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Steganographic Strategies for a
Square Distortion Function

QOutline

o The “Batch Steganography” problem
o Square distortion

o Optimal batch embedding strategies

o The “Sequential Steganography” problem
« Sequential embedding strategies

o Example



Batch Steganography

» Spreading a payload amongst multiple covers
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Square Distortion

Notation

Observation of cover i, with p; embedding changes: X"

Random vector of N cover objects: X0 =(x?V ..., X%)
Random vector of N stego (or cover) objects: XP = (X7 .., XRY)

For the purposes of this paper we assume:

o That “evidence” is modelled by KL divergence. Dxr(X°, XP)

 That KL divergence is additive across objects. = Z Dk (X}, XP9)
i=1

 That KL divergence in a single object is "
proportional to the square of the number — Z Qip?
of changes induced by embedding. i—1



Optimization Problems

Want to maximize total payload transmitted M, subject to limit on allowable
KL divergence:

N
Dkr(X°, XP) =) Qip; <D
i=1

There are a number of variations:

1. Uniform covers, simple embedding (no adaptive source coding)

3. Uniform covers, adaptive source code at embedder



Theorem

Distortion bound:

Uniform covers:

(identical Q-factor)

No adaptive source coding:

(each embedding change transmits e payload bits)

The optimization problem is

Maximize M = g m;

and the solution is

N

DKL(XO,XP) — ZQ'LPZQ
=1

Qi =Q

pi =m;/e

s.t. 8> mi<D
_ De’N
R Q




Theorem

N
Distortion bound: Dk, (X°, XP) = Z Qip; <D

Uniform covers: Q; = Q
(identical Q-factor)

3 . —1 i
Adaptive source coding: pi =nH (™)
(asymptotically achievable bound [1])

The optimization problem is Qn* Z (H (e )) 2

Maximize M = Zmi s.t. 9 m: <D

=R M= BT N (5 )

nH(\/NQrﬂ) = QLT). O O(VNlogN).

[1] J. Fridrich & D. Soukal, Matrix embedding for large payloads, IEEE Trans Info. Forensics & Security, 2006.

and the solution is



Sequential Steganography

» Embedding a hidden payload stream in an infinite stream of covers
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Distortion Bound

Want to maximize payload transmitted M, as a function of IV, subject to limit
on allowable KL divergence:

N
Z Q.p? < D forall N.

1=1



Distortion Bound

Want to maximize payload transmitted M, as a function of IV, subject to limit
on allowable KL divergence:

i Qip; <D
i—1



Sequential Strategies

Distortion bound: Y ° Q.p; < D

— De?
Uniform covers: Q; = Q) >~ Z = 0 (%)

No adaptive source coding: p; = m;/e

The “optimization” problem is ~

Find a sequence (m;) whose partial sums M (N) = Z m; grow as fast as

possible, given that Z m; converges. i=1

Theorem > m? convergent forces M(N)/vVN — 0.

Zeta Embedding Set m; = i~27¢ /De2/QC(1 + 2¢)

Then (%) is equality and

i_,. € D
MN) ~ N> 1—e\/Q<(1+2e)




Sequential Strategies

Distortion bound: " Q;p? < D

Uniform covers: (Q; = Q
Adaptive source coding: p; =577
nH™ (%)

The “optimization” problem is

\

~/

N

Find a sequence (m;) whose partial sums M (N) = Z m; grow as fast as

possible, given that Zm‘f' converges.

Zeta Embedding Set m; = 4_ APFOTIT T 2¢)

Then (%) is equality and
1

1=1

VN log N
Theorem Zmﬁ’ convergent forces M (N) /ﬁ — 0.

D

M(N) ~ (logy N)N 3¢ —
2

e

1 + 2¢)



[llustration

We compute some theoretical capacities with parameters corresponding to
realistic steganography/steganalysis.

« The cover size corresponds to a 1 megapixel grayscale image. n = 10°
« Embedding by LSB matching, no source coding. e=2
» Calibrated HCF COM steganalysis [1] at detector. Q=101

A realistic Q-factor [2] is...

o The KL divergence bound forces detector’s ROC into D=1
unshaded region:

[1] A. Ker, Steganalysis of LSB Matching in Grayscale Images, IEEE Signal Processing Letters, 2005.
[2] A. Ker, The Ultimate Steganalysis Benchmark?, Proc. ACM Workshop on Multimedia and Security, 2007.
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— Fractional payload, coding efficiency bound
— Only integral payload, Hamming code family

With matrix embedding



Conclusions

o In the batch steganography case, capacity grows with the square-root of the
number of covers V.

With adaptive source coding this improves to O(V N log N).

« The sequential steganography gives different results: capacity can be
infinite, but only order N2 ° is achievable.

Adaptive source coding gives an extra factor of log N.

o The whole paper is predicated on the assumption of square distortion.

Some theoretical and experimental justification exists, but it is not
necessarily universally true.

« Some other unrealistic assumptions (fractional bit payload, etc.) do not seem
critical.
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