Revisiting Weighted Stego-Image Steganalysis

Andrew Ker

adk@comlab.ox.ac.uk Oxford University Computing Laboratory

Rainer Böhme

rainer.boehme@inf.tu-dresden.de

Technische Universität Dresden, Institute for System Architecture

SPIE/IS&T Electronic Imaging, San Jose, CA 28 January 2008

Revisiting Weighted Stego-Image Steganalysis

Outline

- The Weighted Stego Image (WS) method
- Performance
- Re-engineering WS
- Performance
- WS for sequential embedding
- Performance

The WS Method

Imagine a single-channel cover image with N pixels, and a payload of M bits (possibly zero) inserted by overwriting a selection of LSBs.

WS steganalysis estimates the (proportionate) payload size $p = \frac{M}{N}$.

The WS Method

Cover image:
$$c_1, c_2, \ldots, c_N$$

Flip proportion $M/2N$ of LSBs
Stego image: s_1, s_2, \ldots, s_N
"Weighted stego image": $s_1^{\alpha}, s_2^{\alpha}, \ldots, s_N^{\alpha}$
(real-valued)
Move α towards flipping all LSBs
 $s_i^{\alpha} = \alpha \overline{s_i} + (1 - \alpha)s_i$

Theorem [Fridrich & Goljan, 2004]

The function
$$E(\alpha) = \sum_{i=1}^{N} w_i (s_i^{\alpha} - c_i)^2$$
 is minimized at $\alpha = M/2N$,

where the w_i are a vector of weights.

The WS Method

Theorem Τ

The function
$$E(\alpha) = \sum_{i=1}^{N} w_i (s_i^{\alpha} - c_i)^2$$
 is minimized at $\alpha = M/2N$.

WS Steganalysis

- 1. Estimate cover by filtering the stego image.
- 2. Decide on a weight vector.

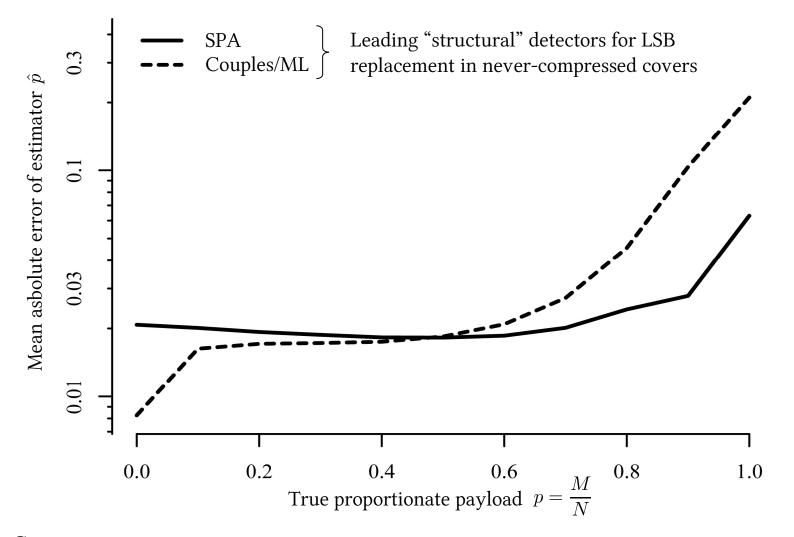
 $\hat{c_i} = \begin{array}{c} \text{Average of the four stego} \\ \text{pixels neighbouring } s_i \end{array}$

