
Implementing the
Projected Spatial Rich Features

on a GPU

Andrew Ker
adk

@ cs.ox.ac.uk

Department of Computer Science

University of Oxford

SPIE/IS&T Electronic Imaging, San Francisco, 4 February 2014

Background
Features for binary classification steganalysis in raw images.

dimension
extraction time
for 1Mpix image

 WAM [2006] 27 negligible
moments of noise residuals

 SPAM [2009] 686 0.25 s
co-occurrences of noise residuals

 SRM [2012] 12753+ 12 s
co-occurrences of diverse noise residuals

 PSRM [2013] 12870 25 m
histograms of randomly projected,
diverse, noise residuals

Background
Features for binary classification steganalysis in raw images.

dimension
extraction time
for 1Mpix image

 WAM [2006] 27 negligible
moments of noise residuals

 SPAM [2009] 686 0.25 s
co-occurrences of noise residuals

 SRM [2012] 12753+ 12 s
co-occurrences of diverse noise residuals

 PSRM [2013] 12870 25 m
histograms of randomly projected,
diverse, noise residuals

An experiment with
1 million images
takes 50 years

Projected residuals

quantize ¤

noise residuals

random kernel

count central
6 histogram bins

 Width, height uniform on {1,…,8}
 Entries Gaussian, scaled to unit norm

Projected residuals

quantize ¤

noise residuals

random kernel

count central
6 histogram bins

quantize ¤
flipped kernel

count central
6 histogram bins

+

…

…

…

PSRM features
quantize ¤

…

raw image

…

m
in

/m
ax

 o
p
er

at
io

n
s

quantize ¤
quantize ¤

quantize ¤

quantize ¤

30 filters 168 residuals
168·55·8 convolutions & histograms,

average kernel size 20 pixels

Sum and
concatenate to
12870 features

…

…

…

…

PSRM features
quantize ¤

…

raw image

…

m
in

/m
ax

 o
p
er

at
io

n
s

quantize ¤
quantize ¤

quantize ¤

quantize ¤

30 filters 168 residuals

Sum and
concatenate to
12870 features

…

~1.2 TFLOPs
per 1Mpix

image

168·55·8 convolutions & histograms,
average kernel size 20 pixels

GPU architecture
We target the NVIDIA Tesla K20 card (GK110 GPU):

 Costs $2800.

 CUDA programming language.

 Execution in warps, 32 simultaneous identical instructions per
multiprocessor (MP).

 Communicating warps grouped in blocks.

 Blocks interleaved concurrently on 78 MPs.

2496 FP processors: ~3.52TFLOP/s.

… but memory bandwidth & latency is limiting.

GPU architecture
 latency size

 Registers zero 64K words per MP

 Shared memory ~ 10 cycles ~ 48KB for all concurrent blocks

 Global memory ~ 200 cycles ~ 5GB

Global access latency hidden by concurrently-running blocks (with
immediate context switching).

… parallelism vs register exhaustion.

quantize

quantize

quantize

quantize

quantize

…

…

…

GPU-PSRM features
¤

…

raw image

…

m
in

/m
ax

 o
p
er

at
io

n
s

¤

¤

¤

¤

Sum and
concatenate to
12870 features

…

same 55 kernels
for all residuals

44 kernels

… also consider fewer projections per residual

Tiles

31 2 1
32
0

64

1 warp
(32 threads)

1 block

…

…

…

…

padding

(32Θ threads)

pixels used by thread 1

One thread

¤

 Quantize
 Truncate
 Increment histogram bin

pixels used by thread 1
convolution kernel

A B C D
E F G H
I J K L
M N O P

One thread

¤

 Quantize
 Truncate
 Increment histogram bin

pixels used by thread 1
convolution kernel

ABCD
EFGH
IJKL
MNOP

One thread

¤

 Quantize
 Truncate
 Increment histogram bin

pixels used by thread 1
convolution kernel

A
B
C
D

E
F
G
H

I
J
K
L

M
N
O
P

One thread

¤

 Quantize
 Truncate
 Increment histogram bin

pixels used by thread 1
convolution kernel

A B C D
E F G H
I J K L
M N O P

One thread

¤

 Quantize
 Truncate
 Increment histogram bin

pixels used by thread 1
convolution kernel

A B C D
E F G H
I J K L
M N O P

One thread

¤

 Quantize
 Truncate
 Increment histogram bin

 bin=(int)floor(x);
 histogram[bin]++;

pixels used by thread 1
convolution kernel

x

A B C D
E F G H
I J K L
M N O P

One thread

¤

 Quantize
 Truncate
 Increment histogram bin

 bin=(int)floor(x);
 if(bin==0) histogram[0]++;
 if(bin==1) histogram[1]++;
 ...

pixels used by thread 1
convolution kernel

x

A B C D
E F G H
I J K L
M N O P

Benchmarks
Machine: 16-core 2.0GHz SandyBridge Xeon

Implementation
wallclock

extraction time
for 1Mpix image

 Reference C++ 29588 s

 Reference MATLAB

 single-thread

1554 s

 Reference MATLAB
 multi-thread

1100 s

(2186 s CPU)

 Optimized CUDA
 using 1TESLA K20

2.6 s

potentially <1 s

Accuracy
Steganalysis experiment:

 10000 BOSSBase v1.01 cover images (256Kpix).

 HUGO embedding, 0.4bpp.

 Measure Ensemble FLD error on disjoint testing sets.

projections
per residual

dimension
testing

error rate
Extraction of

256Kpix image

55 12870 12.98% 491 s

55 12870 14.34% 0.59 s

40 9360 14.75% 0.45 s

30 7020 14.78% 0.36 s

20 4680 14.88% 0.27 s

10 2340 15.71% 0.20 s

GPU-PSRM

Reference PSRM

Accuracy
Steganalysis experiment:

 10000 BOSSBase v1.01 cover images (256Kpix).

 HUGO embedding, 0.4bpp.

 Measure Ensemble FLD error on disjoint testing sets.

projections
per residual

dimension
testing

error rate
Extraction of

256Kpix image

55 12870 12.98% 491 s

55 12870 14.34% 0.59 s

40 9360 14.75% 0.45 s

30 7020 14.78% 0.36 s

20 4680 14.88% 0.27 s

10 2340 15.71% 0.20 s

GPU-PSRM

Reference PSRM

This single experiment:

 2732 core hours.

 Costs £136 ($223) on Oxford
University cluster (internal prices).

 Would cost twice as much on EC2.

Conclusions
 PSRM features require massive amounts of computation.

 GPU implementation the only possibility for a quick result.

 GPU-PSRM features are slightly modified, optimization-friendly.

 Lose a little in variety, but only 1% additional error.
 400-1000 times faster than current CPU implementations.

 Should consider cost/benefit analysis of new features.

 A practitioner might prefer speed to accuracy.

 Optimize implementation of previous-gen. features? (SRM/JRM)

 Need not necessarily involve a GPU.

Conclusions
 PSRM features require massive amounts of computation.

 GPU implementation the only possibility for a quick result.

 GPU-PSRM features are slightly modified, optimization-friendly.

 Lose a little in variety, but only 1% additional error.
 400-1000 times faster than current CPU implementations.

 Should consider cost/benefit analysis of new features.

 A practitioner might prefer speed to accuracy.

 Optimize implementation of previous-gen. features? (SRM/JRM)

 Need not necessarily involve a GPU.

Source will be available from

http://www.cs.ox.ac.uk/andrew.ker/gpu-psrm/

