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Twitter

I Twitter is a social networking site, launched in 2006.

I Users post short messages (tweets), at most 140 characters
long.

I 500M tweets posted each day, from 200M active users.

I Twitter a suitable setting because linguistic steganography
generally requires the steganographer to act as the cover
source.



Twitter Steganography

I Alice has a Twitter account, and has posted some number of
innocent tweets, before starting to send steganographic
messages.

I Bob shares a key with Alice, and has access to her tweets.

I We assume the Warden is human.
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Statistical Machine Translation

I Model the probability that a stego sentence s is a translation
of cover sentence c (Pr(s|c)).

I Bayes’ law:

Pr(s|c) =
Pr(c |s) Pr(s)
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Language Modelling

I Our stego sentence s is made up of words w1, . . . ,wT .

Pr(w1, . . . ,wT ) = Pr(w1)
T∏
i=2

Pr(wi |w1, . . . ,wi−1)

≈ Pr(w1) Pr(w2|w1)
T∏
i=3

Pr(wi |wi−1,wi−2)

I This is a 2nd order Markov model



Language Modelling

I These probabilities are calculated using the maximum
likelihood estimation (MLE):

Pr(sat|the, cat) =
count(the cat sat)

count(the cat)

I Counts gathered from large text corpora (here 72M tweets). In
practice, the counts are smoothed to avoid probabilities of 0.



Alice’s Language Model

I What data can we use to train the language model?

I We need to train on cover data, of which we don’t have
enough of (a few hundred from Alice).

I We do have a huge amount of other twitter data (500M per
day!).

I This is the problem of language model adaptation.



Alice’s Language Model

I We train a small model on Alice’s data, and a large model on
general twitter data.

I The probabilities from both models are then linearly
interpolated. For example:

Pr(w3|w2,w1) = (1− λ) Pr
A

(w3|w2,w1) + λPr
G

(w3|w2,w1)



Linguistic Distortion Measure

D(c , s) = − log

(
Pr(s|c)

Pr(c|c)

)
0 ≤ D ≤ ∞



Cover:

I wish I was drinking a mojito right about now #keepingitreal

Possible stego tweets:

1. i wish i was drinking a mojito law around now #keepingitreal 0.815

2. i wish i was drink a mojito good about now #keepingitreal 1.229

3. if only i used to be drinking a mojito right about now

#keepingitreal 1.670

4. i wish i was drinking a mojito right about far #keepingitreal 1.732

5. i ’d like to be drinking a mojito right around now #keepingitreal

1.878

...

3000. i wish i went drinkable a mojito entitled around today

#keepingitreal 18.199



Secondary Distortion Measure: Human Interaction

I Language modelling isn’t good enough to guarantee that the
option with lowest distortion is actually the best.

I Alice can choose the true best choice, from the ranked stego
objects given by the first distortion measure.

I What if no option is fluent?
I Alice can’t signal no payload.
I Recipient can’t tell when there are no good options.
I Alice will have to rewrite tweet, or not use it.



Evaluation

I Gathered 72M tweets, all posted in May 2013, from the
Harvard TweetMap.

I Randomly selected 10 users with ‘typical’ characteristics:
I Average number of words per tweet (11)
I Average size of vocabulary per tweet (6)
I Sufficient tweets for training the LM (> 500)

I For these 10 users, we trained the LM on the majority of their
tweets.



Evaluation Data

Which of these have a hidden message?
1. i just want to get above and beyond the state of drunk

2. I want someone to come on long midnight walks please, that be

perfect

3. in fact i just need a pet tortoise in my life

4. sneaking your favourite foods into the trolley when you go food

shopping
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I 20 human judges were shown 80 innocent tweets from each
user, followed by 20 unclassified tweets (10 stego, 10
innocent).

I The judges were asked: which of these are steganographic?



Results

I Of 1000 steganographic tweets shown to judges, only 515
were correctly identified.

I Insufficient evidence to reject the null hypothesis that judges
are guessing randomly
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I Insufficient evidence to reject the null hypothesis that judges
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Summary

I Very secure against human judges!

I Embedded more bits per stego object than existing systems.

I More work needed on statistical detection methods.

I Synchronisation and coding need considerable work.
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