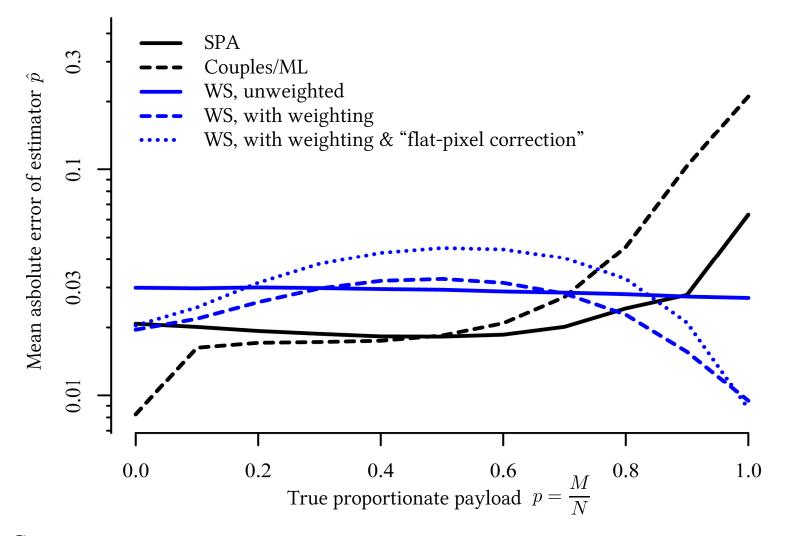
 $w_i = \frac{1}{1 + \sigma_i^2} \quad \sigma_i^2$ is the local variance of the four stego pixels neighbouring s_i

3. Compute "flat-pixel correction". r = - estimate of bias introduced by flat areas in cover image

Estimate proportionate payload size

$$\hat{p} = r + 2 \operatorname{argmin}_{\alpha} \sum_{i=1}^{N} w_i (s_i^{\alpha} - \hat{c}_i)^2 = r + \frac{2}{N} \sum_{i=1}^{N} w_i (s_i - \hat{c}_i) (s_i - \overline{s_i}).$$





• Estimate cover by filtering the stego image.

 $\hat{c_i} = \begin{array}{c} \text{Average of the four stego} \\ \text{pixels neighbouring } s_i \end{array}$

• Estimate cover by filtering the stego image.

$$m{\hat{c}} = m{s} * egin{pmatrix} 0 & rac{1}{4} & 0 \ rac{1}{4} & 0 & rac{1}{4} \ 0 & rac{1}{4} & 0 \end{pmatrix}$$

But what about other filters?

$$\hat{c} = s * egin{pmatrix} rac{1}{8} & rac{1}{8} & rac{1}{8} & rac{1}{8} \ rac{1}{8} & 0 & rac{1}{8} \ rac{1}{8} & rac{1}{8} & rac{1}{8} \end{pmatrix}$$

• Estimate cover by filtering the stego image.

$$oldsymbol{\hat{c}} = oldsymbol{s} * egin{pmatrix} 0 & rac{1}{4} & 0 \ rac{1}{4} & 0 & rac{1}{4} \ 0 & rac{1}{4} & 0 \end{pmatrix}$$

But what about other filters?

$$\hat{\boldsymbol{c}} = \boldsymbol{s} * \begin{pmatrix} -\frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ -\frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \end{pmatrix}$$

$$\hat{\boldsymbol{c}} = \boldsymbol{s} * \begin{pmatrix} e & d & c & d & e \\ d & b & a & b & d \\ c & a & 0 & a & c \\ d & b & a & b & d \\ e & d & c & d & e \end{pmatrix}$$

• Estimate cover by filtering the stego image.

Select a filter pattern
$$F = \begin{pmatrix} e & d & c & d & e \\ d & b & a & b & d \\ c & a & 0 & a & c \\ d & b & a & b & d \\ e & d & c & d & e \end{pmatrix}$$

and find the values of a...e to best predict the stego object by itself, i.e. find

$$\underset{F}{\operatorname{argmin}} \|\boldsymbol{s} - F * \boldsymbol{s}\|.$$

 \Rightarrow improves cover pixel & payload size estimation accuracy.

Moderated Weights

• Decide on a weight vector.

$$w_i = \frac{1}{1 + \sigma_i^2} \qquad \begin{array}{l} \sigma_i^2 \text{ is the local variance} \\ \text{of the four stego pixels} \\ \text{neighbouring } s_i \end{array}$$

Our experiments suggested that the weights are too extreme and should be moderated.

$$w_i = \frac{1}{5 + \sigma_i^2} \qquad \begin{array}{l} \sigma_i^2 \text{ is the weighted variance} \\ \text{of the neighbouring stego} \\ \text{pixels affecting } s_i \text{ in the} \\ \text{prediction filter} \end{array}$$

 \Rightarrow improves payload size estimation accuracy.

