# A Mishmash of Methods for Mitigating the Model Mismatch Mess

#### Andrew D. Ker<sup>a</sup> and Tomáš Pevný<sup>b</sup>

<sup>a</sup> Department of Computer Science, Oxford University, UK. <sup>b</sup> Agent Technology Center, Czech Technical University in Prague, Czech Republic.

4th February 2014



## Image database to study model mismatch

- 9000 JPEG images from each of 9 Flickr users.
- All images share the same quantization table (qf = 85).
- 8 different camera models from 5 manufacturers.
- Stego images embedded with nsF5 with payload 0.05 bpp.
- 7850 dimensional *CF\** features used for steganalysis.

## The reality of model mismatch

|        |   | Testing actor |      |      |      |      |      |      |      |      |
|--------|---|---------------|------|------|------|------|------|------|------|------|
|        |   | 1             | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
| actor  | 1 | 0.00          | 0.01 | 0.13 | 0.23 | 0.01 | 0.10 | 0.05 | 0.04 | 0.08 |
|        | 2 | 0.02          | 0.00 | 0.16 | 0.10 | 0.02 | 0.10 | 0.04 | 0.04 | 0.06 |
|        | 3 | 0.36          | 0.33 | 0.02 | 0.38 | 0.24 | 0.23 | 0.36 | 0.29 | 0.31 |
|        | 4 | 0.03          | 0.01 | 0.18 | 0.00 | 0.01 | 0.09 | 0.03 | 0.04 | 0.06 |
| ing    | 5 | 0.04          | 0.01 | 0.11 | 0.07 | 0.00 | 0.09 | 0.03 | 0.02 | 0.06 |
| Traini | 6 | 0.06          | 0.02 | 0.16 | 0.04 | 0.03 | 0.06 | 0.07 | 0.03 | 0.07 |
|        | 7 | 0.01          | 0.00 | 0.21 | 0.10 | 0.00 | 0.11 | 0.01 | 0.02 | 0.06 |
|        | 8 | 0.05          | 0.03 | 0.12 | 0.09 | 0.01 | 0.09 | 0.04 | 0.01 | 0.08 |
|        | 9 | 0.03          | 0.01 | 0.19 | 0.17 | 0.01 | 0.11 | 0.08 | 0.04 | 0.05 |

Testing error of Fisher Linear Discriminant classifiers

A. D. Ker and T. Pevný

aMoMfMtMMM

4th February 2014 3 / 17

Э

Sac

Image: Image:

- Traditional error measures do not quantify the stability of the detector.
- Mean error rate  $\mu_1 = \frac{1}{k} \sum_i P_E^i$ .
- Root mean square error rate  $\mu_2 = \sqrt{\frac{1}{k} \sum_i (P_E^i)^2}$ .
- Maximum error rate  $\mu_{\infty} = \max_i P_{\rm E}^i$ .

### Summary of the baseline

| ma      | atched cas | ses            | mismatched cases |         |              |  |
|---------|------------|----------------|------------------|---------|--------------|--|
| $\mu_1$ | $\mu_2$    | $\mu_{\infty}$ | $\mu_1$          | $\mu_2$ | $\mu_\infty$ |  |
| 0.0204  | 0.0315     | 0.0663         | 0.0981           | 0.1369  | 0.3887       |  |

=

900

《曰》 《聞》 《문》 《문》

## Mismatch due to shift



A. D. Ker and T. Pevný

aMoMfMtMMM

4th February 2014 6 / 17

E

990

(日) (同) (三) (三)

# Mean distances of covers

|                             | Actor's whose centroid distance is measured |       |       |      |       |       |      |       |       |       |
|-----------------------------|---------------------------------------------|-------|-------|------|-------|-------|------|-------|-------|-------|
|                             |                                             | 1     | 2     | 3    | 4     | 5     | 6    | 7     | 8     | 9     |
| from other actor's centroid | 1                                           | 0     | 0.59  | 3.93 | 12.58 | 0.66  | 1.90 | 2.82  | 0.72  | 0.79  |
|                             | 2                                           | 1.40  | 0     | 7.27 | 3.67  | 1.35  | 0.38 | 1.07  | 0.48  | 1.02  |
|                             | 3                                           | 12.84 | 12.46 | 0    | 19.02 | 10.56 | 9.25 | 13.92 | 12.00 | 12.58 |
|                             | 4                                           | 5.01  | 0.50  | 8.77 | 0     | 0.70  | 0.37 | 2.01  | 1.97  | 1.06  |
|                             | 5                                           | 0.49  | 1.09  | 2.54 | 5.39  | 0     | 2.17 | 2.29  | 2.56  | 2.00  |
|                             | 6                                           | 2.18  | 0.81  | 5.09 | 1.72  | 0.51  | 0    | 1.04  | 1.09  | 2.08  |
|                             | 7                                           | 0.26  | 0.35  | 7.53 | 2.92  | 0.53  | 0.76 | 0     | 0.49  | 0.10  |
|                             | 8                                           | 1.65  | 1.05  | 2.00 | 5.09  | 1.28  | 1.33 | 1.86  | 0     | 3.69  |
| :                           | 9                                           | 0.26  | 0.61  | 4.82 | 3.31  | 0.44  | 0.95 | 1.26  | 1.30  | 0     |

Actor's whose centroid distance is measured...

