Steganalysis of Overlapping Images

Jimmy Whitaker

JimmyMWhitaker@gmail.com

Andrew Ker

adk@cs.ox.ac.uk

SPIE/IS&T Electronic Imaging, San Francisco, 11 February 2015

- Are very likely to include a cat.
- Probably contain multiple captures of similar scenes: overlapping images.

Steganalysis

Fundamental difficulty: stego noise is an extremely small signal.

Filtering

Apply noise reduction filters, keeping only the residual noise. Use many diverse filters.

Calibration

Process a stego image to learn about the cover.

- JPEG decompress-crop-recompress [Fridrich et al., 2002]
- Spatial-domain calibration (unsuccessful) [Ker, 2005]
- Contrast parts of an image likely to contain payload with other parts. [Denemark et al., 2014; Carnein et al., 2014]

Calibration

Process a stego image to learn about the cover.

- JPEG decompress-crop-recompress [Fridrich et al., 2002]

Calibration

Process a stego image to learn about the cover.

- JPEG decompress-crop-recompress [Fridrich et al., 2002]

Investigation

In laboratory conditions,

analyst has access to the cover sourcestego method & payload size known

- given two images with overlapping content,
- identical camera settings
 - one is known to be cover

can one be used to calibrate the other?

Study limited to uncompressed images.

All taken with Canon G16.

All camera settings fixed for each scene.

 5×500 images @ 3000×800 (2.4Mpix) in each set. Captured RAW, converted to grayscale using camera software.

Embedding

- HUGO @ 0.05/0.1 bpp
- LSBM @ 0.01/0.02 bpp

Features

- SPAM Laplacian filter, residual co-occurrences [2009]
- SRM Diverse filters, residual co-occurrences [2012]
- PSRM Diverse filters, random convolutions, histograms [2013]

Embedding

- HUGO @ 0.05/0.1 bpp
- LSBM @ 0.01/0.02 bpp

Features

- SPAM Laplacian filter, residual co-occurrences
 686-dim
- SRMDiverse filters, residual co-occurrences12753-dim
- PSRM Diverse filters, random convolutions, histograms 8070-dim

Calibration

- $\kappa(x,y) = y$ no calibration (baseline)
- $\kappa(x,y) = y x$ classical calibration
- $\kappa(x,y) = x \cdot y$ cartesian calibration
- $\kappa(x,y) = x \cdot (y-x)$

•
$$\kappa(x,y) = x \cdot y \cdot (y-x)$$

... some based on normalized difference are in the paper or Jimmy's dissertation.

Calibration

- $\kappa(x,y) = y$
- $\kappa(x,y) = y x$
- $\kappa(x,y) = x \cdot y$
- $\kappa(x,y) = x \cdot (y-x)$
- $\kappa(x,y) = x \cdot y \cdot (y-x)$

Classifier

Kodovský's ensemble of FLDs.

- Chose best base learner subdimension
 d_{sub} ∈ {50, 100, 150, 200, 250, 300, 400, 500, 600, 800, 1000, 1500, 2000, 3000}.
- 5-fold cross-validation optimizing OOB error, measuring mean testing error.

Cropping

Cropping

Robustness

Mismatched payload

Seems quite robust.

Mismatched reference

Robust if we use $\kappa(x, y) = y - x$ and a 'double-sided' classifier.

Mismatched amount of overlap

Not very robust: scope for further work.

Distance

How 'far apart' are these images, and how far is a stego object?

Distance

Whitened (Mahalanobis-like) distance

- Apply PCA to pooled cover & stego features.
- Keep all numerically-significant components.
- Normalize each dimension, measure Euclidean distance.

HUGO 0.05 bpp SRM features	mean distance to stego image	mean distance to cover, with overlap				
		100%	75%	50%	25%	none
Whitened distance:	0.034	0.063	0.281	0.445	0.564	0.650

Scaled so that mean distance between <u>different</u> covers is 1.

Distance

Projected distance

- Train numerically-stabilized FLD on all cover & stego features.
- Project features onto separating vector.

HUGO 0.05 bpp SRM features	mean distance to stego image	mean distance to cover, with overlap				
		100%	75%	50%	25%	none
Whitened distance:	0.034	0.063	0.281	0.445	0.564	0.650
Projected distance:	4.076	1.507	1.594	1.682	1.705	1.694

Scaled so that mean distance between <u>different</u> covers is 1.

Illustration

 \bigcirc

 \bigcirc

Illustration

O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

Illustration

Conclusions

- Images overlapping by 75% or more make classification better.
 Seems good detectors benefit more than bad ones.
 Should be a regressor for difference in payload?
- Turning it into a forensic tool:

Automatically identifying overlap✓Checking camera settings✓Developing training data?

• Limitations:

Controlled conditions. Stable camera. Only considered uncompressed images.

Conclusions

- Images overlapping by 75% or more make classification better.
 Seems good detectors benefit more than bad ones.
 Should be a regressor for difference in payload?
- Turning it into a forensic tool:

Automatically identifying overlap✓Checking camera settings✓Developing training data?

Pilot study on JPEG images (<i>q.f. 80, nsF5 @ 0.02 bpnc, JRM features</i>)	
Uncalibrated error	5.6%
Calibrated by decompress-crop-recompress	4.9%
Calibrated by 100% overlapping image	4.7%