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OBSERVATION

® Complex classifiers demonstrate low
accuracy on non-homogeneous data

EXPLANATION

® They overfit the source (not training set)

HYPOTHESIS

® Simple classifier trained on large data will work
better
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e DATA SET:

- 800,000 JPEGs x 2 (cover vs. nsF5)

- 4000 different uploaders
- collected from public sources
- is non-homogeneous and difficult:

86.9% using kSVM with CC-PEV on subset of
5,000 examples with cover/nsF5 at 0.1 bpnc
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o FEATURES:

- CC-C300 from [I1]
- large dimensionality:
48,600 features
- likelihood of linear separability

- slow to train (no k§VM in [1])
- large to store:

48,600 x 2 x 800,000 x 8 bytes = 620GB

[1] Jan Kodovsky, “Steganalysis in high dimensions: fusing classifiers built on random subspaces”, 201 |
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ONLINE ALGORITHMS

a hot topic in Machine Learning for last few years

- process one training example at a time
- one pass through data

+ unlimited training
+ NO parameter tuning
+ low memory requirement
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AVERAGE PERCEPTRON

Decision rule: — broduct
| | .
it —— y(x) = sign(wgy,,r)

Simple update rule: - truelabel of

Wi = Wi—1 + Tl
~ traininig
- very fast example

- regularised via averaging:

average _—» Wavg — Wauvg + W;

weight vector
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OUR EXPERIMENTS

cover vs. (no-shrinkage) nsF>5
0.1 and 0.2 bpnc
|.6 million training examples

separate testing set of 20,000 examples
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+ KSVM (CC-PEV features)
X  KSVM (CC-300 features)
Average Perceptron, online
© lterated Average Perceptron, 40k batches
> Ensemble FLD
—— Ensemble Average Perceptron, online

‘ I I I Il]llllllll]lll 1 ] | | IIIIIIIIIIIIII | | I | | l Illlllllllllllllllllllll

1K 2k 5k 10K 20k 50k 100k 200k 400k 800K 1600k

Number of training samples

11



Going from Small to Large Data in Steganalysis

OUR EXPERIMENTS

|. K§VM - over |0 days on 20,000

2. Ensemble FLD - over 7 days on 400,000
3. Online Average Perceptron - | hour

4. Iterated Average Perceptron - 2.5 hours

5. Ensemble Online Average Perceptron - /7h
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BIG DATA is:

|. large training set + large feature set
2. more important than complex classifier

linear algorithms as accurate as complex algorithms on small
data

3. very fast
using online algorithms

4. required for non-homogenous data classification
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e FUTURE DIRECTIONS:

® More stable simple online algorithms
® Non-linear online algorithms
® How large data works with small features

® Active learning in steganalysis
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