GAME SEMANTICS (DAY 2)

Andrzej Murawski
UNIVERSITY OF OXFORD

Nikos Tzevelekos Queen Mary University of London

GAME SEMANTICS

- ★ Two players: (System) and (Program)
- ★ Types are interpreted by games.
- ★ Programs are interpreted as strategies for P.
- ★ No winners or losers.
- ★ The dialogue is the central object of study.

GROUND ML

$$\theta ::= \zeta \mid \theta \times \theta \mid \theta \rightarrow \theta$$

$$\zeta ::= unit \mid int \mid ref \zeta$$

TYPING RULES I

$$\mathbb{A} = \biguplus_{\zeta} \mathbb{A}_{\zeta}$$

$$\overline{\mathrm{U},\Gamma dash ():}$$
 unit

$$\frac{i \in \mathbb{Z}}{\mathrm{U}, \Gamma \vdash i : \mathsf{int}}$$

$$\frac{(x:\theta) \in \Gamma}{U, \Gamma \vdash x:\theta}$$

$$\frac{i \in \mathbb{Z}}{\mathrm{U}, \Gamma \vdash () : \mathsf{unit}} \qquad \frac{i \in \mathbb{Z}}{\mathrm{U}, \Gamma \vdash i : \mathsf{int}} \qquad \frac{(x : \theta) \in \Gamma}{\mathrm{U}, \Gamma \vdash x : \theta} \qquad \frac{a \in \mathrm{U} \cap \mathbb{A}_{\zeta}}{\mathrm{U}, \Gamma \vdash a : \mathsf{ref}\,\zeta}$$

$$\frac{\mathrm{U},\Gamma \vdash M:\mathsf{int}\quad \mathrm{U},\Gamma \vdash N_0:\theta\quad \mathrm{U},\Gamma \vdash N_1:\theta}{\mathrm{U},\Gamma \vdash \mathsf{if}\,M\,\mathsf{then}\,N_1\,\mathsf{else}\,N_0:\theta} \qquad \frac{\mathrm{U},\Gamma \vdash M:\mathsf{int}}{\mathrm{U},\Gamma \vdash \mathsf{while}(M):\mathsf{unit}}$$

$$\dfrac{\mathrm{U},\Gamma dash M:\mathsf{int}}{\mathrm{U},\Gamma dash \mathsf{while}(M):\mathsf{unit}}$$

$$\frac{\mathbf{U}, \Gamma \uplus \{x : \theta\} \vdash M : \theta'}{\mathbf{U}, \Gamma \vdash \lambda x^{\theta}.M : \theta \to \theta'}$$

$$\frac{\mathbf{U}, \Gamma \vdash M : \theta \to \theta' \quad \mathbf{U}, \Gamma \vdash N : \theta}{\mathbf{U}, \Gamma \vdash MN : \theta'}$$

TYPING RULES 2

$$\frac{\mathbf{U}, \Gamma \vdash M : \theta \quad \mathbf{U}, \Gamma \vdash N : \theta'}{\mathbf{U}, \Gamma \vdash \langle M, N \rangle : \theta \times \theta'} \qquad \frac{\mathbf{U}, \Gamma \vdash M : \theta_1 \times \theta_2}{\mathbf{U}, \Gamma \vdash \pi_i M : \theta_i} \quad i \in \{1, 2\}$$

$$\frac{\mathrm{U},\Gamma \vdash M:\mathsf{int}\quad \mathrm{U},\Gamma \vdash N:\mathsf{int}}{\mathrm{U},\Gamma \vdash M \oplus N:\mathsf{int}} \qquad \frac{\mathrm{U},\Gamma \vdash M:\mathsf{ref}\zeta\quad \mathrm{U},\Gamma \vdash N:\mathsf{ref}\zeta}{\mathrm{U},\Gamma \vdash M = N:\mathsf{int}}$$

$$\frac{\mathrm{U},\Gamma \vdash M:\zeta}{\mathrm{U},\Gamma \vdash \mathrm{ref}(M):\mathrm{ref}\zeta} \qquad \frac{\mathrm{U},\Gamma \vdash M:\mathrm{ref}\zeta}{\mathrm{U},\Gamma \vdash !M:\zeta} \qquad \frac{\mathrm{U},\Gamma \vdash M:\mathrm{ref}\zeta}{\mathrm{U},\Gamma \vdash M:=N:\mathrm{unit}}$$

