
Andrzej Murawski
UNIVERSITY OF OXFORD

Nikos Tzevelekos
QUEEN MARY

UNIVERSITY OF LONDON

GAME SEMANTICS

DISCLAIMERS

• computer games

• game theory

• games logicians play

• parity games

OLYMPIC SPIRIT

(! 1J

TOWARD A MATHEMATICAL
SEMANTICS FOR

COMPUTER LANGUAGES

by

Dana Scott

and

Christopher Strachey -
Oxford University
Computing Laboratory
Programming Research Group-Library
8-11 Keble Road
Oxford OX, 3QD
Oxford (0865) 54141

Oxford University Computing Laboratory

Programming Research Group

ABSTRACT

Compilers for high-level languages aTe generally constructed
to give the complete translation of the programs into machme
language. As machines merely juggle bit patterns, the concepts
of the original language may be lost or at least obscured during
this passage. The purpose of a mathematical semantics is to give
a correct and meaningful correspondence between programs and
mathematical entities in a way that is entirely independent of an
implementation. This plan is illustrated in a very elementary
way in the introduction. The first section connects the general
method wi th the usual idea of state transformations. The next
section shows why the mathematics of functions has to be modified
to accommodate recursive commands. Section 3 explains the modifi-
cation. Section 4 introduces the environments for handling variables
and identifiers and shows how the semantical equations define
equivalence of programs. Section 5 gives an exposition of the new
type of mathematical function spaces that are required fOl the
semantics of procedures when these are allowed in assignment state-
ments. The conclusion traces some of the background of the project
and points the way to future work.

MATHEMATICAL SEMANTICS

function

continuous
function

strategy

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

�] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

M �! M 0

i� j �! k (k = i� j)
if 0 thenM elseM 0 �! M 0

if i thenM elseM 0 �! M (i 6= 0)
(�x.M)N �! M [N/x]

M �! M 0

E[M] �! E[M 0]

E ::= [] | E �M | i� E | if E thenM elseM | EM

If M �! M 0 then JMK = JM 0K.
Given � ` M : ✓, we write J� ` MK.

In particular, if ` M : int and M �! i then JMK = JiK.

The following converse would be too strong:

1

PCF (SCOTT/MILNER/PLOTKIN)

• Programming Computable Functions

• Prototypical purely functional language

• Features integer arithmetic, higher-order
functions and recursion

• Inspired early research on semantics

PCF TYPES

✓ ::= int | ✓ ! ✓

1

PCF TERMS✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

�] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

M �! M 0

i� j �! k (k = i� j)
if 0 thenM elseM 0 �! M 0

if i thenM elseM 0 �! M (i 6= 0)
(�x.M)N �! M [N/x]

M �! M 0

E[M] �! E[M 0]

E ::= [] | E �M | i� E | if E thenM elseM | EM

If M �! M 0 then JMK = JM 0K.
Given � ` M : ✓, we write J� ` MK.

In particular, if ` M : int and M �! i then JMK = JiK.

The following converse would be too strong:

1

TYPING JUDGMENTS

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

�] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

1

PCF TYPING JUDGMENTS

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

�] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

1

TOWARDS MEANINGFUL
CORRESPONDENCES

• Operational semantics is a compulsory element of a
formal definition of a programming language.

• We shall focus on several meaningful correspondences
between mathematical and operational semantics.

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

�] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

M �! M 0

i� j �! k (k = i� j)
if 0 thenM elseM 0 �! M 0

if i thenM elseM 0 �! M (i 6= 0)
(�x.M)N �! M [N/x]

M �! M 0

E[M] �! E[M 0]

E ::= [] | E �M | i� E | if E thenM elseM | EM

1

REDUCTION

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

�] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

M �! M 0

i� j �! k (k = i� j)
if 0 thenM elseM 0 �! M 0

if i thenM elseM 0 �! M (i 6= 0)
(�x.M)N �! M [N/x]

M �! M 0

E[M] �! E[M 0]

E ::= [] | E �M | i� E | if E thenM elseM | EM

1

1. CORRECTNESS

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

�] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

M �! M 0

i� j �! k (k = i� j)
if 0 thenM elseM 0 �! M 0

if i thenM elseM 0 �! M (i 6= 0)
(�x.M)N �! M [N/x]

M �! M 0

E[M] �! E[M 0]

E ::= [] | E �M | i� E | if E thenM elseM | EM

If M �! M 0 then JMK = JM 0K.

For instance, if ` M : int and M �! i then JMK = JiK.

The following converse would be too strong:

if JMK = JM 0K then M �! M 0.