Bias Correction

► Correct bias.

The "flat-pixel correction" in [Fridrich & Goljan, EI 2004], doesn't work very well. A better estimate can be given if we model the cover image by

 c_1, c_2, \dots, c_N s_1, s_2, \dots, s_N Flip proportion M/2N of LSBs

Then

$$E[\hat{p}] = \frac{2}{N} E\left[\sum w_i(s_i - \hat{c}_i)(s_i - \overline{s_i})\right]$$

= ...
$$= p + p \sum w_i(s_i - \overline{s_i}) \left(F * (\overline{s} - s)\right)_i$$

 \Rightarrow improves payload size estimation accuracy.

Re-engineered WS

The funct

Theorem
The function
$$E(\alpha) = \sum_{i=1}^{N} w_i (s_i^{\alpha} - c_i)^2$$
 is minimized at $\alpha = M/2N$.

WS Steganalysis

1. Estimate cover by filtering the stego image.

Find *F* to minimize ||s - F * s||, then $\hat{\boldsymbol{c}} = F * \boldsymbol{s}$

2. Decide on a weight vector.

 $w_i = \frac{1}{5 + \sigma_i^2} \quad \begin{array}{ll} \sigma_i^2 \text{ is the local variance} \\ \text{of the neighbouring} \\ \text{stego pixels affecting} \end{array}$ s_i in the prediction filter

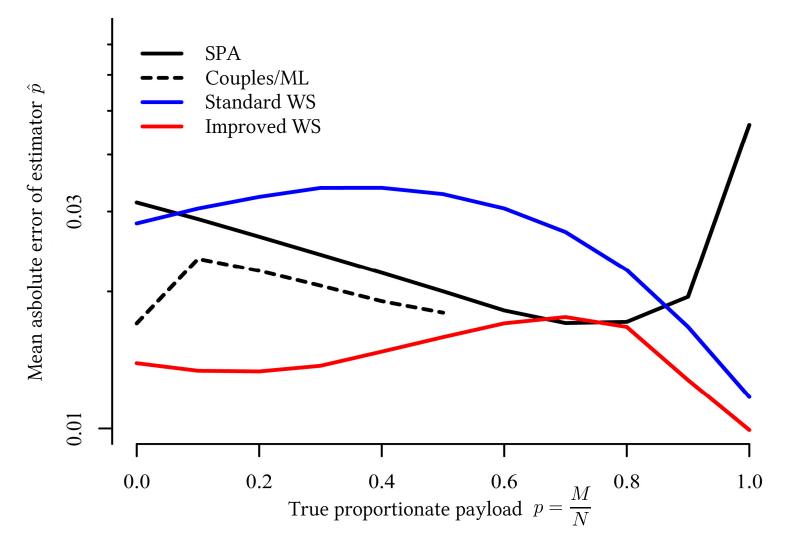
Compute bias correction. 3.

