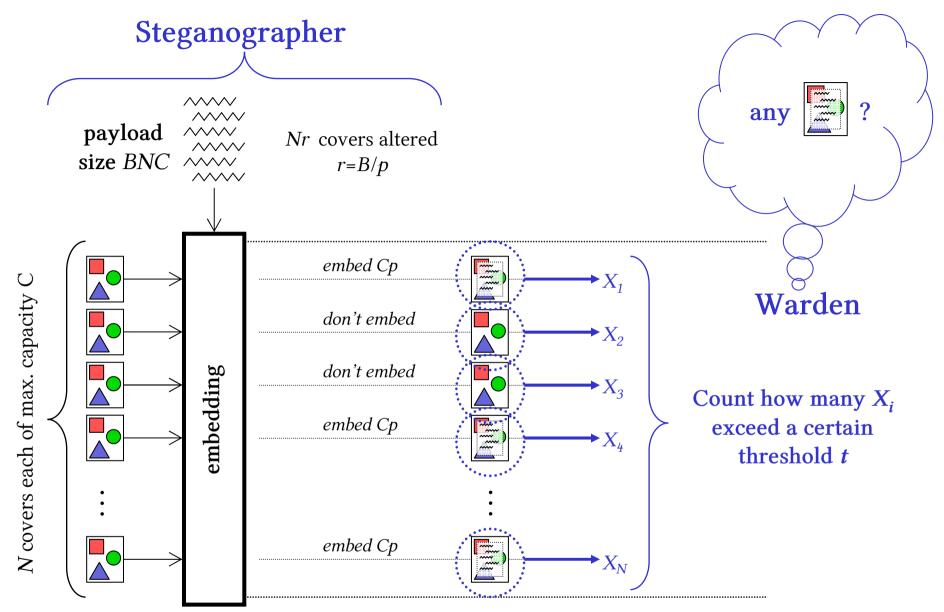


A. Ker, *Batch Steganography & Pooled Steganalysis*, Proc. 8th Information Hiding Workshop, 2006.



mixture of stego and cover objects

A. Ker, Batch Steganography & Pooled Steganalysis, Proc. 8th Information Hiding Workshop, 2006.



mixture of stego and cover objects

Assumptions

The results rely on some assumptions:

- 1. Covers are uniform size;
- 2. That the Warden applies a **payload estimator** ("quantitative" detector) to individual objects, whose properties are known to both parties;
- 3. Estimation error is **additive** and **independent** of embedding rate;
- 4. Estimation error distribution has certain "bell-shaped" properties.

Steganographer chooses $p \in [B, 1]$

B is close to zero

• Embeds *Cp* in each of *Nr* covers (r=B/p).

Warden chooses $t \in \mathbb{R}$

• Counts the number of objects whose payload estimate exceeds *t*.

Payoff

Steganographer chooses $p \in [B, 1]$

B is close to zero

• Embeds *Cp* in each of *Nr* covers (r=B/p).

Warden chooses $t \in \mathbb{R}$

• Counts the number of objects whose payload estimate exceeds *t*.

(Steganographer's) Payoff

• False positive rate at 50% false negatives (i.e. median p-value).

Does depend on B and N, but is always a monotone decreasing function of

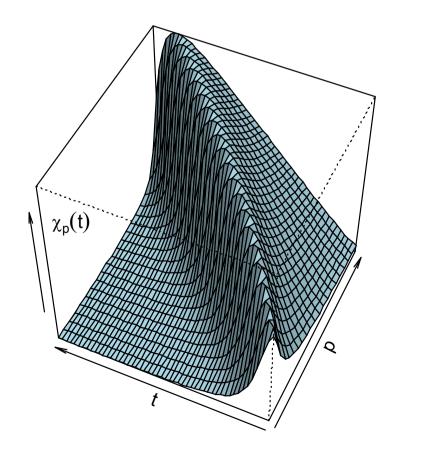
$$\chi_p(t) = \frac{\Psi(t) - \Psi(t-p)}{p\sqrt{\Psi(t)(1-\Psi(t))}}$$

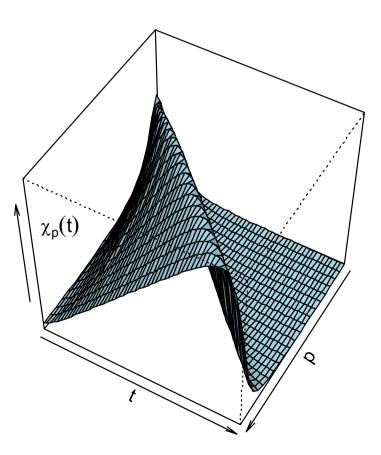
Distribution function of payload estimate errors

which we call the "evidence function".

