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Adaptive steganography

Some embedding changes are more detectable than others.

. ) +1 cost ¢;
= Assign each possible change a cost ¢;. probability ;
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Adaptive steganography

Some embedding changes are more detectable than others.

= Assign each possible change a cost c¢;.

* Use coding (STCs) to =
minimize average cost ) . m;c;.

e.g. HUGO [2010], WOW [2012], UNIWARD [2013-4], HILL [2014], ...



Adaptive steganography

Some embedding changes are more detectable than others.

= Assign each possible change a cost c¢;.

* Use coding (STCs) to =
minimize average cost ) . m;c;.

What if the enemy is aware of your adaptivity?

e.g. tSRM’ attack on WOW [Tang et al., 2014]
"CSR’ on 1%t version of UNIWARD [Denemark et al., 2014]
‘maxSRM’ on 2™ version of UNIWARD [Denemark et al., 2014]



Adaptive steganography
Some embedding changes are more detectable than others.

= Assign each possible change a cost c¢;.

* Use coding (STCs) to =
minimize average cost ) . m;c;.

What if the enemy is aware of your adaptivity?

= Use coding (STCs) to minimize ), w¥c;.



Two-player, zero-sum game

Embedder
chooses probability of changing each location m; (‘p-map’).

Detector
chooses weights for each observation w;.

Embedder’s payoff = — (Detector’s payoft) = FP-50:

false positive rate @ 50% true positives

= Used in game theory of embedding since at least 2007.
= Slightly simplifies the analysis.
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chooses probability of changing each location m; (‘p-map’).
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chooses weights for each observation w;.
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If based on some detection value /¢, inverse in the deflection:

. EStego [6] — Ecover [6]

) =
\/Var Cover [5]
(assuming ¢ asymptotically Gaussian).




Two-player, zero-sum game

Embedder
chooses probability of changing each location m; (‘p-map’).

Detector
chooses weights for each observation w;.

Embedder’s payoftf = — (Detector’s payotf) = FP-50:

false positive rate @ 50% true positives

If based on some detection value /¢, inverse in the deflection:
5 — EStego [6] — EC’over [6]
\/Var Cover [5] .

= Also used in game theory of embedding since at least 2007, and recently.

= Monotone relationship with other popular metrics.




Binary covers

Independent pixels taking binary values (X7,..., X,).

Embedder flips pixels.
In cover:

P[X; = 1] = p;

In stego:

I— Embedder’s strategy (change probabilities)



Binary covers

We may assume the detector is based on log likelihood ratio:

/= Zszz

I— Detector’s strategy (weights)

In cover:

In stego:



Binary covers

We may assume the detector is based on log likelihood ratio:

/= Zszz

In cover: f_L
PIX;=1] =p; Elf] =) . piw; Var[l] = > . pi(1 — p;)w?
In stego: di

PIX;=1]=pi+m(1=2p;)  El] =) piwi + 2, mi(l —2p;)w;

Embedder wants to minimize ) radiw;
Detector wants to maximig e} Deﬂ ection: 9 = ZZ — ;
5 \/ Zz CiW;



Binary covers

Detector maximizes & Embedder minimizes 6
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Minimax in two-player, zero-sum game,
hence equilibrium.

5 — > mid: /e i.e. mmzz T5C;
\/Zz d3 /e Z




Binary covers

Detector’s optimal behaviour is to weight each pixel

. L : 1bedder minimiges &
according to its ‘p-map’.

2 72
.m4d? /e
2imidi/c ie. min). 7l

5:
Vi mid; e i

Minimax in two-player, zero-sum game,
hence equilibrium.

5 — > mids /e i.e. min ) _; m;c;
Vi di /e Z




Arbitrary covers

Independent pixels taking k-ary values, with a different
distribution at each pixel.

* Fixed embedding operation, at pixel 2 with probability =;,

vs. ignorant: min ) m;c; vs. knowing: mmz Téc;
Uy

* Arbitrarily changing embedding operations,

vs. ignorant: min}_, mle; vs. knowing: min 37, 7 ;" b



Connections with other work

= Optimal detectors weight the evidence.

e.g. maxSRM [Denemark et al., 2014] and tSRM [Tang et al., 2014].

* Squared probabilities.
Intuitive. Appear as far back as [Ker, 2007].

* Generalizes recent work of Sedighi, Cogranne & Fridrich:
- independent discretized Gaussian pixels, varying variance,
- symmetric ternary coding: min}_, 7} /o

- pentary coding: min}, 7 E; b



Payload constraint

subject to Z H (m;) > payload length,

i
* Equilibrium: min} . 77¢; > H'(m;)/m = A
i

= Equilibrium: min Y, #7 E; 'm; —» convex set of equations
X

(arbitrary embedding)



Experiments on binary covers

We generated artificial binary covers:

= n = 2'% pixels (2 la BOSSBase),

" p; drawn from Beta(5,5),




Experiments on binary covers
I

k- -
o

—— naive
equilibrium
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0 H(m) 1 0 H(m)

* simulated payload of 0.1 bits per pixel with optimal coding:

— constant ;,

— naive adaptivity: min ) . m;c;,

U¥;

— equilibrium adaptivity: min}_, 7c;.

» Used likelihood ratio tests on 10 000 covers & stego objects.



Experiments on binary covers

Embedding probabilities

LRT detector for... Constant 7; Naive 71; Equilibrium 7;
Constant 7, 0.000 0.492 0.335
Naive 7r; 0.443 0.023 0.225
Equilibrium 7r; 0.038 0.081 [ 0.145 ]
(equilibrium)

FP-50 (false positive rate at 50% true positive)

* simulated payload of 0.1 bits per pixel with optimal coding:

— constant m;,
— naive adaptivity: min ) . m;c;,
T
— equilibrium adaptivity: min >, 77¢;.

Y

» Used likelihood ratio tests on 10 000 covers & stego objects.




Experiments on S-UNIWARD

Computes cost in a wavelet domain: [Holub et al., 2014]

Z |W;(Cover) — W;(Cover + change 1)|

; o + |W,;(Cover)|

wavelet coefficient



Experiments on S-UNIWARD

Computes cost in a wavelet domain: [Holub et al., 2014]

Z |W;(Cover) — W;(Cover + change 1)|

; o + |W,(Cover)|

stabilization value

In the original definition, o = 10710

.. exploited by "CSR features’ [Denemark et al., 2014]
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Experiments on S-UNIWARD

Computes cost in a wavelet domain: [Holub et al., 2014]

Z |W,;(Cover) — W;(Cover + change 1)|

; o + |W,(Cover)|

stabilization value

—— naive
— equilibrium

1@° & 10" 0 H(r) 1



Experiments on S-UNIWARD

Embedding probabilities

Detector trained on ... Naive 7; Equilibrium 7r;

Naive 7; 0.007 0.500

Equilibrium 7r; 0.502 0.130
(NOT equilibrium)

Perr = O.5(pr -+ an)

= BOSSBase images (8000 training, 2000 testing, 10 iterations),
* simulated payload of 0.3 bits per pixel,

= CSR features, ensemble of FLDs detector.



Conclusions

= min) ,mc¢; — min)y . 7w ¢; is not a panacea!

UE UL

- Need to start with statistically correct costs.

* Very general, but completely theoretical, results.
- Assumes both players know cover source exactly.
- Unlike MiPOD, does not give a new embedding method.

* (Recent work) the square root law still holds...
- with some interesting wrinkles.

* (Further work) for non-independent pixels/changes/costs?