OPERATIONAL SEMANTICS (AUXILIARY NOTATION)

Stores = $\{S : \mathbb{A} \rightarrow (\{\star\} \cup \mathbb{Z} \cup \mathbb{A}) \mid S \text{ finite and legal } \}$

$$(S[a \mapsto x])(a') = \begin{cases} S(a') & \text{if } a' \in \text{dom}(S) \setminus \{a\} \\ x & \text{if } a' = a \end{cases}$$
 undefined otherwise

$$V ::= () \mid i \mid x \mid a \mid \langle V, V \rangle \mid \lambda x^{\theta}.M$$

OPERATIONAL SEMANTICS

$$\begin{array}{ccccc} (i \oplus j,S) & \longrightarrow & (k,S) & (k=i \oplus j) \\ ((\lambda x.M)V,S) & \longrightarrow & (M[V/x],S) \\ (\pi_1 \langle V_1, V_2 \rangle, S) & \longrightarrow & (V_1,S) \\ (\pi_2 \langle V_1, V_2 \rangle, S) & \longrightarrow & (V_2,S) \\ (\text{if } 0 \text{ then } M \text{ else } M',S) & \longrightarrow & (M',S) \\ (\text{if } i \text{ then } M \text{ else } M',S) & \longrightarrow & (M,S) & (i>0) \\ (\text{while}(M),S) & \longrightarrow & (\text{if } M \text{ then while}(M) \text{ else } (),S) \\ (a=b,S) & \longrightarrow & (0,S) & (a\neq b) \\ (a=a,S) & \longrightarrow & (1,S) \\ (!a,S) & \longrightarrow & (S(a),S) \\ (a:=V,S) & \longrightarrow & ((),S[a\mapsto V]) \\ (\text{ref}(V),S) & \longrightarrow & (a',S[a'\mapsto V]) & (a'\notin \text{dom}(S)) \\ \hline & \underbrace{(M,S) & \longrightarrow & (M',S')}_{(E[M],S) & \longrightarrow & (E[M'],S')} \end{array}$$

EVALUATION CONTEXTS

$$E ::= [] \mid E \oplus M \mid V \oplus E \mid \text{if } E \text{ then } M \text{ else } M \mid EM \mid VE \mid \langle E, M \rangle$$

$$\mid \langle V, E \rangle \mid \pi_i E \mid \text{ref}(E) \mid E = M \mid x = E \mid !E \mid E := M \mid V := E$$

For any term $\vdash M$: unit, we write $M \Downarrow$ if

$$(\emptyset, M) \longrightarrow (S, ())$$

for some store S.

SHORTHANDS

- let x = M in N stands for the term $(\lambda x^{\theta}.N)M$
- M; N stands for let x = M in N, where x does not occur in N
- while M do N can be coded as

if
$$M$$
 then while $((N; M))$ else $()$

• We can define divergent terms of type θ by

$$\operatorname{div}_{\theta} \equiv \operatorname{while}(1); M_{\theta},$$

where M_{θ} is an arbitrary term of type θ .

CONTEXTS

```
C ::= \left[ \right] \mid \text{if } C \text{ then } M \text{ else } M \mid \text{if } M \text{ then } C \text{ else } M \mid \text{if } M \text{ then } M \text{ else } C \right] \mid \text{while}(C) \mid \lambda x^{\theta}.C \mid MC \mid CM \mid \langle C,M \rangle \mid \langle M,C \rangle \mid \pi_{i}C \mid C \oplus M  \mid M \oplus C \mid C = M \mid M = C \mid \text{ref}(C) \mid !C \mid C := M \mid M := C
```

EQUIVALENCE

```
\Gamma \vdash M_1 : \theta \text{ and } \Gamma \vdash M_2 : \theta \text{ are } \boldsymbol{equivalent} \text{ (written } \Gamma \vdash M_1 \cong M_2) if, for any context C such that \vdash C[M_1], C[M_2] : \mathsf{unit}, C[M_1] \Downarrow \text{ if and only if } C[M_2] \Downarrow.
```