The Steganographer (*p*) wants to MINIMIZE, the Warden (*t*) to MAXIMIZE,

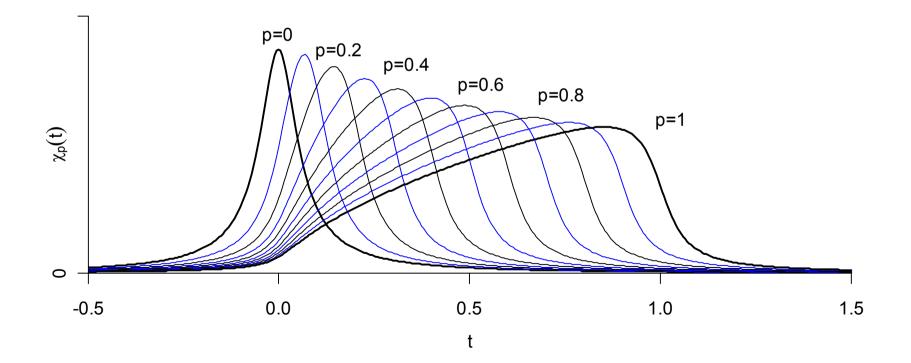
$$\chi_p(t) = \frac{\Psi(t) - \Psi(t-p)}{p\sqrt{\Psi(t)(1-\Psi(t))}}$$

