
Game Semantics

Andrzej S. Murawski and Nikos Tzevelekos

Lecture 1b: Introduction to Game Semantics

Sequentiality

2 / 28

The problem with parallel-or is that programs are not really functions.

For example, a program with two inputs:

■ either does not use one of the inputs,

■ or, if it does, it picks one to use first.

◮ Put otherwise, programs are sequential computations.

This is what makes behaviours like parallel-or non-programmable.

This mismatch between

• functions in domain-based models

• and programs in PCF

makes us look beyond functions for a model of programs.

Dynamic behaviours

3 / 28

Example. Consider a program

count : int → int

such that:

■ the first time we call it, it returns 1;

■ the second time we call it, it returns 2;

■ · · ·

■ the i-th time we call it, it returns i.

While we cannot write such a program in PCF, it is easy to do it in any
language like Java, Python, OCaML, etc.

◮ Programs can change their behaviour dynamically.

This is another source of mismatch between programs and functions.

Programs 7→ sequences of computation steps

4 / 28

Being sequential and dynamic, programs are best described as sequences
of computation steps:

Programs 7→ sequences of computation steps

4 / 28

Being sequential and dynamic, programs are best described as sequences
of computation steps:

left-or:

◦ call left-or(x, y)

Programs 7→ sequences of computation steps

4 / 28

Being sequential and dynamic, programs are best described as sequences
of computation steps:

left-or:

◦ call left-or(x, y)

• evaluate x

Programs 7→ sequences of computation steps

4 / 28

Being sequential and dynamic, programs are best described as sequences
of computation steps:

left-or:

◦ call left-or(x, y)

• evaluate x

◦ x is 1

• return 1

Programs 7→ sequences of computation steps

4 / 28

Being sequential and dynamic, programs are best described as sequences
of computation steps:

left-or:

◦ call left-or(x, y)

• evaluate x

◦ x is 1

• return 1

◦ x is 0

• evaluate y

◦ y is v

• return v

Programs 7→ (computation) games

5 / 28

Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

Programs 7→ (computation) games

5 / 28

Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

left-or:

◦ what is the result of left-or(x, y)?

Programs 7→ (computation) games

5 / 28

Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

left-or:

◦ what is the result of left-or(x, y)?

• what is the value of x?

Programs 7→ (computation) games

5 / 28

Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

left-or:

◦ what is the result of left-or(x, y)?

• what is the value of x?

◦ x is 1

• the result is 1

Programs 7→ (computation) games

5 / 28

Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

left-or:

◦ what is the result of left-or(x, y)?

• what is the value of x?

◦ x is 1

• the result is 1

◦ x is 0

• what is the result of y?

◦ y is v

• the result is v

Programs 7→ games

6 / 28

Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

Programs 7→ games

6 / 28

Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

⊢ count : int → int :

◦ what is the result of count?

Programs 7→ games

6 / 28

Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

⊢ count : int → int :

◦ what is the result of count?

• it is a function

Programs 7→ games

6 / 28

Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

⊢ count : int → int :

◦ what is the result of count?

• it is a function

◦ what is the result of the function on 42?

Programs 7→ games

6 / 28

Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

⊢ count : int → int :

◦ what is the result of count?

• it is a function

◦ what is the result of the function on 42?

• it is 1

Programs 7→ games

6 / 28

Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

⊢ count : int → int :

◦ what is the result of count?

• it is a function

◦ what is the result of the function on 42?

• it is 1

◦ what is the result of the function on 23?

• it is 2

Programs 7→ games

6 / 28

Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

⊢ count : int → int :

◦ what is the result of count?

• it is a function

◦ what is the result of the function on 42?

• it is 1

◦ what is the result of the function on 23?

• it is 2

◦ what is the result of the function on 25?

• it is 3

· · ·

Higher-order programs

7 / 28

Example. Consider a program

f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1

■ if we call it with a function f

■ it returns a function that, on input x, returns f(x) + 1

Higher-order programs

7 / 28

Example. Consider a program

f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1

■ if we call it with a function f

■ it returns a function that, on input x, returns f(x) + 1

E.g. taking 2x ≡ λyint. 2 ∗ y : int → int :

(λf.plusOne) 2x 0 −→ (λxint.2x x+ 1) 0

−→ 2x 0 + 1 −→∗ 1

(λf.plusOne) 2x 42 −→ (λxint.2x x+ 1) 42

−→ 2x 42 + 1 −→∗ 85

Higher-order games

8 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1.