Instead we aim for adequacy:

Given ` M : int, if JMK = JiK then M �! i.

1

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

�] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

M �! M 0

i� j �! k (k = i� j)
if 0 thenM elseM 0 �! M 0

if i thenM elseM 0 �! M (i 6= 0)
(�x.M)N �! M [N/x]

M �! M 0

E[M] �! E[M 0]

E ::= [] | E �M | i� E | if E thenM elseM | EM

If M �! M 0 then JMK = JM 0K.

In particular, if ` M : int and M �! i then JMK = JiK.

The following converse would be too strong:

if JMK = JM 0K then M �! M 0.

Instead we aim for adequacy:

Given ` M : int, if JMK = JiK then M �! i.

1

2. ADEQUACY
The following converse would be too strong:

if JMK = JM 0K then M �! M 0.

Instead we aim for adequacy:

Given ` M : int, if JMK = JiK then M �! i.

Suppose J✓K is the mathematical object corresponding to ✓,
i.e. terms J ` M : ✓K can be thought of as elements of J✓K.

Definability asks whether

8x2J✓K 9`Mx:✓ x = J ` Mx : ✓K.

Weaker variants of definability are also of interest: for “finitary” or “com-
putable” elements.

—–

• Plotkin’s domain-theoretic model of PCF uses the
following partial order to model int.

· · · �1 0 1 · · ·

?

• Terms are interpreted by monotone functions.

• The model is correct and adequate, but does not
have the definability property.

2

The following converse would be too strong:

if JMK = JM 0K then M �! M 0.

Instead one aims for:

Given ` M : int, if JMK = JiK then M �! i.

Suppose J✓K is the mathematical object corresponding to ✓,
i.e. terms J ` M : ✓K can be thought of as elements of J✓K.

Definability asks whether

8x2J✓K 9`Mx:✓ x = J ` Mx : ✓K.

Weaker variants of definability are also of interest: for “finitary” or “com-
putable” elements.

—–

• Plotkin’s domain-theoretic model of PCF uses the
following partial order to model int.

· · · �1 0 1 · · ·

?

• Terms are interpreted by monotone functions.

• The model is correct and adequate, but does not
have the definability property.

2

3. DEFINABILITY (NO JUNK)

if JMK = JM 0K then M �! M 0.

Instead we aim for adequacy:

Given ` M : int, if JMK = JiK then M �! i.

Suppose J✓K is the mathematical object corresponding to ✓,
i.e. terms J ` M : ✓K can be thought of as elements of J✓K.

Definability asks whether

8x2J✓K 9`Mx:✓ x = J ` Mx : ✓K.

2

if JMK = JM 0K then M �! M 0.

Instead we aim for adequacy:

Given ` M : int, if JMK = JiK then M �! i.

Suppose J✓K is the mathematical object corresponding to ✓,
i.e. terms J ` M : ✓K can be thought of as elements of J✓K.

Definability asks whether

8x2J✓K 9`Mx:✓ x = J ` Mx : ✓K.

2

DOMAIN-THEORETIC
SEMANTICS

if JMK = JM 0K then M �! M 0.

Instead we aim for adequacy:

Given ` M : int, if JMK = JiK then M �! i.

Suppose J✓K is the mathematical object corresponding to ✓,
i.e. terms J ` M : ✓K can be thought of as elements of J✓K.

Definability asks whether

8x2J✓K 9`Mx:✓ x = J ` Mx : ✓K.

Weaker variants of definability are also of interest: for “finitary” or “com-
putable” elements.

—–

• Plotkin’s domain-theoretic model of PCF uses the
following partial order to model int.

· · · �1 0 1 · · ·

?

• Terms are interpreted by monotone functions.

• The model is correct and adequate, but does not
have the definability property.

—— The parallel or function

por x y =

8
<

:

1 x 6= 0 or y 6= 0
0 x = 0 and y = 0
? otherwise

Parallel-or is undefinable: there is no PCF term M
such that

M divint 1 �! 1
M 1 divint �! 1

M 0 0 �! 0

2

FAILURE OF DEFINABILITY
Consider the parallel-or function

por x y =

8
<

:

0 x = 0 and y = 0
1 x 6= 0,? or y 6= 0,?
? otherwise

E.g. por 0 0 = 0 and por 1? = por ? 1 = 1.

por turns out to be undefinable:
there is no PCF term M such that

M div 1 �! 1 M 1 div �! 1 M 0 0 �! 0

3

TOWARDS FULL
ABSTRACTION

While loop (while(M))

• Recall that sequences from L� ` �x
unit

.M : int M match

the pattern

X (r#, †)(c, ?)X1 (r, `1)(c, ?) · · · (r, `k�1)(c, ?)Xk (r, `k).