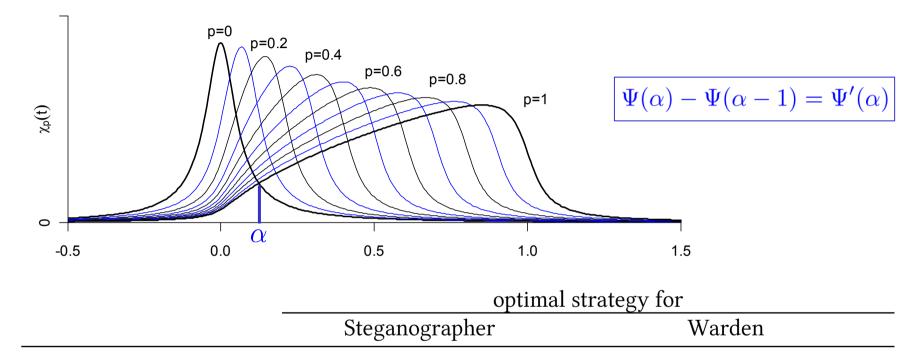




The Steganographer (*p*) wants to MINIMIZE, the Warden (*t*) to MAXIMIZE,

$$\chi_p(t) = \frac{\Psi(t) - \Psi(t-p)}{p\sqrt{\Psi(t)(1-\Psi(t))}}$$

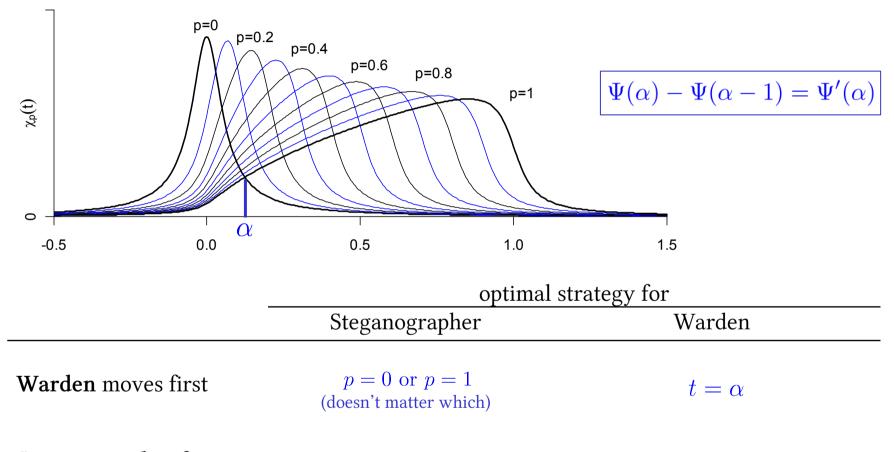




Warden moves first

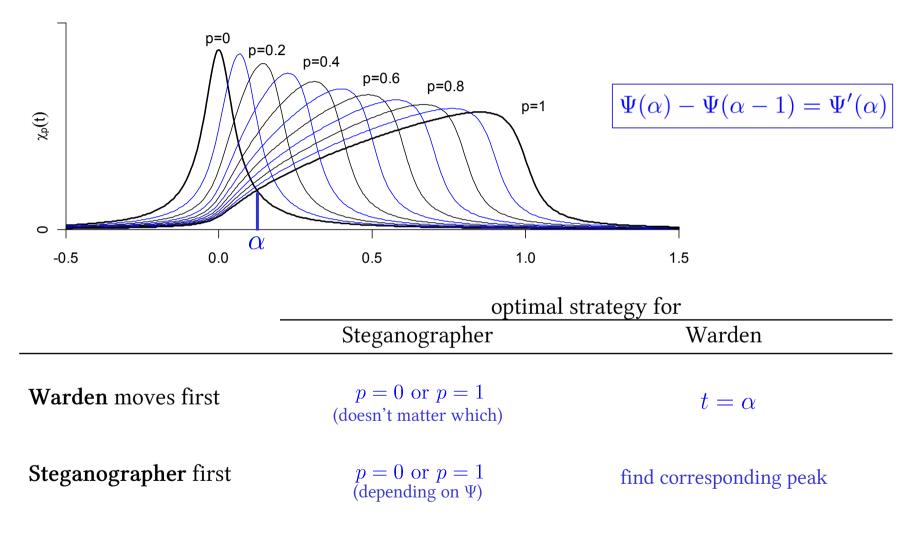
Steganographer first

Simultaneous moves

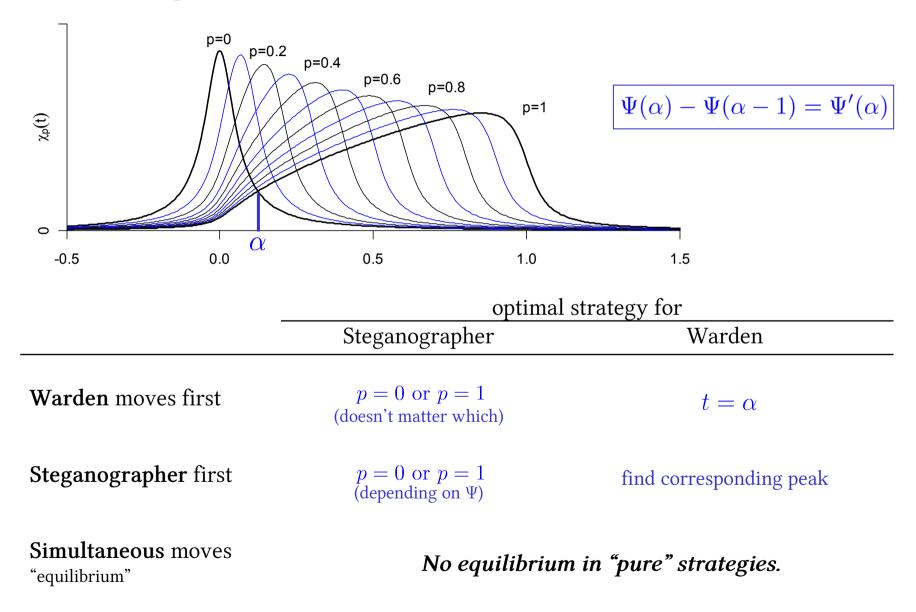


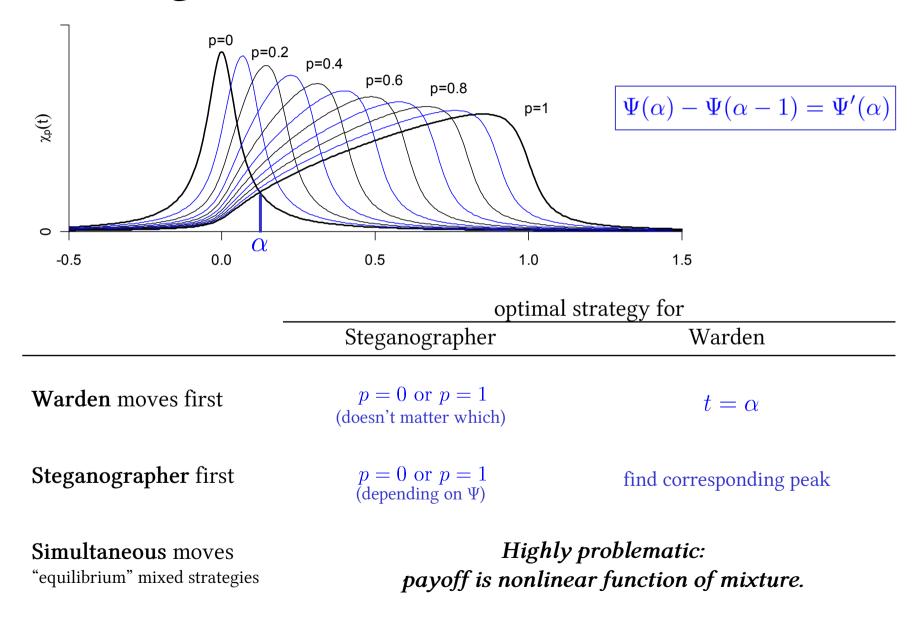
Steganographer first

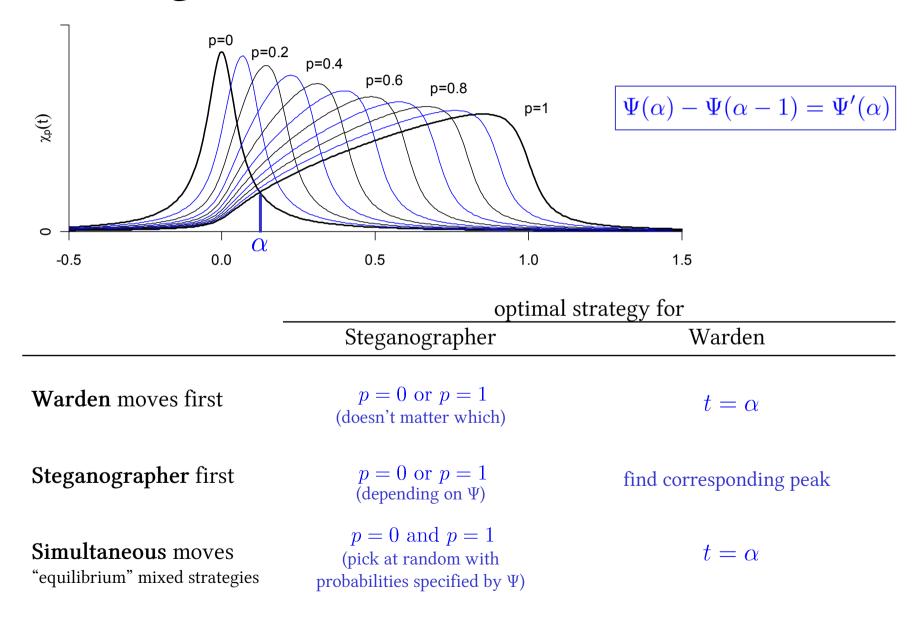
Simultaneous moves



Simultaneous moves







Experimental Results

Performed experiments using:

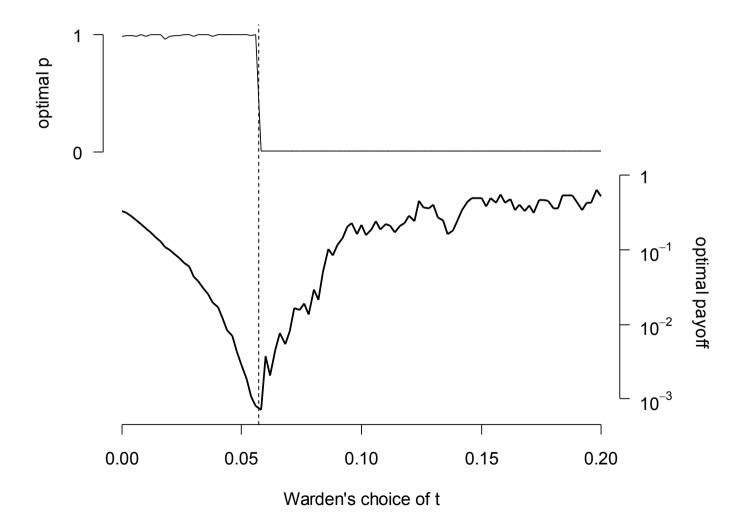
- Simple LSB replacement embedding;
- "Sample Pairs" payload estimation [Dumitrescu et al, IHW 2002];
- Large library of cover images.

Estimate Ψ from observations, then find the approximate solution for $\Psi(\alpha) - \Psi(\alpha - 1) = \Psi'(\alpha)$ numerically.

For this type/size of cover & detector, α =0.0585.

Experimental Results

For *N*=10000, *B*=0.005, all $t \in \{0,0.001,0.002,...,1\}$ and all $p \in \{0,0.001,0.002,...,1\}$ *Theory predicts optimal t at* α =0.0585; *observed optimal t*=0.057



Conclusions

• The Threshold Game is not a completely implausible scenario.

The Game has solution/equilibrium which is surprisingly simple.

• The Warden should choose $t = \alpha$, the root of an equation which depends (only) on the shape of the error distribution.

When comparing quantitative estimators, this is the "optimum" point on the ROC curve: useful for benchmarking.

 The Steganographer should mix between total concentration of steganography and total spreading, but never adopt an intermediate option.
It is not clear whether this is informative for practical steganography.

