The Challenges of Rich Features in Universal Steganalysis

Tomáš Pevný^a and Andrew D. Ker^b

^aAgent Technology Center, Czech Technical University in Prague, Czech Republic. ^aDepartment of Computer Science, Oxford University, England.

7th February 2013

T. Pevný and A. D. Ker

Condensing rich features

7th February 2013 1 / 16

ヨトィヨト

Batch universal steganalysis

Э

990

Extract features.

- Calculate distances between actors (MMD).
- Identify the steganographer(s). local outlier factor (LOF)

- Extract features.
- Calculate distances between actors (MMD).
- Identify the steganographer(s). local outlier factor (LOF)

- Extract features.
- Calculate distances between actors (MMD).
- Identify the steganographer(s). local outlier factor (LOF)

- Extract features.
- Calculate distances between actors (MMD).
- Identify the steganographer(s). local outlier factor (LOF)

The method should work with any stego-sensitive features.

Accuracy with PF274 and CF^* features

	PF274	CF^*
dimension	274	8750
F5	14.6	9.5
nsF5	10.7	23.1
JP Hide&Seek	7.8	16.2
OutGuess	1.9	5.7
Steghide	2.8	4.7

Average rank of one guilty actor (out of 100) emitting payload 0.1 bpnc

3

Sac

Curse of dimensionality

- Anomaly detection estimates density: more difficult in high dimensions.
- In unsupervised learning cannot discard noise in features.

Sac

Curse of dimensionality

Our solution Supervised dimensionality reduction.

Our aim

Steganographic features should be sensitive to embedding changes, yet insensitive to image content. J. Fridrich, 2004

∃ ► < ∃ ►</p>

Dimensionality reduction

Prior art

- Principal component transformation
- Maximum covariance
- Ordinary least square regression

Proposed

Calibrated least-squares

Э

Principal component transformation (PCT)

arg max Var(
$$\mathbf{X} w_k$$
)
subject to
 $w_k \perp w_i, i \in \{1, \dots, k-1\}.$
 $\mathbf{X} \in \mathbb{R}^{n,d}$ — matrix with features
 w_i — projections found
 $\mathbf{X} \in \mathbb{R}^{n,d}$ — matrix with features
 w_i — projections found
 $\mathbf{X} \in \mathbb{R}^{n,d}$ — matrix with features
 w_i — projections found
 $\mathbf{X} \in \mathbb{R}^{n,d}$ — matrix with features
 w_i — projections found
 $\mathbf{X} \in \mathbb{R}^{n,d}$ — matrix with features
 w_i — projections found
 $\mathbf{X} \in \mathbb{R}^{n,d}$ — matrix with features
 $\mathbf{X} \in \mathbb{R}^{n,d}$ — matrix with features

3

990

イロト イポト イヨト イヨト

Ordinary least square regression (OLS)

Maximum covariance (MCV)

Sac

Calibrated least squares (CLS)

$$\arg\max_{w_k} \operatorname{Cov}(\mathsf{X}^s w_k, \mathsf{Y}^s) - \operatorname{Var}(\mathsf{X}^c w_k)$$

subject to

$$w_k \perp w_i, \ i \in \{1,\ldots,k-1\}.$$

- $\mathbf{Y}^{s} \in \mathbb{R}^{n,1}$ vector with payload
- $\mathbf{X}^{c} \in \mathbb{R}^{n,d}$ matrix with cover features
 - wi projections found

7th February 2013 10 / 16

Sar

Experimental settings

• 3000 users of leading social network, 100 images from each

- ► 1000 users for supervised feature reduction
- ► 2000 users used for testing
- Guilty actor emits payload 0.1 bpnc
 - ► linear (in the paper) or greedy strategy
 - ► one of following algorithms: F5, nsF5, JPHide&Seek (JP), OutGuess (OG), Steghide (SH)
- Steganalyst uses reduced CF* features.
- Accuracy is measured by average rank of guilty actor.
 - 1.0 = perfect, 50.5 = random guessing.

Results

	РСТ	MCV	OLS	CLS
F5	40.3	23.4	22.2	1.6
		(4)	(1)	(1)
nsF5	38.0	26.6	5.8	2.1
		(4)	(1)	(1)
JP	38.4	27.2	6.9	1.7
		(5)	(1)	(1)
OG	26.5	31.6	2.4	1.2
		(4)	(1)	(1)
SH	23.0	2.6	1.3	1.1
		(6)	(1)	(1)

€ 990

イロト イロト イヨト イヨト

Robustness

			CLS trained on			
	РСТ	F5	nsF5	JP	OG	SH
F5	40.3	1.6	1.9	8.8	6.6	4.5
		(1)	(1)	(1)	(4)	(3)
nsF5	38.0	1.8	2.1	10.1	10.9	10.5
		(1)	(1)	(1)	(4)	(3)
JP	38.4	8.9	7.2	1.7	15.5	10.5
		(1)	(2)	(1)	(2)	(2)
OG	26.5	3.7	3.0	11.8	1.2	1.1
		(1)	(6)	(2)	(1)	(1)
SH	23.0	5.2	3.2	9.1	1.2	1.1
		(1)	(6)	(2)	(1)	(1)

T. Pevný and A. D. Ker

Condensing rich features

E 990 イロト イロト イヨト イヨト 7th February 2013

13 / 16

Optimal number of projections

프 > 프

Conclusion

- High dimensional features are not compatible with unsupervised steganalysis.
- Investigated dimensionality reduction to improve SNR of rich features.
- Validated the approach in universal batch steganalysis.
- The proposed method, CLS, exhibits robustness to embedding method.

F5 phenomenon

990

1