• To interpret � ` while(M) : unit we select only those

sequences above where the induced sequence `1 · · · `k
satisfies `k = 0 and `j > 0 (1  j  k).

• Subsequently, we erase all moves with tags c, r, r# and
add the move (r#, ?) at the end. This yields the se-

quence:

XX1 · · ·Xk(r#, ?).

In the above we have omitted stores, which simply

need to be copied over from one sequence to the

other.

Application (xy)
L� ` xy : �

0 M contains all complete plays of the shape

i
S
(cx, iy)

S
(rx, `)

S0
(r#, `)

S0
.

• P does not change the store in any of the plays, but

O can play a di↵erent store S
0
.

• We must have dom(S) ✓ dom(S
0
) and the inclusion

can be proper if ` 2 A \ dom(S).

JM1K = JM2K?

18

CONTEXTUAL TESTING
• Contexts

C ::= [] | C �M | M � C

| if C thenM elseM | ifM thenC elseM | ifM thenM elseC

| �x✓.C | MC | CM

• Testing of M : ✓

C[M] : int

If there exists i such that C[M] �!⇤ i, we write
C[M] + (success!).

4

CONTEXTUAL EQUIVALENCE
Intuitively, two programs should be viewed as equivalent
if they behave in the same way in any context, i.e. they
can be used interchangeably.

• � ` M1 : ✓ approximates � ` M2 : ✓ if

C[M1]+ implies C[M2]+

for any context C such that ` C[M1], C[M2] : int.
Then we write � ` M1 v M2.

• Two terms are equivalent if one approximates the
other, written � ` M1

⇠= M2.

5

4. FULL ABSTRACTION

JM1K = JM2K if and only if M1
⇠= M2

Robin Milner (1977)

8

SOUNDNESS
Correctness and adequacy turn out to imply:

if JM1K = JM2K then M1
⇠= M2.

Assume JM1K = JM2K and suppose M1 6⇠= M2,
i.e. C[M1] + and C[M2] 6+ for some context C
(or C[M2] + and C[M1] 6+).

• Correctness implies JC[M1]K = JiK for some i.

• Adequacy implies JC[M2]K 6= JiK for any i.

This is a contradiction, because JM1K = JM2K
implies JC[M1]K = JC[M2]K by compositionality.

7

NO FULL ABSTRACTION
(FOR THE DOMAIN-THEORETIC MODEL)

M1 ⌘ �f int!int!int. if (f 1 div) then
(if (f div 1) then

(if (f 0 0) then div else 1)
else div)

else div

M2 ⌘ �f int!int!int. div

• Because por is not definable, we have M1
⇠= M2.

• JM1K(por) 6= JM2K(por), so JM1K 6= JM2K.

6

INTRINSIC QUOTIENT
In the presence of definability (as well as correctness

and adequacy) one can construct fully abstract models
by quotienting.

This boils down to recasting the idea of contextual
testing inside the model.

Given x1, x2 2 J✓K,

x1 ⇠ x2 () “8y2J✓!intKy(x1) = y(x2)”.

Then J· · ·K/ ⇠ is fully abstract.

This kind of quotienting may be an obstacle in rea-
soning about equivalence, so one should attempt to find
more direct characterizations.

9

AWARD ANNOUNCEMENTS

The 2017 Alonzo Church Award

Prakash Panangaden, School of Computer Science, McGill University

SIGLOG is delighted to announce that the 2017 Church Award goes to 6 people:
Samson Abramsky, Martin Hyland, Radha Jagadeesan, Pasquale Malacaria, Hanno
Nickau and Luke Ong for [Quoting from the official citation] “providing a fully-abstract
semantics for higher-order computation through the introduction of games models,
thereby fundamentally revolutionising the field of programming language semantics,
and for the applied impact of these models.”

These results appeared in three papers:

— S. Abramsky, R. Jagadeesan, and P. Malacaria. Full Abstraction for PCF. Information
and Computation, Vol. 163, No. 2, pp. 409–470, 2000.

— J.M.E. Hyland and C.-H.L. Ong. On Full Abstraction for PCF: I, II, and III. Informa-
tion and Computation, Vol. 163, No. 2, pp. 285–408, 2000.

— H. Nickau. Hereditarily sequential functionals. Proc. Symp. Logical Foundations of
Computer Science: Logic at St. Petersburg (eds. A. Nerode and Yu.V. Matiyasevich),
Lecture Notes in Computer Science, Vol. 813, pp. 253–264. Springer-Verlag, 1994.