Game:

◦ given function f , what is the result of plusOne?

• it is a function f ′

Higher-order games

8 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1.

Game:

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on 42?

Higher-order games

8 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1.

Game:

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

Higher-order games

8 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1.

Game:

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 84

Higher-order games

8 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1.

Game:

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 84

• it is 85

· · ·

Higher-order games

9 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1.

Game:

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

Higher-order games

9 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1.

Game:

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 35

Higher-order games

9 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1.

Game:

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 35

• it is 71

· · ·

More higher-order programs

10 / 28

Example. Consider a program

f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx + 1) + 1

■ if we call it with a function f

■ it returns a function that, on input x, returns f(f(x) + 1) + 1

More higher-order programs

10 / 28

Example. Consider a program

f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx + 1) + 1

■ if we call it with a function f

■ it returns a function that, on input x, returns f(f(x) + 1) + 1

E.g. taking 2x ≡ λyint. 2 ∗ y : int → int :

(λf.plusOne2) 2x 0 −→ (λxint. 2x(2xx+ 1) + 1) 0

−→ 2x(2x 0 + 1) + 1 −→∗ 1

(λf.plusOne2) 2x 42 −→ (λxint. 2x(2xx+ 1) + 1) 42

−→ 2x(2x 42 + 1) + 1 −→∗ 171

More higher-order games

11 / 28

Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

More higher-order games

11 / 28

Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

More higher-order games

11 / 28

Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

More higher-order games

11 / 28

Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 84

More higher-order games

11 / 28

Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 84

• what is the result of f on 85?

More higher-order games

11 / 28

Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 84

• what is the result of f on 85?

◦ it is 170

More higher-order games

11 / 28

Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 84

• what is the result of f on 85?

◦ it is 170

• it is 171

· · ·

More higher-order games

12 / 28

Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

More higher-order games

12 / 28

Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 35

More higher-order games

12 / 28

Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 35

• what is the result of f on 36?

More higher-order games

12 / 28

Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 35

• what is the result of f on 36?

◦ it is 15

More higher-order games

12 / 28

Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 35

• what is the result of f on 36?

◦ it is 15

• it is 16

· · ·

Anatomy of games

13 / 28

We describe programs as games. More precisely:

■ games are sequences of moves, called plays

■ following some formal conditions:

Anatomy of games

13 / 28

We describe programs as games. More precisely:

■ games are sequences of moves, called plays

■ following some formal conditions:

◆ games are played between two players:

◦ Opponent (O), that represents the program’s context

• Proponent (P), that represents the program

Revisit count

14 / 28

Being sequential and dynamic, programs are best described as games
between a Proponent (P) and an Opponent (O):

Revisit count

14 / 28

Being sequential and dynamic, programs are best described as games
between a Proponent (P) and an Opponent (O):

⊢ count : int → int :

O what is the result of count?

P it is a function

O what is the result of the function on 42?

P it is 1

O what is the result of the function on 23?

P it is 2

O what is the result of the function on 25?

P it is 3

· · ·

Anatomy of games

15 / 28

We describe programs as games. More precisely:

■ games are sequences of moves, called plays

■ following some formal conditions:

◆ games are played between two players:

◦ Opponent (O), that represents the program’s context

• Proponent (P), that represents the program

Anatomy of games

15 / 28

We describe programs as games. More precisely:

■ games are sequences of moves, called plays

■ following some formal conditions:

◆ games are played between two players:

◦ Opponent (O), that represents the program’s context

• Proponent (P), that represents the program

◆ P and O alternate; O starts first

Anatomy of games

15 / 28

We describe programs as games. More precisely:

■ games are sequences of moves, called plays

■ following some formal conditions:

◆ games are played between two players:

◦ Opponent (O), that represents the program’s context

• Proponent (P), that represents the program

◆ P and O alternate; O starts first

■ moves come in two forms:

◆ moves that call functions are questions (Q)

◆ moves that return function calls are answers (A)

Revisit count

16 / 28

Being sequential and dynamic, programs are best described as games
between a Proponent (P) and an Opponent (O):

Revisit count

16 / 28

Being sequential and dynamic, programs are best described as games
between a Proponent (P) and an Opponent (O):

⊢ count : int → int :

OQ what is the result of count?

PA it is a function

OQ what is the result of the function on 42?

PA it is 1

OQ what is the result of the function on 23?

PA it is 2

OQ what is the result of the function on 25?

PA it is 3

· · ·

Anatomy of games

17 / 28

We describe programs as games. More precisely:

■ games are sequences of moves, called plays

■ following some formal conditions:

◆ games are played between two players:

◦ Opponent (O), that represents the program’s context

• Proponent (P), that represents the program

◆ P and O alternate; O starts first

◆ moves come in two forms:

■ moves that call functions are questions (Q)

■ moves that return function calls are answers (A)

Anatomy of games

17 / 28

We describe programs as games. More precisely:

■ games are sequences of moves, called plays

■ following some formal conditions:

◆ games are played between two players:

◦ Opponent (O), that represents the program’s context

• Proponent (P), that represents the program

◆ P and O alternate; O starts first

◆ moves come in two forms:

■ moves that call functions are questions (Q)

■ moves that return function calls are answers (A)

◆ each A refers to a Q by the opposite player

◆ · · ·

Games more formally

18 / 28

J⊢ count : int → intK is a set of plays of the form:

⋆ † 42 1 23 2 25 3 · · ·

OQ PA OQ PA OQ PA OQ PA

where:

■ the first move is played by O and asks the result of count, given an
empty context (so, ⋆ is a move representing the empty context)

Games more formally

18 / 28

J⊢ count : int → intK is a set of plays of the form:

⋆ † 42 1 23 2 25 3 · · ·

OQ PA OQ PA OQ PA OQ PA

where:

■ the first move is played by O and asks the result of count, given an
empty context (so, ⋆ is a move representing the empty context)

■ the second move is played by P and answers the initial question
saying the result is a function (so, † is a move representing a function)

Games more formally

18 / 28

J⊢ count : int → intK is a set of plays of the form:

⋆ † 42 1 23 2 25 3 · · ·

OQ PA OQ PA OQ PA OQ PA

where:

■ the first move is played by O and asks the result of count, given an
empty context (so, ⋆ is a move representing the empty context)

■ the second move is played by P and answers the initial question
saying the result is a function (so, † is a move representing a function)

■ from there on, we engage in a OQ-PA pattern:

◆ O asks the result of the function on some input number

◆ P answers by simply playing the number of times it has been called

Games more formally II

19 / 28

Recall plusOne ≡ λxint. fx+ 1.

Jf : int → int ⊢ plusOne : int → intK is a set of plays of the form:

† † 42 42 84 85 · · ·

OQ PA OQ PQ OA PA

Games more formally II

19 / 28

Recall plusOne ≡ λxint. fx+ 1.

Jf : int → int ⊢ plusOne : int → intK is a set of plays of the form:

† † 42 42 84 85 · · ·

OQ PA OQ PQ OA PA

where, additionally to what we saw in JcountK,

■ we also have pointers between moves

■ each move has a pointer to an earlier move that justifies it

Games more formally II

19 / 28

Recall plusOne ≡ λxint. fx+ 1.

Jf : int → int ⊢ plusOne : int → intK is a set of plays of the form:

† † 42 42 84 85 · · ·

OQ PA OQ PQ OA PA

where, additionally to what we saw in JcountK,

■ we also have pointers between moves

■ each move has a pointer to an earlier move that justifies it

◆ e.g. an answer points to its corresponding question

Games more formally II

19 / 28

Recall plusOne ≡ λxint. fx+ 1.

Jf : int → int ⊢ plusOne : int → intK is a set of plays of the form:

† † 42 42 84 85 · · ·

OQ PA OQ PQ OA PA

where, additionally to what we saw in JcountK,

■ we also have pointers between moves

■ each move has a pointer to an earlier move that justifies it

◆ e.g. an answer points to its corresponding question

◆ a question points to the † move that the question refers to

■ e.g. the 42 played by O is a question to second † (i.e. f ′)

■ whereas the 42 played by P is a question to first † (i.e. f)

Games more formally III

20 / 28

Recall plusOne2 ≡ λxint. f(fx+ 1) + 1.

Jf : int → int ⊢ plusOne2 : int → intK is a set of plays of the form:

† † 42 42 84 85 170 171 · · ·

OQ PA OQ PQ OA PQ OA PA

Games more formally III

20 / 28

Recall plusOne2 ≡ λxint. f(fx+ 1) + 1.

Jf : int → int ⊢ plusOne2 : int → intK is a set of plays of the form:

† † 42 42 84 85 170 171 · · ·

OQ PA OQ PQ OA PQ OA PA

So, plays combine:

■ the idea of executing a program and exchanging moves with its
context

■ with those moves potentially representing higher-order functions

◆ the exchanged moves themselves enable more moves to be played

◆ pointers are used to keep an order on what-is-played-where

Game duality

21 / 28

We know that P in a game is the modelled program. But, who is O?

■ It is another program. But then, that program also has a game
semantics!

Game duality

21 / 28

We know that P in a game is the modelled program. But, who is O?

■ It is another program. But then, that program also has a game
semantics!

⊢ λyint. 2 ∗ y : int → int

O what is the result?

Game duality

21 / 28

We know that P in a game is the modelled program. But, who is O?

■ It is another program. But then, that program also has a game
semantics!

⊢ λyint. 2 ∗ y : int → int

O what is the result?

P it is a function

Game duality

21 / 28

We know that P in a game is the modelled program. But, who is O?

■ It is another program. But then, that program also has a game
semantics!

⊢ λyint. 2 ∗ y : int → int

O what is the result?

P it is a function

O what is the result for 42?

Game duality

21 / 28

We know that P in a game is the modelled program. But, who is O?

■ It is another program. But then, that program also has a game
semantics!

⊢ λyint. 2 ∗ y : int → int

O what is the result?

P it is a function

O what is the result for 42?

P it is 84

Game duality

21 / 28

We know that P in a game is the modelled program. But, who is O?

■ It is another program. But then, that program also has a game
semantics!

⊢ λyint. 2 ∗ y : int → int

O what is the result?

P it is a function

O what is the result for 42?

P it is 84

f : int → int ⊢ λxint. fx+ 1 : int → int

O given function f , what is the result?

P it is a function

O what is the result for 42?

P what is the result of f for 42?

O it is 84

P it is 85

Game duality

22 / 28

We know that P in a game is the modelled program. But, who is O?

■ It is another program. But then, that program also has a game
semantics!

⊢ λyint. 2 ∗ y : int → int

O what is the result?

P it is a function

O what is the result for 42?

P it is 84

f : int → int ⊢ λxint. fx+ 1 : int → int

O given function f , what is the result?

P it is a function

O what is the result for 42?

P what is the result of f for 42?

O it is 84

P it is 85

Game duality

23 / 28

If we write moves formally and re-arrange moves in space so that we see
where they come from

■ we see a duality between P and O in the middle component

⊢ λyint. 2∗y : int → int

O ⋆

P †

O 42

P 84

f : int → int ⊢ λxint. fx+ 1 : int → int

O †

P †

O 42

P 42

O 84

P 85

Game duality

23 / 28

If we write moves formally and re-arrange moves in space so that we see
where they come from

■ we see a duality between P and O in the middle component

⊢ λyint. 2∗y : int → int

O ⋆

P †

O 42

P 84

f : int → int ⊢ λxint. fx+ 1 : int → int

O †

P †

O 42

P 42

O 84

P 85

What is P on the LHS of the grey box, is O on the RHS, and viceversa.

Game duality and composition

24 / 28

If we write moves formally and re-arrange moves in space so that we see
where they come from

■ we see a duality between P and O in the middle component

⊢ λyint. 2∗y : int → int

O ⋆

P †

O 42

P 84

f : int → int ⊢ λxint. fx+ 1 : int → int

O †

P †

O 42

P 42

O 84

P 85

Game duality and composition

24 / 28

If we write moves formally and re-arrange moves in space so that we see
where they come from

■ we see a duality between P and O in the middle component

⊢ λyint. 2∗y : int → int

O ⋆

P †

O 42

P 84

f : int → int ⊢ λxint. fx+ 1 : int → int

O †

P †

O 42

P 42

O 84

P 85

Now hide the moves
played in the middle
int → int

What do we get?

Game duality and composition

25 / 28

⊢ ??? : int → int

O ⋆

P †

O 42

P 85

Game duality and composition

25 / 28

⊢ ??? : int → int

O ⋆

P †

O 42

P 85

We get the game corresponding to the composition of the two
programs:

⊢ let (f = λyint. 2 ∗ y) inλxint. fx+ 1

i.e. ⊢ λxint. 2 ∗ x+ 1.

So, we can compose games with a common right/left component:

■ synchronising moves in common component (using duality)

■ and hiding those moves.

This is analogous to how functions compose.

More plays

26 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int, where plusOne ≡ λxint. fx+1.

The corresponding game has plays for every possible behaviour of f :

◦ given function f , what is the result of plusOne?

• it is a function f ′

More plays

26 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int, where plusOne ≡ λxint. fx+1.

The corresponding game has plays for every possible behaviour of f :

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on integer i ?

More plays

26 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int, where plusOne ≡ λxint. fx+1.

The corresponding game has plays for every possible behaviour of f :

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on integer i ?

• what is the result of f on i ?

More plays

26 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int, where plusOne ≡ λxint. fx+1.

The corresponding game has plays for every possible behaviour of f :

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on integer i ?

• what is the result of f on i ?

◦ it is j

More plays

26 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int, where plusOne ≡ λxint. fx+1.

The corresponding game has plays for every possible behaviour of f :

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on integer i ?

• what is the result of f on i ?

◦ it is j

• it is j + 1 · · ·

More plays

26 / 28

Example. Consider a program f : int → int ⊢ plusOne : int → int, where plusOne ≡ λxint. fx+1.

The corresponding game has plays for every possible behaviour of f :

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on integer i ?

• what is the result of f on i ?

◦ it is j

• it is j + 1 · · ·

† † i i j j+1 i′ i′ j′ j′+1 · · ·

OQ PA OQ PQ OA PA OQ PQ OA PA

JplusOneK contains all plays of that form (i.e. for all i, j, i′, j′, · · · ∈ Z)

Results

27 / 28

Games model programs under any possible context:

• they contain plays for every O move allowed

• they include conditions that disallow spurious plays.

And this is the key to full-abstraction results:

M ∼= N ⇐⇒ JMK = JNK

Results

27 / 28

Games model programs under any possible context:

• they contain plays for every O move allowed

• they include conditions that disallow spurious plays.

And this is the key to full-abstraction results:

M ∼= N ⇐⇒ JMK = JNK

After the original papers on PCF, there was a series of works covering
extensions of PCF with effects: local state, local higher-order state,
non-determinism, probabilities, control operators, etc.

More recently, games have been extended to languages with
data-generating effects, like references, objects, channels, etc.
Nowadays, games capture a wide-range of higher-order languages,
typically fragments of OCaML and Java.

See the Lecture Notes for references.

Exercises

28 / 28

1. Consider the following alternative notion of equivalence for PCF terms:

Given Γ ⊢ M1 : θ and Γ ⊢ M2 : θ, we let M1
∼=′ M2 if, for every context C such that

⊢ C[M1] : int and ⊢ C[M2] : int, and for all i ∈ Z, C[M1] −→∗ i ⇐⇒ C[M2] −→∗ i.

Prove that ∼=′ coincides with ∼=.

2. We use the following shorthand notation: letx = M inN ≡ (λx.N)M .

Using the operational semantics of PCF:

• Verify that (let (f = λyint. 2 ∗ y) inλxint. fx+ 1)z −→∗ 2 ∗ z + 1.

• Compute (let (f = λyint. 2 ∗ y) inλxint. f(fx+ 1) + 1) z.

3. Working as in Slides 24-25, compose game-semantically ⊢ λyint. 2 ∗ y : int → int and
f : int → int ⊢ λxint. f(fx+ 1) + 1 : int → int.

4. Consider the program

⊢ λf int→int.λxint. fx+ 1 : (int → int) → (int → int)

obtained by λ-abstracting plusOne. Working first informally (using dialogues) and then formally
(using plays), express the plays in Jλf int→int.λxint. fx+ 1K:

• First, assuming that O plays a question † (for f) only once.

• Consider how the plays would look like if O plays the † more than once.

	Sequentiality
	Dynamic behaviours
	Programs sequences of computation steps
	Programs (computation) games
	Programs games
	Higher-order programs
	Higher-order games
	Higher-order games
	More higher-order programs
	More higher-order games
	More higher-order games
	Anatomy of games
	Revisit count
	Anatomy of games
	Revisit count
	Anatomy of games
	Games more formally
	Games more formally II
	Games more formally III
	Game duality
	Game duality
	Game duality
	Game duality and composition
	Game duality and composition
	More plays
	Results
	Exercises

