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Batch universal steganalysis
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Batch universal steganalyzer

Extract features.
Calculate distances between
actors (MMD).
Identify the steganographer(s).
local outlier factor (LOF)
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Batch universal steganalyzer

Extract features.
Calculate distances between
actors (MMD).
Identify the steganographer(s).
local outlier factor (LOF)

guilty

The method should work with any stego-sensitive features.
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Accuracy with PF274 and CF ∗ features

PF274 CF ∗

dimension 274 8750

F5 14.6 9.5
nsF5 10.7 23.1
JP Hide&Seek 7.8 16.2
OutGuess 1.9 5.7
Steghide 2.8 4.7

Average rank of one guilty actor (out of 100)
emitting payload 0.1 bpnc
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Curse of dimensionality

Anomaly detection estimates density: more difficult in high
dimensions.
In unsupervised learning cannot discard noise in features.
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Curse of dimensionality

Our solution
Supervised dimensionality reduction.

Our aim
Steganographic features should be sensitive to embedding changes,
yet insensitive to image content. J. Fridrich, 2004
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Dimensionality reduction

Prior art
Principal component transformation
Maximum covariance
Ordinary least square regression

Proposed
Calibrated least-squares
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Principal component transformation (PCT)

argmax
wk

Var(Xwk)

subject to

wk⊥wi , i ∈ {1, . . . ,k−1}.

X ∈ Rn,d — matrix with features

wi — projections found −200 −100 0 100
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Ordinary least square regression (OLS)

argmax
wk

Cov(Xswk ,Ys)−Var(Xswk)

subject to

wk⊥wi , i ∈ {1, . . . ,k−1}.

XS ∈ Rn,d — matrix with stego features

Ys ∈ Rn,1 — vector with payload

wi — projections found
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Maximum covariance (MCV)

argmax
wk

Cov(Xswk ,Ys)

subject to

wk⊥wi , i ∈ {1, . . . ,k−1}.

XS ∈ Rn,d — matrix with stego features

Ys ∈ Rn,1 — vector with payload

wi — projections found
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Calibrated least squares (CLS)

argmax
wk

Cov(Xswk ,Ys)−Var(Xcwk)

subject to

wk⊥wi , i ∈ {1, . . . ,k−1}.

XS ∈ Rn,d — matrix with stego features

Ys ∈ Rn,1 — vector with payload

Xc ∈ Rn,d — matrix with cover features

wi — projections found
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Experimental settings

3000 users of leading social network, 100 images from each
I 1000 users for supervised feature reduction
I 2000 users used for testing

Guilty actor emits payload 0.1 bpnc
I linear (in the paper) or greedy strategy
I one of following algorithms:

F5, nsF5, JPHide&Seek (JP), OutGuess (OG), Steghide (SH)

Steganalyst uses reduced CF ∗ features.
Accuracy is measured by average rank of guilty actor.

I 1.0 = perfect, 50.5 = random guessing.
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Results

PCT MCV OLS CLS

F5 40.3 23.4 22.2 1.6
(4) (1) (1)

nsF5 38.0 26.6 5.8 2.1
(4) (1) (1)

JP 38.4 27.2 6.9 1.7
(5) (1) (1)

OG 26.5 31.6 2.4 1.2
(4) (1) (1)

SH 23.0 2.6 1.3 1.1
(6) (1) (1)
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Robustness

PCT
CLS trained on

F5 nsF5 JP OG SH

F5 40.3 1.6 1.9 8.8 6.6 4.5
(1) (1) (1) (4) (3)

nsF5 38.0 1.8 2.1 10.1 10.9 10.5
(1) (1) (1) (4) (3)

JP 38.4 8.9 7.2 1.7 15.5 10.5
(1) (2) (1) (2) (2)

OG 26.5 3.7 3.0 11.8 1.2 1.1
(1) (6) (2) (1) (1)

SH 23.0 5.2 3.2 9.1 1.2 1.1
(1) (6) (2) (1) (1)
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Optimal number of projections
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Conclusion

High dimensional features are not compatible with unsupervised
steganalysis.
Investigated dimensionality reduction to improve SNR of rich features.
Validated the approach in universal batch steganalysis.
The proposed method, CLS, exhibits robustness to embedding method.
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F5 phenomenon
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