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Linguistic Steganography and CoverTweet

Statistical Detection

Steganography hides information in natural language. Trained a linear classifier ensemble on four sets of features:
CoverTweet uses automatic paraphrasing to hide data in Tweets: e Basic tweet statistics (e.g. word count, stop word usage)
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(This last set of features khoffs’ princiol
The system finds a paraphrase with a desired hash value. is allowed under Kerckhofts” principle
The goal is to hide as much data as possible, while avoiding detection. Kerckhoffs’ Principle.) We must assume the attacker of a system knows
We showed that tweets contammg 4 bits were exactly how the system works.
undetectable to human judges (Wilson et al., 2014). This means that the attacker has the source of
paraphrase rules used by the steganographer.
Which two of these do you think are hiding information?
1. 1f anybody wanted to text me i wouldn’t even mind.
2. 1 should probably go to sleep soon.
3. sleep’s overrated..
4. this summer is going to be the best one yet.
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identify users of steganography.
We pool together evidence from multiple tweets by the same user. Increasing the batch size (the number of tweets pooled) further reduced
the error rate.
Which user do you think is hiding information? Additionally, hiding more data made the tweets easier to spot.
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Main Findings

e Used CoverTweet to hide data in 1000 tweets (100 from 10 users) e Individual steganographic tweets are hard to detect.

taken from the Harvard TweetMap (Mostak, 2013). e Looking at multiple tweets at once allows us to spot the users who are
e Generating stego data with a human filter is expensive, so we also niding information.

automated the generation of 1M stego tweets (1000 from 1000 users). e Knowing the details of the system gives the attacker a powerful
e For the automatic data, the paraphrased tweet with the highest advantage.

probability was selected.

e For comparison purposes, we also hid data in approx. 250k tweets
using T-Lex, an older stegosystem.
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