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The problem with parallel-or is that programs are not really functions.

For example, a program with two inputs:

■ either does not use one of the inputs,

■ or, if it does, it picks one to use first.

◮ Put otherwise, programs are sequential computations.

This is what makes behaviours like parallel-or non-programmable.

This mismatch between

• functions in domain-based models

• and programs in PCF

makes us look beyond functions for a model of programs.
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Example. Consider a program

count : int → int

such that:

■ the first time we call it, it returns 1;

■ the second time we call it, it returns 2;

■ · · ·

■ the i-th time we call it, it returns i.

While we cannot write such a program in PCF, it is easy to do it in any
language like Java, Python, OCaML, etc.

◮ Programs can change their behaviour dynamically.

This is another source of mismatch between programs and functions.
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Being sequential and dynamic, programs are best described as sequences
of computation steps:

left-or:

◦ call left-or(x, y)

• evaluate x

◦ x is 1

• return 1

◦ x is 0

• evaluate y

◦ y is v

• return v
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Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

left-or:

◦ what is the result of left-or(x, y)?

• what is the value of x?

◦ x is 1

• the result is 1

◦ x is 0

• what is the result of y?

◦ y is v

• the result is v
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Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

⊢ count : int → int :

◦ what is the result of count?

• it is a function

◦ what is the result of the function on 42?
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Being sequential and dynamic, programs are best described as games (or
dialogues) between the program and its calling context:

⊢ count : int → int :

◦ what is the result of count?

• it is a function

◦ what is the result of the function on 42?

• it is 1

◦ what is the result of the function on 23?

• it is 2

◦ what is the result of the function on 25?

• it is 3

· · ·
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Higher-order programs

7 / 28

Example. Consider a program

f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1

■ if we call it with a function f

■ it returns a function that, on input x, returns f(x) + 1

E.g. taking 2x ≡ λyint. 2 ∗ y : int → int :

(λf.plusOne) 2x 0 −→ (λxint.2x x+ 1) 0

−→ 2x 0 + 1 −→∗ 1

(λf.plusOne) 2x 42 −→ (λxint.2x x+ 1) 42

−→ 2x 42 + 1 −→∗ 85
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Example. Consider a program f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1.

Game:

◦ given function f , what is the result of plusOne?

• it is a function f ′
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Example. Consider a program f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1.

Game:

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 84

• it is 85
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Example. Consider a program f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1.

Game:
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Example. Consider a program f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1.

Game:

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 35
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Example. Consider a program f : int → int ⊢ plusOne : int → int

given by: plusOne ≡ λxint. fx+ 1.

Game:

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 35

• it is 71

· · ·
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Example. Consider a program

f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx + 1) + 1

■ if we call it with a function f

■ it returns a function that, on input x, returns f(f(x) + 1) + 1
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Example. Consider a program

f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx + 1) + 1

■ if we call it with a function f

■ it returns a function that, on input x, returns f(f(x) + 1) + 1

E.g. taking 2x ≡ λyint. 2 ∗ y : int → int :

(λf.plusOne2) 2x 0 −→ (λxint. 2x(2xx+ 1) + 1) 0

−→ 2x(2x 0 + 1) + 1 −→∗ 1

(λf.plusOne2) 2x 42 −→ (λxint. 2x(2xx+ 1) + 1) 42

−→ 2x(2x 42 + 1) + 1 −→∗ 171
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Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.
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• it is a function f ′
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Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?
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Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 84

• what is the result of f on 85?

◦ it is 170

• it is 171

· · ·
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Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?
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Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?
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Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 35

• what is the result of f on 36?

◦ it is 15



More higher-order games
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Example. Consider a program f : int → int ⊢ plusOne2 : int → int

given by: plusOne2 ≡ λxint. f(fx+ 1) + 1.

Game:

◦ given function f , what is the result of plusOne2?

• it is a function f ′

◦ what is the result of f ′ on 42?

• what is the result of f on 42?

◦ it is 35

• what is the result of f on 36?

◦ it is 15

• it is 16

· · ·
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■ following some formal conditions:
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◆ P and O alternate; O starts first

■ moves come in two forms:

◆ moves that call functions are questions (Q)
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Being sequential and dynamic, programs are best described as games
between a Proponent (P ) and an Opponent (O):

⊢ count : int → int :

OQ what is the result of count?

PA it is a function

OQ what is the result of the function on 42?

PA it is 1

OQ what is the result of the function on 23?

PA it is 2

OQ what is the result of the function on 25?

PA it is 3

· · ·
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◆ P and O alternate; O starts first
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■ moves that call functions are questions (Q)

■ moves that return function calls are answers (A)
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We describe programs as games. More precisely:

■ games are sequences of moves, called plays

■ following some formal conditions:

◆ games are played between two players:

◦ Opponent (O), that represents the program’s context

• Proponent (P ), that represents the program

◆ P and O alternate; O starts first

◆ moves come in two forms:

■ moves that call functions are questions (Q)

■ moves that return function calls are answers (A)

◆ each A refers to a Q by the opposite player

◆ · · ·
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J⊢ count : int → intK is a set of plays of the form:

⋆ † 42 1 23 2 25 3 · · ·

OQ PA OQ PA OQ PA OQ PA

where:

■ the first move is played by O and asks the result of count, given an
empty context (so, ⋆ is a move representing the empty context)
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J⊢ count : int → intK is a set of plays of the form:

⋆ † 42 1 23 2 25 3 · · ·

OQ PA OQ PA OQ PA OQ PA

where:

■ the first move is played by O and asks the result of count, given an
empty context (so, ⋆ is a move representing the empty context)

■ the second move is played by P and answers the initial question
saying the result is a function (so, † is a move representing a function)

■ from there on, we engage in a OQ-PA pattern:

◆ O asks the result of the function on some input number

◆ P answers by simply playing the number of times it has been called
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Jf : int → int ⊢ plusOne : int → intK is a set of plays of the form:

† † 42 42 84 85 · · ·
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Recall plusOne ≡ λxint. fx+ 1.

Jf : int → int ⊢ plusOne : int → intK is a set of plays of the form:

† † 42 42 84 85 · · ·

OQ PA OQ PQ OA PA

where, additionally to what we saw in JcountK,

■ we also have pointers between moves

■ each move has a pointer to an earlier move that justifies it

◆ e.g. an answer points to its corresponding question

◆ a question points to the † move that the question refers to

■ e.g. the 42 played by O is a question to second † (i.e. f ′)

■ whereas the 42 played by P is a question to first † (i.e. f)
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Recall plusOne2 ≡ λxint. f(fx+ 1) + 1.

Jf : int → int ⊢ plusOne2 : int → intK is a set of plays of the form:

† † 42 42 84 85 170 171 · · ·

OQ PA OQ PQ OA PQ OA PA
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Recall plusOne2 ≡ λxint. f(fx+ 1) + 1.

Jf : int → int ⊢ plusOne2 : int → intK is a set of plays of the form:

† † 42 42 84 85 170 171 · · ·

OQ PA OQ PQ OA PQ OA PA

So, plays combine:

■ the idea of executing a program and exchanging moves with its
context

■ with those moves potentially representing higher-order functions

◆ the exchanged moves themselves enable more moves to be played

◆ pointers are used to keep an order on what-is-played-where
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■ It is another program. But then, that program also has a game
semantics!
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We know that P in a game is the modelled program. But, who is O?

■ It is another program. But then, that program also has a game
semantics!

⊢ λyint. 2 ∗ y : int → int

O what is the result?

P it is a function

O what is the result for 42?

P it is 84

f : int → int ⊢ λxint. fx+ 1 : int → int

O given function f , what is the result?

P it is a function

O what is the result for 42?

P what is the result of f for 42?

O it is 84

P it is 85
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We know that P in a game is the modelled program. But, who is O?

■ It is another program. But then, that program also has a game
semantics!

⊢ λyint. 2 ∗ y : int → int

O what is the result?

P it is a function

O what is the result for 42?

P it is 84

f : int → int ⊢ λxint. fx+ 1 : int → int

O given function f , what is the result?

P it is a function

O what is the result for 42?

P what is the result of f for 42?

O it is 84

P it is 85
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If we write moves formally and re-arrange moves in space so that we see
where they come from

■ we see a duality between P and O in the middle component

⊢ λyint. 2∗y : int → int

O ⋆

P †

O 42

P 84

f : int → int ⊢ λxint. fx+ 1 : int → int

O †

P †

O 42

P 42

O 84

P 85
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If we write moves formally and re-arrange moves in space so that we see
where they come from

■ we see a duality between P and O in the middle component

⊢ λyint. 2∗y : int → int

O ⋆

P †

O 42

P 84

f : int → int ⊢ λxint. fx+ 1 : int → int

O †

P †

O 42

P 42

O 84

P 85

What is P on the LHS of the grey box, is O on the RHS, and viceversa.
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If we write moves formally and re-arrange moves in space so that we see
where they come from

■ we see a duality between P and O in the middle component

⊢ λyint. 2∗y : int → int

O ⋆

P †

O 42

P 84

f : int → int ⊢ λxint. fx+ 1 : int → int

O †

P †

O 42

P 42

O 84
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If we write moves formally and re-arrange moves in space so that we see
where they come from

■ we see a duality between P and O in the middle component

⊢ λyint. 2∗y : int → int

O ⋆

P †

O 42

P 84

f : int → int ⊢ λxint. fx+ 1 : int → int

O †

P †

O 42

P 42

O 84

P 85

Now hide the moves
played in the middle
int → int

What do we get?
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⊢ ??? : int → int

O ⋆

P †

O 42

P 85
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⊢ ??? : int → int

O ⋆

P †

O 42

P 85

We get the game corresponding to the composition of the two
programs:

⊢ let (f = λyint. 2 ∗ y) inλxint. fx+ 1

i.e. ⊢ λxint. 2 ∗ x+ 1.

So, we can compose games with a common right/left component:

■ synchronising moves in common component (using duality)

■ and hiding those moves.

This is analogous to how functions compose.
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Example. Consider a program f : int → int ⊢ plusOne : int → int, where plusOne ≡ λxint. fx+1.

The corresponding game has plays for every possible behaviour of f :

◦ given function f , what is the result of plusOne?

• it is a function f ′
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Example. Consider a program f : int → int ⊢ plusOne : int → int, where plusOne ≡ λxint. fx+1.

The corresponding game has plays for every possible behaviour of f :

◦ given function f , what is the result of plusOne?

• it is a function f ′

◦ what is the result of f ′ on integer i ?

• what is the result of f on i ?

◦ it is j

• it is j + 1 · · ·

† † i i j j+1 i′ i′ j′ j′+1 · · ·

OQ PA OQ PQ OA PA OQ PQ OA PA

JplusOneK contains all plays of that form (i.e. for all i, j, i′, j′, · · · ∈ Z)
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Games model programs under any possible context:

• they contain plays for every O move allowed

• they include conditions that disallow spurious plays.

And this is the key to full-abstraction results:

M ∼= N ⇐⇒ JMK = JNK
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Games model programs under any possible context:

• they contain plays for every O move allowed

• they include conditions that disallow spurious plays.

And this is the key to full-abstraction results:

M ∼= N ⇐⇒ JMK = JNK

After the original papers on PCF, there was a series of works covering
extensions of PCF with effects: local state, local higher-order state,
non-determinism, probabilities, control operators, etc.

More recently, games have been extended to languages with
data-generating effects, like references, objects, channels, etc.
Nowadays, games capture a wide-range of higher-order languages,
typically fragments of OCaML and Java.

See the Lecture Notes for references.
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1. Consider the following alternative notion of equivalence for PCF terms:

Given Γ ⊢ M1 : θ and Γ ⊢ M2 : θ, we let M1
∼=′ M2 if, for every context C such that

⊢ C[M1] : int and ⊢ C[M2] : int, and for all i ∈ Z, C[M1] −→∗ i ⇐⇒ C[M2] −→∗ i.

Prove that ∼=′ coincides with ∼=.

2. We use the following shorthand notation: letx = M inN ≡ (λx.N)M .

Using the operational semantics of PCF:

• Verify that (let (f = λyint. 2 ∗ y) inλxint. fx+ 1)z −→∗ 2 ∗ z + 1.

• Compute (let (f = λyint. 2 ∗ y) inλxint. f(fx+ 1) + 1) z.

3. Working as in Slides 24-25, compose game-semantically ⊢ λyint. 2 ∗ y : int → int and
f : int → int ⊢ λxint. f(fx+ 1) + 1 : int → int.

4. Consider the program

⊢ λf int→int.λxint. fx+ 1 : (int → int) → (int → int)

obtained by λ-abstracting plusOne. Working first informally (using dialogues) and then formally
(using plays), express the plays in Jλf int→int.λxint. fx+ 1K:

• First, assuming that O plays a question † (for f) only once.

• Consider how the plays would look like if O plays the † more than once.
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