From Blind to Quantitative Steganalysis

Tomáš Pevný¹, Jessica Fridrich², Andrew D. Ker³

¹GIPSA-Lab, INPG, France
²Binghamton University, SUNY, USA
³University of Oxford, UK

19th January 2009

T. Pevný, J. Fridrich, A. Ker | From Blind to Quantitative Steganalysis

・ロト ・(日)・ (日)・ (日)・ (日)・

1 Motivation

2 Methodology

3 Experiments

- General results
- Detailed results for Jsteg and nsF5
- Comparison to previous art

1 Motivation

2 Methodology

3 Experiments

- General results
- Detailed results for Jsteg and nsF5
- Comparison to previous art

Steganalysis \times Quantitative Steganalysis

Steganalysis

- Steganalysis detects presence of secret message.
- *Steganalyzer* is a binary detector (classifier).

Quantitative steganalysis

- Quantitative steganalysis estimates number of embedding changes (length of message).
- *Quantitative steganalyzer* is an estimator.

T. Pevný, J. Fridrich, A. Ker | From Blind to Quantitative Steganalysis

Time for Change

Advantages of Quantitative Steganalysis

- provide the steganalyst with further information (estimate of message length).
- useful for forensic analysis (message is encrypted).
- important in pooled steganalysis.^a
- allow a finer control of false positive and false negative rate in targeted blind steganalysis.
- alleviate problems with dependence of the steganalyzer on message length in the training set.^b

^aA. D. Ker, Batch Steganography and Pooled Steganalysis, 2006. ^bCancelli et al., A Comparative Study of ±1 Steganalyzers, 2008.

1 Motivation

2 Methodology

3 Experiments

- General results
- Detailed results for Jsteg and nsF5
- Comparison to previous art

Methodology

Assumption

- Steganographic features used in blind steganalysis react predictably to the number of embedding changes.
- Identify relationship between feature vector and change rate

First two most significant components of merged features of nsF5 identified by Partial Least=Square. = 🔊 ५ ०

Quantitative Steganalysis by Regression

Problem

- We seek a function ψ : 𝔅 → [0,1] revealing relationship between location of *feature vector* and *change rate* (𝔅 is the feature space).
- Function ψ is learned from a set of examples $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\},\$
 - $\mathbf{x}_i \in \mathscr{X}$ features of stego image with change rate y_i .

- Construction of a quantitative steganalyzer is a regression problem, for which many tools are available.
- This work utilizes
 - linear ordinary least-square regression,
 - support vector regression.

Advantages over Prior Art

Prior art

Quantitative steganalyzers are built from heuristic principles and *always* rely on full knowledge of embedding algorithm.

Advantages of proposed method

Cookie cutter approach:

- Find feature set detecting the stego algorithm.
- **2** Create set of training examples (\mathbf{x}_i, y_i) .
- **3** Use regression to learn dependence between features and change rate.

The knowledge of embedding mechanism is not needed.

1 Motivation

2 Methodology

3 Experiments

- General results
- Detailed results for Jsteg and nsF5
- Comparison to previous art

4 Conclusion and Future directions

T. Pevný, J. Fridrich, A. Ker | From Blind to Quantitative Steganalysis

Experimental Settings

- Quantitative steganalyzers for 8 steganographic methods: JP Hide&Seek, Jsteg, MBS1, MMx, F5 with removed shrinkage (nsF5), OutGuess, Perturbed Quantization (PQ), and Steghide.
- Quantitative steganalyzers were constructed by
 - linear ordinary least-square regression (OLS)
 - support vector regression (SVR).
- Single-compressed JPEGs with quality factor 80, all created from 9163 raw images evenly divided into training/testing set.
- Random payload between zero and maximum for given image and algorithm was embedded into images.
- 274 "calibrated merged features" augmented by number of non-zero DCTs.

1 Motivation

2 Methodology

3 Experiments

General results

- Detailed results for Jsteg and nsF5
- Comparison to previous art

4 Conclusion and Future directions

T. Pevný, J. Fridrich, A. Ker | From Blind to Quantitative Steganalysis

Detection Accuracy of MB1 and MMx

Figure: Estimated versus true relative change rate of SVR quantitative steganalyzers of MB1 and MMx.

