
Rethinking Optimal Embedding

4th ACM Workshop on Information Hiding & Multimedia Security

Some embedding changes are more detectable than others.

• Assign each possible change a cost c_i .

Some embedding changes are more detectable than others.


- Assign each possible change a cost c_i .
- Use coding (STCs) to minimize average cost $\sum_i \pi_i c_i$.

e.g. HUGO [2010], WOW [2012], UNIWARD [2013-4], HILL [2014], ...

Some embedding changes are more detectable than others.

- Assign each possible change a cost c_i .
- Use coding (STCs) to minimize average cost $\sum_i \pi_i c_i$.

What if the enemy is aware of your adaptivity?

e.g. 'tSRM' attack on WOW [Tang et al., 2014] 'CSR' on 1st version of UNIWARD [Denemark et al., 2014] 'maxSRM' on 2nd version of UNIWARD [Denemark et al., 2014]

Some embedding changes are more detectable than others.

- Assign each possible change a cost c_i .
- Use coding (STCs) to minimize average cost $\sum_i \pi_i c_i$.

What if the enemy is aware of your adaptivity?

• Use coding (STCs) to minimize $\sum_i \pi_i^2 c_i$.

Two-player, zero-sum game

Embedder

chooses probability of changing each location π_i ('p-map').

Detector

chooses weights for each observation ω_i .

Embedder's payoff = - (Detector's payoff) = FP-50: false positive rate @ 50% true positives

- Used in game theory of embedding since at least 2007.
- Slightly simplifies the analysis.

Two-player, zero-sum game

Embedder

chooses probability of changing each location π_i ('p-map').

Detector

chooses weights for each observation ω_i .

Embedder's payoff = - (Detector's payoff) = FP-50: false positive rate @ 50% true positives

If based on some detection value ℓ , inverse in the *deflection*:

$$\delta = \frac{\mathbf{E}_{Stego}[\ell] - \mathbf{E}_{Cover}[\ell]}{\sqrt{\mathrm{Var}_{Cover}[\ell]}}$$

(assuming ℓ asymptotically Gaussian).

Two-player, zero-sum game

Embedder

chooses probability of changing each location π_i ('p-map').

Detector

chooses weights for each observation ω_i .

Embedder's payoff = - (Detector's payoff) = FP-50: false positive rate @ 50% true positives

If based on some detection value ℓ , inverse in the *deflection*:

$$\delta = \frac{\mathbf{E}_{Stego}[\ell] - \mathbf{E}_{Cover}[\ell]}{\sqrt{\mathrm{Var}_{Cover}[\ell]}}$$

- Also used in game theory of embedding since at least 2007, and recently.
- Monotone relationship with other popular metrics.

Independent pixels taking binary values (X_1, \ldots, X_n) . Embedder flips pixels.

In cover: $P[X_i = 1] = p_i$

In stego: $P[X_i = 1] = p_i + \pi_i(1 - 2p_i)$ Embedder's strategy (change probabilities)

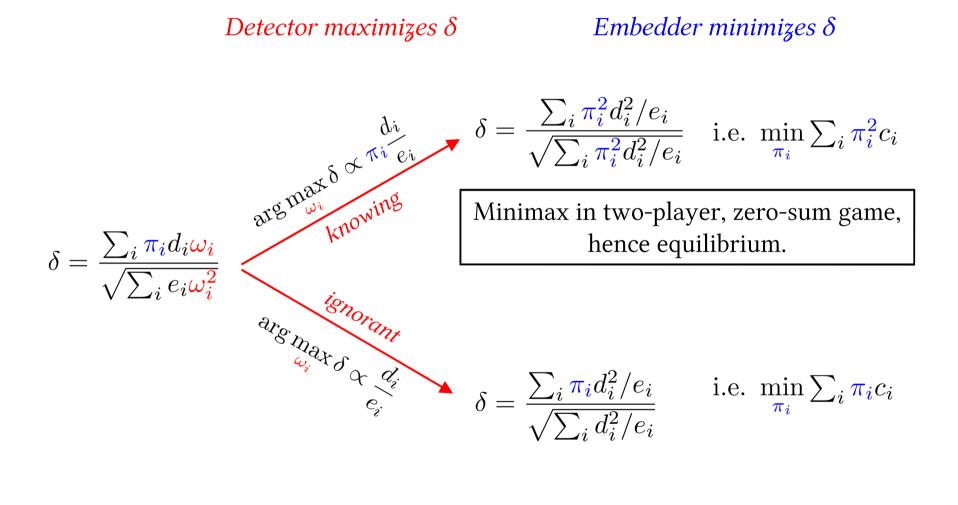
We may assume the detector is based on log likelihood ratio:

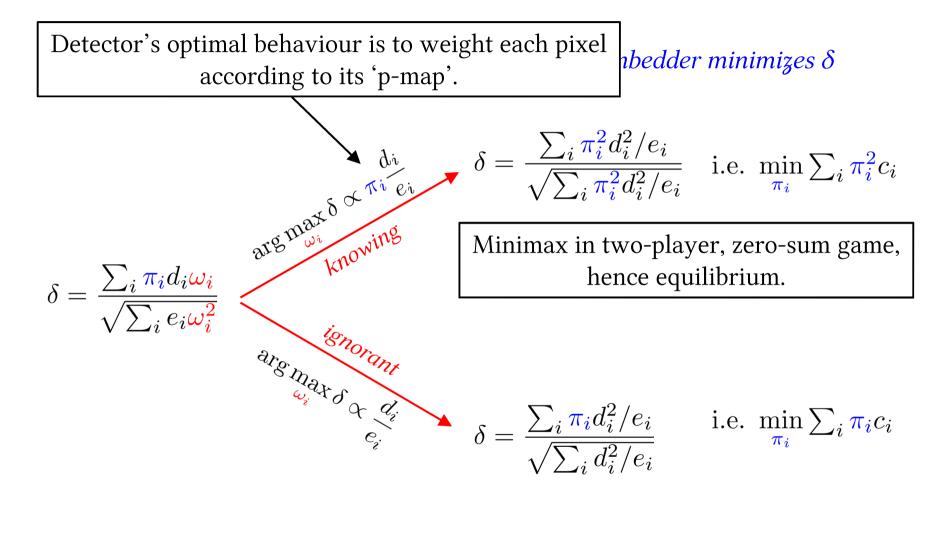
$$\ell = \sum_{i} X_{i} \omega_{i}$$
Detector's strategy (weights)

In cover: $P[X_i = 1] = p_i$

In stego: $P[X_i = 1] = p_i + \pi_i (1 - 2p_i)$

We may assume the detector is based on log likelihood ratio:


$$\ell = \sum_{i} X_{i} \omega_{i}$$


In cover:

$$P[X_i = 1] = p_i \qquad E[\ell] = \sum_i p_i \omega_i \qquad Var[\ell] = \sum_i p_i (1 - p_i) \omega_i^2$$
In stego:

$$P[X_i = 1] = p_i + \pi_i (1 - 2p_i) \qquad E[\ell] = \sum_i p_i \omega_i + \sum_i \pi_i (1 - 2p_i) \omega_i$$

$$\frac{\text{Embedder wants to minimize}}{\text{Detector wants to maximize}} \text{Deflection:} \quad \delta = \frac{\sum_{i} \pi_{i} d_{i} \omega_{i}}{\sqrt{\sum_{i} e_{i} \omega_{i}^{2}}}$$

Arbitrary covers

Independent pixels taking *k*-ary values, with a different distribution at each pixel.

• Fixed embedding operation, at pixel *i* with probability π_i ,

vs. ignorant: $\min_{\pi_i} \sum_i \pi_i c_i$ vs. knowing: $\min_{\pi_i} \sum_i \pi_i^2 c_i$

Arbitrarily changing embedding operations,

vs. ignorant: $\min_{\pi_i} \sum_i \pi_i^T e_i$ vs. knowing: $\min_{\pi_i} \sum_i \pi_i^T E_i^{-1} \pi_i$

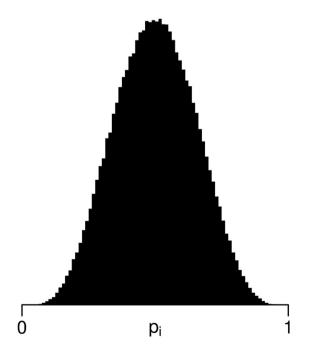
Connections with other work

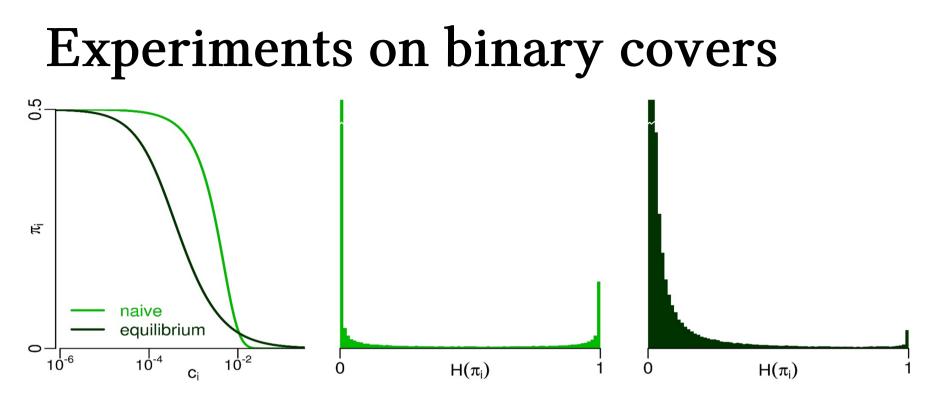
- Optimal detectors weight the evidence.
- e.g. maxSRM [Denemark et al., 2014] and tSRM [Tang et al., 2014].
- Squared probabilities.

Intuitive. Appear as far back as [Ker, 2007].