Correlation with errors: ho=0.91 au=0.51

## Centering the cover means helps

|                 | matched cases                  |        |         | mismatched cases |              |        |
|-----------------|--------------------------------|--------|---------|------------------|--------------|--------|
|                 | $\mu_1$ $\mu_2$ $\mu_{\infty}$ |        | $\mu_1$ | $\mu_2$          | $\mu_\infty$ |        |
| Baseline        | 0.0204                         | 0.0315 | 0.0663  | 0.0981           | 0.1369       | 0.3887 |
| Subtracted mean |                                |        |         | 0.0691           | 0.0838       | 0.2332 |

E

990

ヨト・イヨト

## Mismatch due to angle and speed



$$ho = -0.52, \ au = -0.44 \ \cos lpha_{i,j} = rac{w_i \cdot w_j}{\|w_i\| \|w_j\|}$$

$$\rho = -0.10, \ \tau = -0.09$$
$$r_{i,j} = \frac{\left| \|w_i\| - \|w_j\| \right|}{\sqrt{\|w_i\| \|w_j\|}}$$

aMoMfMtMMM

# Calibrating for the different angle

- Re-embedding of a small payload and estimating the direction of the movement
- Training an ensemble of detectors, each on a different cover source
- weighting their vote based on the alignment measured by

• angle 
$$\cos \alpha_i = \frac{w_i \cdot \delta}{\|w_i\| \|\delta\|}$$

## Experimental results

|                           | matched cases |         |              | mismatched cases |         |              |  |
|---------------------------|---------------|---------|--------------|------------------|---------|--------------|--|
|                           | $\mu_1$       | $\mu_2$ | $\mu_\infty$ | $\mu_1$          | $\mu_2$ | $\mu_\infty$ |  |
| Baseline                  | 0.0204        | 0.0315  | 0.0663       | 0.0981           | 0.1369  | 0.3887       |  |
| Centered                  |               |         |              | 0.0691           | 0.0838  | 0.2332       |  |
| Ensemble voting           |               |         |              |                  |         |              |  |
| Equal weight              |               |         |              | 0.0439           | 0.0627  | 0.1366       |  |
| Weight by $\cos \alpha_i$ |               |         |              | 0.0433           | 0.0593  | 0.1160       |  |
| Ensemble voting,          | centered      | 1       |              |                  |         |              |  |
| Equal weight              |               |         |              | 0.0391           | 0.0479  | 0.0776       |  |
| Weight by $\cos \alpha_i$ |               |         |              | 0.0372           | 0.0468  | 0.0806       |  |

A. D. Ker and T. Pevný

aMoMfMtMMM

4th February 2014 11

イロト イポト イヨト イヨト

Ξ

# Mismatch due to false certainty (1)

#### matched case

#### mismatched case



Decision areas of Binary Support Vector Machines

A. D. Ker and T. Pevný

aMoMfMtMMM

4th February 2014 12 / 17

Sar

## Abstaining classifiers

- "I don't know" is
  - honest
  - potentially advantageous in pooled steganalysis.
- Implemented as a pair of 1-class Support Vector Machines (1-SVMs).
- 1-SVMs and 2-SVMs have hyper-parameters found by cross-validation.

# Mismatch due to false certainty (1)



Decision areas of abstaining SVMs

A. D. Ker and T. Pevný

aMoMfMtMMM

14 h 4th February 2014 14 / 17

Sac

# Measuring error of abstaining classifiers

The value of abstaining classifiers is in the pooled steganalysis.Introduce deflection coefficient

$$d = \frac{(1 - P_{\text{FP}} - P_{\text{FN}})\sqrt{1 - P_{\text{DK}}}}{\sqrt{P_{\text{FP}}(1 - P_{\text{FP}})} + \sqrt{P_{\text{FN}}(1 - P_{\text{FN}})}},$$

where  $P_{\rm DK}$  is the probability of "don't know".

### Experimental results

|        | mismatched cases |                    |              |              |  |  |  |  |
|--------|------------------|--------------------|--------------|--------------|--|--|--|--|
|        | роо              | pooled error rates |              |              |  |  |  |  |
|        | $P_{\rm FP}$     | $P_{\rm FN}$       | $P_{\rm DK}$ | — <i>u</i> ∞ |  |  |  |  |
| 2-SVMs | 0.165            | 0.059              | 0.000        | 0.465        |  |  |  |  |
| 1-SVMs | 0.028            | 0.010              | 0.539        | 1.017        |  |  |  |  |

A. D. Ker and T. Pevný

aMoMfMtMMM

4th February 2014 16 / 17

《曰》 《聞》 《문》 《문》

~ ~ ~

E

## Conclusion

- $\, \bullet \,$  Uncorrected mismatched  $\rightarrow \,$  error rates 5× matched case.
- $\bullet\,$  Centering and matching direction  $\rightarrow\,$  error rates 1.5-2 $\times\,$  matched case.
- Possibility of answering "don't know".
- This is a mishmash of methods: no definitive answer.
- Research tends to be driven by the metrics:

are we chasing the right ones?