$$r = -p \sum w_i (s_i - \overline{s_i}) (F * (\overline{s} - s))_i$$

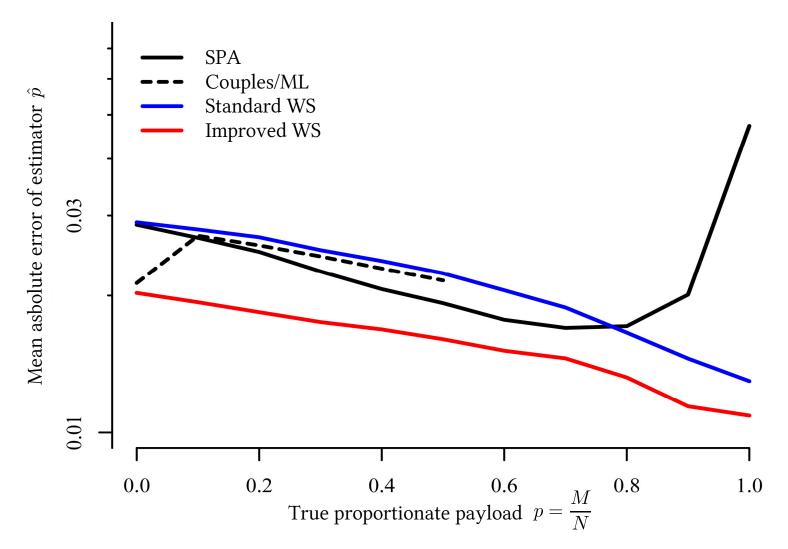
Estimate proportionate payload size

$$\hat{p} = r + 2 \operatorname{argmin}_{\alpha} \sum_{i=1}^{N} w_i (s_i^{\alpha} - \hat{c}_i)^2 = r + \frac{2}{N} \sum_{i=1}^{N} w_i (s_i - \hat{c}_i) (s_i - \overline{s_i}).$$





1600 grayscale RAW digital camera images resampled to 0.3Mpixels



WS For Sequential Payload

Cover image: c_1, c_2, \ldots, c_N Stego image: s_1, s_2, \ldots, s_N Flip first M LSBs with probability 1/2Weighted stego image: $s_1^j, s_2^j, \ldots, s_N^j$ Go halfway to flipping first j LSBs $s_i^j = \begin{cases} \frac{1}{2}\overline{s_i} + \frac{1}{2}s_i, & i \le j\\ s_i, & i > j \end{cases}$

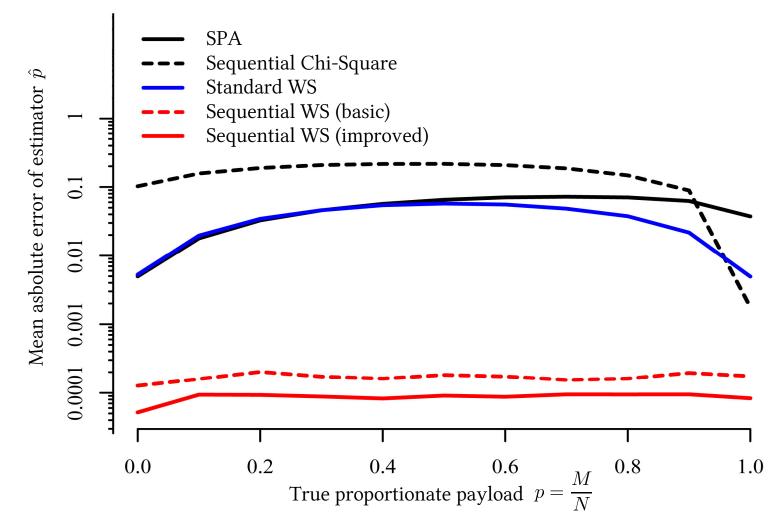
The function
$$F(j) = \sum_{i=1}^{N} (s_i^j - c_i)^2$$
 is minimized at $j = M$.

Sequential WS Steganalysis

- Estimate cover by filtering stego image: $\hat{c} = s * (\text{filter})$
- Estimate size of payload: 2.

$$\hat{M} = \underset{j}{\operatorname{argmin}} \left(\sum_{i=1}^{j} \left(\left(\frac{1}{2} s_i + \frac{1}{2} \,\overline{s_i} \right) - \hat{c_i} \right)^2 + \sum_{i=j+1}^{N} \left(s_i - \hat{c_i} \right)^2 \right).$$

Weighting can also be used.



Cover source: 1000 digital camera images, cropped to 0.3Mpixels

Conclusions

- WS, a steganalysis method for LSB replacement, received little attention.
 Its performance was a little worse than "structural" detectors.
- We upgraded its three components: cover prediction, weighting, and bias correction.

For never-compressed covers, its performance is (almost always) superior to any other detector, and its computational complexity is low.

• There are simple modifications for specialized detection of sequentiallylocated payload.

The performance here is orders of magnitude better than its competitors.

• WS has been unjustly neglected and, because of its modular design, there may be many other applications.

End

adk@comlab.ox.ac.uk