The official citation gives a succinct summary of the contributions. The following
paragraphs are taken from the official citation.

These papers made two fundamental contributions to our understanding
of programming languages and logic. First, they provided significant insi-
ght into the longstanding and fundamental “full abstraction problem” for
the paradigmatic higher-order language PCF by giving a compositional se-
mantic account of sequentiality, via an elegant cartesian-closed category of
games and strategies. In the mid-1970s Milner posed the full-abstraction
problem for PCF and Plotkin showed the difficulty of the problem, which
essentially lies in the fact that the standard Scott-Strachey model permits
non-sequential functions, although PCF itself is sequential.
The papers constructed models for PCF from games, leading to the first
fully abstract models of PCF whose construction made no reference to the
syntax of PCF. The elements of the models are strategies for certain kinds
of interactive dialogues between two players (or between system and envi-
ronment). These dialogue games are required to follow certain conventions
concerning when questions are posed or answered; these conventions reflect
constraints on the information available to the players of the game. The pa-
pers give new insight into the fundamental work in higher-type recursion
theory of such logicians as Kleene, Gandy, Normann, and Hyland.
Second, and perhaps more importantly, game semantics has provided a new
framework for the semantics of programming languages. Games can be used
as a flexible and modular modelling tool, as a wide variety of programming
language features can be understood as corresponding to different restric-
tions placed on allowed strategies. Thus there are fully abstract games mo-
dels for call-by-value and call-by name languages; for languages with state,
with control, with references, with exceptions, with nondeterminism, and

ACM SIGLOG News 3 July 2017, Vol. 4, No. 3

AWARD ANNOUNCEMENTS

The 2017 Alonzo Church Award

Prakash Panangaden, School of Computer Science, McGill University

SIGLOG is delighted to announce that the 2017 Church Award goes to 6 people:
Samson Abramsky, Martin Hyland, Radha Jagadeesan, Pasquale Malacaria, Hanno
Nickau and Luke Ong for [Quoting from the official citation] “providing a fully-abstract
semantics for higher-order computation through the introduction of games models,
thereby fundamentally revolutionising the field of programming language semantics,
and for the applied impact of these models.”

These results appeared in three papers:

— S. Abramsky, R. Jagadeesan, and P. Malacaria. Full Abstraction for PCF. Information
and Computation, Vol. 163, No. 2, pp. 409–470, 2000.

— J.M.E. Hyland and C.-H.L. Ong. On Full Abstraction for PCF: I, II, and III. Informa-
tion and Computation, Vol. 163, No. 2, pp. 285–408, 2000.

— H. Nickau. Hereditarily sequential functionals. Proc. Symp. Logical Foundations of
Computer Science: Logic at St. Petersburg (eds. A. Nerode and Yu.V. Matiyasevich),
Lecture Notes in Computer Science, Vol. 813, pp. 253–264. Springer-Verlag, 1994.

The official citation gives a succinct summary of the contributions. The following
paragraphs are taken from the official citation.

These papers made two fundamental contributions to our understanding
of programming languages and logic. First, they provided significant insi-
ght into the longstanding and fundamental “full abstraction problem” for
the paradigmatic higher-order language PCF by giving a compositional se-
mantic account of sequentiality, via an elegant cartesian-closed category of
games and strategies. In the mid-1970s Milner posed the full-abstraction
problem for PCF and Plotkin showed the difficulty of the problem, which
essentially lies in the fact that the standard Scott-Strachey model permits
non-sequential functions, although PCF itself is sequential.
The papers constructed models for PCF from games, leading to the first
fully abstract models of PCF whose construction made no reference to the
syntax of PCF. The elements of the models are strategies for certain kinds
of interactive dialogues between two players (or between system and envi-
ronment). These dialogue games are required to follow certain conventions
concerning when questions are posed or answered; these conventions reflect
constraints on the information available to the players of the game. The pa-
pers give new insight into the fundamental work in higher-type recursion
theory of such logicians as Kleene, Gandy, Normann, and Hyland.
Second, and perhaps more importantly, game semantics has provided a new
framework for the semantics of programming languages. Games can be used
as a flexible and modular modelling tool, as a wide variety of programming
language features can be understood as corresponding to different restric-
tions placed on allowed strategies. Thus there are fully abstract games mo-
dels for call-by-value and call-by name languages; for languages with state,
with control, with references, with exceptions, with nondeterminism, and

ACM SIGLOG News 3 July 2017, Vol. 4, No. 3