T. Pevný, J. Fridrich, A. Ker | From Blind to Quantitative Steganalysis

13/23

Experimental Results

	OLS			SVR	
Algorithm	MAE	Bias	MAE	Bias	
JP Hide&Seek	7.91 10 ⁻⁰³	$-1.70 \cdot 10^{-04}$	5.24 · 10 ⁻⁰³	2.41.10-04	
Jsteg	8.38 10 ⁻⁰³	$-5.29 \cdot 10^{-04}$	1.9·10 ⁻⁰³	$2.5 \cdot 10^{-04}$	
nsF5	8.39 10 ⁻⁰³	$-5.29 \cdot 10^{-04}$	4.82 · 10 ⁻⁰³	$-2.51 \cdot 10^{-04}$	
MB1	9.07 · 10 ⁻⁰³	3.86 · 10 ⁻⁰⁵	6.63 10 ⁻⁰³	$-1.63 \cdot 10^{-04}$	
MMX	3.25 10 ⁻⁰³	1.58 · 10 ⁻⁰⁴	2.70 · 10 ⁻⁰³	1.08.10-04	
Steghide	3.23 10 ⁻⁰³	2.60.10-04	2.04 · 10 ⁻⁰³	1.80.10-04	
PQ	5.69 10 ⁻⁰²	$-2.89 \cdot 10^{-03}$	4.83 · 10 ⁻⁰²	$-3.78 \cdot 10^{-02}$	
OutGuess	2.53 · 10 ⁻⁰³	$1.51 \cdot 10^{-04}$	2.48 · 10 ⁻⁰³	3.67 10-04	

Table: Median absolute error (MAE) and bias measured on testing images with random payload.

T. Pevný, J. Fridrich, A. Ker | From Blind to Quantitative Steganalysis

1 Motivation

2 Methodology

3 Experiments

- General results
- Detailed results for Jsteg and nsF5
- Comparison to previous art

Compound Error

Figure: Median absolute error (MAE) and bias of SVR based estimators of nsF5 and Jsteg on 21 different fixed embedding change rates.

1 Motivation

2 Methodology

3 Experiments

- General results
- Detailed results for Jsteg and nsF5
- Comparison to previous art

Comparison to Previous Art

Figure: Comparison of accuracy of SVR, Jpairs, and Weighted non-steganographic Borders attack (WB) at 21 different fixed embedding change rates on 4563 images from testing set.

1 Motivation

2 Methodology

3 Experiments

- General results
- Detailed results for Jsteg and nsF5
- Comparison to previous art

Conclusion

Conclusion

- A solid method to construct quantitative steganalyzer from features was presented.
- Regression is used to learn dependence between features for blind steganalysis and embedding change rate.
- Method was demonstrated on 8 JPEG stego-schemes.
- For Jsteg, accuracy is at least as good as best targeted attacks.
- Distributions of within image and between image error were estimated — same as of quantitative steganalyzers of LSB replacement.

Future Directions

Future directions

- Combine existing LSB quant. steganalyzers to improve accuracy.
- Improve control of false positive/false negative rate in targeted blind steganalysis.
- Quantitative steganalysis of ±1, YASS?

Within and Between Image Error of Jsteg

	Jsteg				
	Shapiro-	Between	Within	Flips	
β	Wilk	IQR	IQ R	IQR	
	p > 0.1	$\Delta Q(Z_{cov})$	$\Delta Q(Z_{pos})$	$\Delta Q(Z_{flip})$	
0	_	3.63	0.00	0.00	
0.025	90.2%	3.23	1.52	0.28	
0.05	89.9%	3.02	1.91	0.39	
0.125	90.2%	2.79	2.57	0.59	
0.25	89.8%	2.87	3.25	0.78	
0.375	90.3%	3.69	3.56	0.87	

T. Pevný, J. Fridrich, A. Ker | From Blind to Quantitative Steganalysis

Within and Between Image Error of nsF5

	IISE D				
	Shapiro-	Between	Within	Flips	
β	Wilk	IQR	IQR	IQR	
	p > 0.1	$\Delta Q(Z_{cov})$	$\Delta Q(Z_{pos})$	$\Delta Q(Z_{flip})$	
0	_	7.74	0.00	0.00	
0.025	93.9%	6.99	2.81	0.29	
0.05	93.9%	6.79	3.52	0.41	
0.125	93.7%	6.93	4.78	0.62	
0.25	94.2%	8.31	6.77	0.81	
0.375	94.2%	10.63	8.47	0.91	

ncEF

T. Pevný, J. Fridrich, A. Ker | From Blind to Quantitative Steganalysis

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへぐ