
Ivans Lubenko and Andrew Ker

Going from Small to Large
Data in Steganalysis

25 January 2012 @ IS&T/SPIE Electronic Imaging

1

Going from Small to Large Data in Steganalysis

65
%

74
%

83
%

91
%

10
0%

0 3,000 6,000 9,000 12,000

nsF5 at 0.1 bpnc LSB-matching at 0.5 bpp

Number of training samples

2

Going from Small to Large Data in Steganalysis

65
%

74
%

83
%

91
%

10
0%

0 3,000 6,000 9,000 12,000

nsF5 at 0.1 bpnc LSB-matching at 0.5 bpp

kSVM

kSVM

kSVM

kSVM
kSVM

kSVM
kSVM

kSVM
kSVM

kSVM

kSVM

Number of training samples

3

Going from Small to Large Data in Steganalysis

65
%

74
%

83
%

91
%

10
0%

0 3,000 6,000 9,000 12,000

nsF5 at 0.1 bpnc LSB-matching at 0.5 bpp

non-homogeneous

Number of training samples

4

Going from Small to Large Data in Steganalysis

OBSERVATION

• Complex classifiers demonstrate low
accuracy on non-homogeneous data

EXPLANATION

• They overfit the source (not training set)

HYPOTHESIS

• Simple classifier trained on large data will work
better

5

Going from Small to Large Data in Steganalysis

• DATA SET:

- 800,000 JPEGs x 2 (cover vs. nsF5)
- 4000 different uploaders
- collected from public sources
- is non-homogeneous and difficult:

86.9% using kSVM with CC-PEV on subset of
5,000 examples with cover/nsF5 at 0.1 bpnc

6

Going from Small to Large Data in Steganalysis

• FEATURES:

- CC-C300 from [1]
- large dimensionality:

48,600 features
- likelihood of linear separability
- slow to train (no kSVM in [1])
- large to store:

48,600 x 2 x 800,000 x 8 bytes = 620GB

[1] Jan Kodovsky, “Steganalysis in high dimensions: fusing classifiers built on random subspaces”, 2011

7

Going from Small to Large Data in Steganalysis

ONLINE ALGORITHMS

a hot topic in Machine Learning for last few years

- process one training example at a time
- one pass through data

+ unlimited training
+ no parameter tuning
+ low memory requirement

8

Going from Small to Large Data in Steganalysis

AVERAGE PERCEPTRON

Decision rule:

Simple update rule:

- very fast
- regularised via averaging:

(with closer examination around the best values), and 6 values of � from
�

2j | j 2 {�13,�15, . . . ,�23}

.

Whilst very simple to use because of the availability of ready tools such as libsvm,23 kSVM is impractical
for real-world problems such as the near-online problem described in our experiments. Using the large modern
feature vector, CC-C300, it was only possible to process a maximum training set size of 20000 and only using a
very limited grid search. Anything larger simply takes too long for any useful purposes. It has other disadvantages
too: unlike online methods it is iterative and hence requires many passes through the data and also requires
parameter tuning via the expensive grid search.

We used the libsvm23 with its extensive toolkit for our kSVM tests.

4.4.2 Ensemble FLD

For the ensemble algorithm we will follow the example in Ref. 11. In this configuration, L Fisher Linear
Discriminant base learners were trained on L di↵erent subsets of k dimensions drawn at random from the
original CC-C300 feature set. Here, as in Ref. 11, L = 99 and k = 2000. The base learners’ outputs were then
combined for classification using the majority vote:

y(x) =
n

t | t 2
�

�1; +1

^ argmax
t

L
X

l=1

�

wT
l (x� cl) = t

�

o

w is the Fisher’s discriminant, c is the parameter that guides the position of the hyperplane and can be found
analytically and t is the label of training example x.

This method has shown11 very promising results using the new CC-C300 feature set and its derivative
feature sets. A major advantage was shown to be the speed of training and the reduced complexity of parameter
optimisation. No direct comparison was drawn with kSVM using the same features.

4.4.3 Average perceptron

We will use an online version of the Average Perceptron,24 which is a self-regularising version of the Perceptron
algorithm. The Averaged Perceptron is capable of training on one example at a time, which allows for processing
unlimited data with no memory overhead.

This is made possible through the simple update rule it shares with the Perceptron, which only requires the
weight vector and the feature vector of the current image. The Perceptron aims to minimise the number of
incorrectly classified examples, i.e. the training error:

min(Ep) = argmin
w

�
X

n2M

wT xntn

where w is the weight vector, t 2 {�1; +1} is the label of training example x and where M is the set of all mis-
classified training examples. The minimisation is realised via stochastic updates, which allow for approximating
w one example i at a time:

wi = wi�1 + xiti

The update happens when a new input example is assigned the wrong label. In the Average Perceptron the
update includes the regularisation step, where the average weight vector is updated:

wavg = wavg + wi

The vector wavg is used in the final decision function to predict the label of test example x:

y(x) = sign(wT
avgx)

(with closer examination around the best values), and 6 values of � from
�

2j | j 2 {�13,�15, . . . ,�23}

.

Whilst very simple to use because of the availability of ready tools such as libsvm,23 kSVM is impractical
for real-world problems such as the near-online problem described in our experiments. Using the large modern
feature vector, CC-C300, it was only possible to process a maximum training set size of 20000 and only using a
very limited grid search. Anything larger simply takes too long for any useful purposes. It has other disadvantages
too: unlike online methods it is iterative and hence requires many passes through the data and also requires
parameter tuning via the expensive grid search.