EQUIVALENCE?

```
\operatorname{gen} \equiv \lambda z^{\operatorname{int}}. \operatorname{let} x = \operatorname{ref}(0) \operatorname{in} (x := z; x) : \operatorname{int} \to \operatorname{ref} \operatorname{int}\operatorname{gen}' \equiv \operatorname{let} x = \operatorname{ref}(0) \operatorname{in} \lambda z^{\operatorname{int}}. (x := z; x) : \operatorname{int} \to \operatorname{ref} \operatorname{int}
```

$$C \equiv (\lambda f^{\text{int} \rightarrow \text{ref int}})$$
. if $(f0 = f0)$ then $()$ else div $)$ $[]$

EQUIVALENCE?

```
M_1 \equiv \det x = \operatorname{ref}(0) \operatorname{in} \lambda y^{\operatorname{ref int}}. x = y : \operatorname{ref int} \to \operatorname{int}, M_2 \equiv \lambda y^{\operatorname{ref int}}.0 : \operatorname{ref int} \to \operatorname{int}.
```

FULL ABSTRACTION

$$\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket$$
 if and only if $M_1 \cong M_2$

COMPOSITIONAL INTERPRETATION

- Types interpreted by games between O and P.
- Terms interpreted by strategies for P.
- Each syntactic construct interpreted through special strategies, constructions on strategies and composition.
- This is elegant but may obscure intuitions. We shall start with a more direct interpretation.

TOYML

The types of ToyML are generated according to the following grammar.

$$\beta ::= unit \mid int \mid refint$$

$$\theta ::= \beta \mid \beta \rightarrow \beta$$

TOYM

 $\frac{i \in \mathbb{Z}}{\Gamma \vdash () : \mathsf{unit}} \qquad \frac{i \in \mathbb{Z}}{\Gamma \vdash i : \mathsf{int}} \qquad \frac{(x : \theta) \in \Gamma}{\Gamma \vdash x : \theta} \qquad \frac{\Gamma \vdash M : \mathsf{int}}{\Gamma \vdash \mathsf{while}(M) : \mathsf{unit}}$

 $\Gamma \vdash M : \mathsf{int} \quad \Gamma \vdash N : \mathsf{int}$ $\Gamma \vdash M \oplus N : \mathsf{int}$

 $\Gamma \vdash M: \mathsf{int} \qquad \Gamma \vdash N, N': \theta$

 $\Gamma \vdash \mathsf{if}\ M \mathsf{ then}\ N \mathsf{ else}\ N' : \theta$

 $\Gamma \uplus \{x : \beta\} \vdash M : \beta'$ $\Gamma \vdash \lambda x^{\beta}.M: \beta \to \beta'$

 $\Gamma \vdash M : \beta \to \beta' \quad \Gamma \vdash N : \beta$

 $\overline{\Gamma \vdash MN}: eta'$

 $\Gamma dash M:\mathsf{int}$ $\Gamma \vdash \mathsf{ref}(M) : \mathsf{ref} \mathsf{ int }$

 $\Gamma \vdash M$: ref int $\Gamma \vdash N$: ref int

 $\Gamma \vdash M = N$: int

 $\frac{\Gamma \vdash M : \mathsf{ref} \; \mathsf{int}}{\Gamma \vdash !M : \mathsf{int}} \qquad \frac{\Gamma \vdash M : \mathsf{ref} \; \mathsf{int}}{\Gamma \vdash M := N : \mathsf{unit}}$

 $\vdash 1: \mathsf{int}$

$$\begin{array}{cc} \star & (\mathsf{r}_\downarrow, 1) \\ O & P \end{array}$$

 $x: \mathsf{int} \vdash x + 1: \mathsf{int}$

$$egin{array}{ccc} i & (\mathsf{r}_\downarrow, i+1) \ O & P \end{array}$$

 $x: \mathsf{int}, f: \mathsf{int} \to \mathsf{int} \vdash fx + fx: \mathsf{int}$

$$(i,\dagger)$$
 (c_f,i) (r_f,j) (c_f,i) (r_f,j') $(\mathsf{r}_\downarrow,j+j')$ O P O P