- Generalizes recent work of Sedighi, Cogranne & Fridrich:
 - independent discretized Gaussian pixels, varying variance,
 - symmetric ternary coding: $\min_{\pi_i} \sum_i \frac{\pi_i^2}{\sigma_i^4}$
 - pentary coding: $\min_{\pi_i} \sum_i \pi_i^T E_i^{-1} \pi_i$

Payload constraint subject to $\sum_{i} H(\pi_{i}) \ge$ payload length,


• Naive:
$$\min_{\pi_i} \sum_i \pi_i c_i \longrightarrow H'(\pi_i) = \lambda c_i$$


- Equilibrium: $\min_{\pi_i} \sum_i \pi_i^2 c_i \longrightarrow H'(\pi_i)/\pi_i = \lambda c_i$
- Equilibrium: $\min_{\pi_i} \sum_i \pi_i^T E_i^{-1} \pi_i \longrightarrow$ convex set of equations (arbitrary embedding)

Experiments on binary covers

We generated artificial binary covers:

- $n = 2^{18}$ pixels (à la BOSSBase),
- p_i drawn from Beta(5,5),

- simulated payload of 0.1 bits per pixel with optimal coding:
 - constant π_i ,
 - naive adaptivity: $\min_{\pi_i} \sum_i \pi_i c_i$,
 - equilibrium adaptivity: $\min_{\pi_i} \sum_i \pi_i^2 c_i$.
- Used likelihood ratio tests on 10 000 covers & stego objects.

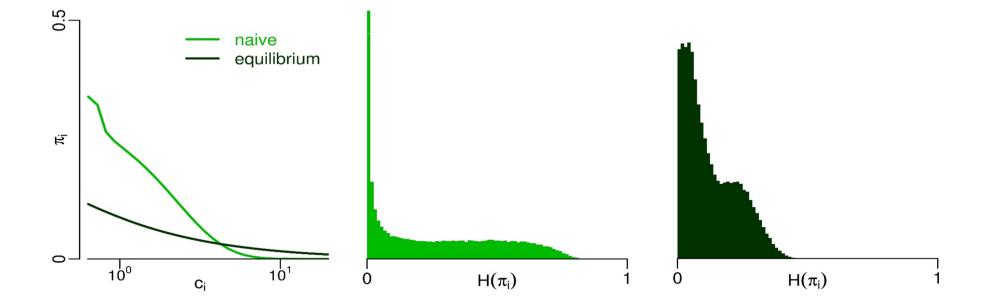
Experiments on binary covers

	Embedding probabilities		
LRT detector for	Constant π_i	Naive π_i	Equilibrium π_i
Constant π_i	0.000	0.492	0.335
Naive π_i	0.443	0.023	0.225
Equilibrium π_i	0.038	0.081	0.145 (equilibrium)
	FP-50 (false positive rate at 50% true positive)		

- simulated payload of 0.1 bits per pixel with optimal coding:
 - constant π_i ,
 - naive adaptivity: $\min_{\pi_i} \sum_i \pi_i c_i$,
 - equilibrium adaptivity: $\min_{\pi_i} \sum_i \pi_i^2 c_i$.
- Used likelihood ratio tests on 10 000 covers & stego objects.

Computes cost in a wavelet domain: [Holub et al., 2014]

$$c_{i} = \sum_{j} \frac{|W_{j}(\text{Cover}) - W_{j}(\text{Cover} + \text{change } i)|}{\sigma + |W_{j}(\text{Cover})|}$$
wavelet coefficient


Computes cost in a wavelet domain: [Holub et al., 2014]

$$c_{i} = \sum_{j} \frac{|W_{j}(\text{Cover}) - W_{j}(\text{Cover} + \text{change } i)|}{\sigma + |W_{j}(\text{Cover})|}$$

In the original definition, $\sigma = 10^{-15}$... exploited by 'CSR features' [Denemark et al., 2014]

Computes cost in a wavelet domain: [Holub et al., 2014]

$$c_{i} = \sum_{j} \frac{|W_{j}(\text{Cover}) - W_{j}(\text{Cover} + \text{change } i)|}{\sigma + |W_{j}(\text{Cover})|}$$

	Embedding probabilities		
Detector trained on	Naive π_i	Equilibrium π_i	
Naive π_i	0.007	0.500	
Equilibrium π_i	0.502	0.130 (NOT equilibrium)	
	$P_{\rm err} = 0.5(P_{\rm fp} + P_{\rm fn})$		

- BOSSBase images (8000 training, 2000 testing, 10 iterations),
- simulated payload of 0.3 bits per pixel,
- CSR features, ensemble of FLDs detector.

Conclusions

• $\min_{\pi_i} \sum_i \pi_i c_i \rightarrow \min_{\pi_i} \sum_i \pi_i^2 c_i$ is not a panacea!

- Need to start with statistically correct costs.

- Very general, but completely theoretical, results.
 - Assumes both players know cover source exactly.
 - Unlike MiPOD, does not give a new embedding method.
- (Recent work) the square root law still holds... *with some interesting wrinkles.*
- (Further work) for non-independent pixels/changes/costs?