We used the libsvm23 with its extensive toolkit for our kSVM tests.

4.4.2 Ensemble FLD

For the ensemble algorithm we will follow the example in Ref. 11. In this configuration, L Fisher Linear
Discriminant base learners were trained on L di↵erent subsets of k dimensions drawn at random from the
original CC-C300 feature set. Here, as in Ref. 11, L = 99 and k = 2000. The base learners’ outputs were then
combined for classification using the majority vote:

y(x) =
n

t | t 2
�

�1; +1

^ argmax
t

L
X

l=1

�

wT
l (x� cl) = t

�

o

w is the Fisher’s discriminant, c is the parameter that guides the position of the hyperplane and can be found
analytically and t is the label of training example x.

This method has shown11 very promising results using the new CC-C300 feature set and its derivative
feature sets. A major advantage was shown to be the speed of training and the reduced complexity of parameter
optimisation. No direct comparison was drawn with kSVM using the same features.

4.4.3 Average perceptron

We will use an online version of the Average Perceptron,24 which is a self-regularising version of the Perceptron
algorithm. The Averaged Perceptron is capable of training on one example at a time, which allows for processing
unlimited data with no memory overhead.

This is made possible through the simple update rule it shares with the Perceptron, which only requires the
weight vector and the feature vector of the current image. The Perceptron aims to minimise the number of
incorrectly classified examples, i.e. the training error:

min(Ep) = argmin
w

�
X

n2M

wT xntn

where w is the weight vector, t 2 {�1; +1} is the label of training example x and where M is the set of all mis-
classified training examples. The minimisation is realised via stochastic updates, which allow for approximating
w one example i at a time:

wi = wi�1 + xiti

The update happens when a new input example is assigned the wrong label. In the Average Perceptron the
update includes the regularisation step, where the average weight vector is updated:

wavg = wavg + wi

The vector wavg is used in the final decision function to predict the label of test example x:

y(x) = sign(wT
avgx)

(with closer examination around the best values), and 6 values of γ from
{
2j | j ∈ {−13,−15, . . . ,−23}

}
.

Whilst very simple to use because of the availability of ready tools such as libsvm,23 kSVM is impractical
for real-world problems such as the near-online problem described in our experiments. Using the large modern
feature vector, CC-C300, it was only possible to process a maximum training set size of 20000 and only using a
very limited grid search. Anything larger simply takes too long for any useful purposes. It has other disadvantages
too: unlike online methods it is iterative and hence requires many passes through the data and also requires
parameter tuning via the expensive grid search.

We used the libsvm23 with its extensive toolkit for our kSVM tests.

4.4.2 Ensemble FLD

For the ensemble algorithm we will follow the example in Ref. 11. In this configuration, L Fisher Linear
Discriminant base learners were trained on L different subsets of k dimensions drawn at random from the
original CC-C300 feature set. Here, as in Ref. 11, L = 99 and k = 2000. The base learners’ outputs were then
combined for classification using the majority vote:

y(x) =
{

t | t ∈
{
−1;+1

}
∧ argmax

t

L∑

l=1

(
wT

l (x − cl) = t
)}

w is the Fisher’s discriminant, c is the parameter that guides the position of the hyperplane and can be found
analytically and t is the label of training example x.

This method has shown11 very promising results using the new CC-C300 feature set and its derivative
feature sets. A major advantage was shown to be the speed of training and the reduced complexity of parameter
optimisation. No direct comparison was drawn with kSVM using the same features.

4.4.3 Average perceptron

We will use an online version of the Average Perceptron,24 which is a self-regularising version of the Perceptron
algorithm. The Averaged Perceptron is capable of training on one example at a time, which allows for processing
unlimited data with no memory overhead.

This is made possible through the simple update rule it shares with the Perceptron, which only requires the
weight vector and the feature vector of the current image. The Perceptron aims to minimise the number of
incorrectly classified examples, i.e. the training error:

min(Ep) = argmin
w

−
∑

n∈M

wT xntn

where w is the weight vector, t ∈ {−1;+1} is the label of training example x and where M is the set of all mis-
classified training examples. The minimisation is realised via stochastic updates, which allow for approximating
w one example i at a time:

wi = wi−1 + xiti

The update happens when a new input example is assigned the wrong label. In the Average Perceptron the
update includes the regularisation step, where the average weight vector is updated:

wavg = wavg + wi

The vector wavg is used in the final decision function to predict the label of test example x:

y(x) = sign(wT
avgx)predicted

label

dot
product

true label of x

training
example

average
weight vector

9

Going from Small to Large Data in Steganalysis

OUR EXPERIMENTS

cover vs. (no-shrinkage) nsF5

0.1 and 0.2 bpnc

1.6 million training examples

separate testing set of 20,000 examples

10

Going from Small to Large Data in Steganalysis

11

Going from Small to Large Data in Steganalysis

OUR EXPERIMENTS

1. KSVM - over 10 days on 20,000

2. Ensemble FLD - over 7 days on 400,000

3. Online Average Perceptron - 1 hour

4. Iterated Average Perceptron - 2.5 hours

5. Ensemble Online Average Perceptron - 7h

12

Going from Small to Large Data in Steganalysis

BIG DATA is:

1. large training set + large feature set
2. more important than complex classifier

3. very fast

4. required for non-homogenous data classification

using online algorithms

linear algorithms as accurate as complex algorithms on small
data

13

Going from Small to Large Data in Steganalysis

• FUTURE DIRECTIONS:

• More stable simple online algorithms

• Non-linear online algorithms

• How large data works with small features

• Active learning in steganalysis

14

