Steganalysis using Logistic Regression

Ivans Lubenko & Andrew Ker

lubenko@comlab.ox.ac.uk

adk@comlab.ox.ac.uk

Oxford University Computing Laboratory

SPIE/IS&T Electronic Imaging, San Francisco 25 January 2011

Steganalysis using Logistic Regression

Outline

- Classification in steganalysis
- Logistic regression
- Experimental methodology
- Experimental results

Classification in steganalysis

Steganalysis is a binary classification problem:

- Innocent cover objects vs
- Stego objects.

This is a gross approximation unless

- 1. the embedding method is known,
- 2. the payload size is known,
- 3. the cover source is known.

For quite practical reasons, steganalysis should probably be multi-class.

Classification in steganalysis

A steganalysis method is broadly:

Analytical – some property of covers is distorted in an understood way.
 Spatial-domain bit replacement [Dumitrescu, 2003; Ker, 2005-7]
 LSB replacement in JPEGs [Kodovský, 2010]

Generally only for flawed embedding.

Empirical – machine learning algorithms applied to vectors of features.
 Support vector machines and noise features [Farid, 2002]
 Support vector machines and JPEG histograms [Shi, 2006; Pevný, 2007]
 Support vector machines and pixel difference co-occurrence [Pevný, 2010]

Almost all schemes in the literature use SVMs. Is there an alternative?

Logistic regression

Not a classifier! Attempts to model class probabilities. Predict **log-odds** as linear function of input data. Binary case:

$$P(C_1|x) = \frac{1}{1 + \exp(-(w^T x + b))}$$

with coefficients w, b learned by maximum likelihood.

$$\log L = \sum_{j=1}^{n} y_j \log P(C_1|x_j) + (1 - y_j) \log(1 - P(C_1|x_j)) - \lambda ||w||.$$

$$\uparrow$$
regularization

Advantage 1: predicts class probabilities (though often used as a simple classifier).

Can represent problem in dual space, and use the kernel trick.

Multinomial logistic regression

Predict log-odds of all classes simultaneously:

$$P(C_i|x) = \frac{\exp(w_i^T x)}{\sum_j \exp(w_j^T x)}$$

with matrix of w_j 's learned by maximum likelihood.

Advantage 2:

- Time complexity for k classes is O(k),
- Time complexity for SVMs simulating multi-class by all pairs is $O(k^2)$.

Experimental methodology

Want to compare SVM and LR steganalysis detectors in terms of

- accuracy, and
- speed.

Extent of comparison

- Images in three sets: 'Camera', 'BOSS', 'BOWS'.
- Spatial-domain, total payload 0.5 bits per pixel:
 - LSB matching,
 - LSB replacement,
 - 2LSB replacement (2 bits per used pixel),
 - Mod-5 matching ($\log_2 5$ bits per used pixel), plus covers, makes up to 5 classes.
- SPAM features (686 dimensional).

Experimental methodology

Implementation

SVM	libSVM (optimized C++)
LR	'minfunc' (MATLAB)

Smooth SVM 'minfunc' (MATLAB)

... with linear or Gaussian kernel.

Training regime

- Split image set into training & testing.
- Hyperparameter optimization by cross-validation on training set.
- Final training on entire training set.
- Test on testing set.
- Compare performance differences by Student *t*-test.

Results: kernelized classifiers

	Classification Problem	Classification accuracy		
Image set		SVM	Logistic Regression	Difference
	Binary cover v LSBM	96.20%	95.85%	Insignificant $(p > 0.05)$
Comoro	Binary cover v Mod5	97.55%	97.45%	Insignificant ($p > 0.05$)
Camera	Binary cover v LSBR	97.15%	97.45%	Insignificant ($p > 0.05$)
	Binary cover v 2LSB	98.25%	98.45%	Insignificant ($p > 0.05$)
Camera	5 class	83.01%	80.05%	Insignificant ($p > 0.05$)
BOSS	5 class	85.05%	82.30%	Somewhat significant $(p \approx 0.01)$
BOWS	5 class	95.95%	96.32%	Insignificant $(p > 0.05)$

Results: kernelized classifiers

	Classification	Classification accuracy		
Image set	Problem	Smooth SVM	Logistic Regression	Difference
	Binary cover v LSBM	96.15%	95.85%	Insignificant ($p > 0.05$)
Comons	Binary cover v Mod5	97.70%	97.45%	Insignificant ($p > 0.05$)
Camera	Binary cover v LSBR	96.90%	97.45%	Insignificant ($p > 0.05$)
	Binary cover v 2LSB	98.35%	98.45%	Insignificant ($p > 0.05$)
Camera	5 class	80.89%	80.05%	Insignificant ($p > 0.05$)
BOSS	5 class	83.81%	82.30%	Insignificant ($p > 0.05$)
BOWS	5 class	96.59%	96.32%	Insignificant ($p > 0.05$)

Results: kernelized classifiers

Image set	Classification Problem	Classification accuracy		Final training time	
		Smooth SVM	Logistic Regression	Smooth SVM	Logistic Regression
Camera	Binary cover v LSBM	96.15%	95.85%	106s	145s
	Binary cover v Mod5	97.70%	97.45%	95s	160s
	Binary cover v LSBR	96.90%	97.45%	101s	113s
	Binary cover v 2LSB	98.35%	98.45%	85s	127s
Camera	5 class	80.89%	80.05%	2504s	1394s
BOSS	5 class	83.81%	82.30%	43003s	23446s
BOWS	5 class	96.59%	96.32%	84198s	42311s

Conclusions

- Logistic regression is a possible alternative to SVMs in steganalysis, with two potential advantages:
 - well adapted to multinomial case,
 - produces class probabilities.
- The detection accuracy seems to be similar to SVMs.
- For binary classification, the speed is similar to an SVM implemented on the same minimizer.
- For multinomial classification, the speed is superior.
 - But this excludes the SMO algorithm for SVMs.
 - Needs further work to examine SMO-type algorithm for LR.