 $f: \mathsf{int} \to \mathsf{int}, g: \mathsf{int} \to \mathsf{int} \vdash f(g(0)) + 1: \mathsf{int}$

$$(\dagger,\dagger)$$
 $(\mathsf{c}_g,0)$ (r_g,i) (c_f,i) (r_f,j) $(\mathsf{r}_\downarrow,j+1)$ O P O P

$$\vdash \lambda x^{\mathsf{int}}.x + 1 : \mathsf{int} \to \mathsf{int}$$

$$\star$$
 $(\mathsf{r}_{\downarrow},\dagger)$ (c,i_1) (r,i_1+1) (c,i_2) (r,i_2+1) \cdots O P O P

$$f: \operatorname{int} \to \operatorname{int} \vdash \operatorname{let} y = f(0) \operatorname{in} (\lambda x^{\operatorname{int}}.f(x+y)+1) : \operatorname{int} \to \operatorname{int}$$

†
$$(c_f, 0)$$
 (r_f, j) $(r_{\downarrow}, \dagger)$ (c, i_1) $(c_f, i_1 + j)$ (r_f, j_1) $(r, j_1 + 1)$... O P O P O P

 $x : \mathsf{ref} \mathsf{int} \vdash !x + 1 : \mathsf{int}$

$$\begin{array}{cc} a^{(a,i)} & (\mathbf{r}_{\downarrow}, i+1)^{(a,i)} \\ O & P \end{array}$$

 $x: \mathsf{ref} \mathsf{int}, f: \mathsf{int} \to \mathsf{int} \vdash f(!x) + !x: \mathsf{int}$

$$(a, \dagger)^{(a,i)} (c_f, i)^{(a,i)} (r_f, j)^{(a,i')} (r_{\downarrow}, j + i')^{(a,i')}$$
 $O \qquad P \qquad O \qquad P$

 $\vdash \lambda x^{\mathsf{int}}.\mathsf{ref}(x) : \mathsf{int} \to \mathsf{ref} \mathsf{int}$

LET'S PLAY!

- Dialogue between the environment (O) and the program (P).
- Technically, sequences of moves that involve names drawn from an infinite set (stable under name invariance, i.e. nominal sets).
- Moves are accompanied by evolving stores.
- We focus on complete plays (all questions answered, all calls have returns), as these characterize contextual equivalence.

SEMANTIC VALUES (USED BY PLAYERS)

$$egin{array}{lll} \mathcal{V}_{\mathsf{unit}} &=& \{\star\} \ \mathcal{V}_{\mathsf{int}} &=& \mathbb{Z} \ \mathcal{V}_{\mathsf{ref\,int}} &=& \mathbb{A}_{\mathsf{int}} \ \mathcal{V}_{eta
ightarrow eta'} &=& \{\dagger\} \end{array}$$

MOVES

Let $\Gamma = \{x_1 : \theta_1, \dots, x_m : \theta_m\}$ and $\Gamma \vdash M : \theta$ be a ToyML typing judgment. The set $M_{\Gamma \vdash \theta}$ of **moves associated** with Γ and θ is defined to be

$$M_{\Gamma \vdash \theta} = I_{\Gamma} \cup M_{\theta} \cup \bigcup_{1 < i < m} M_{x_i}$$

$$M_{\Gamma \vdash \theta} = I_{\Gamma} \cup M_{\theta} \cup \bigcup_{1 < i < m} M_{x_i}$$

• I_{Γ} is the set of *initial moves* given by

$$I_{\Gamma} = \{ (\ell_1, \cdots, \ell_m) \mid \ell_i \in \mathcal{V}_{\theta_i}, 1 \leq i \leq m \};$$

- M_{θ} is the set of output moves defined by
 - $-M_{\theta} = \{ (\mathbf{r}_{\downarrow}, \ell) \mid \ell \in \mathcal{V}_{\theta} \} \text{ if } \theta \text{ is a base type,}$
 - $-M_{\theta} = \{ (\mathbf{r}_{\downarrow}, \dagger) \} \cup \{ (\mathbf{c}, \ell) \mid \ell \in \mathcal{V}_{\theta'} \} \cup \{ (\mathbf{r}, \ell) \mid \ell \in \mathcal{V}_{\theta''} \} \text{ if } \theta = \theta' \to \theta'';$
- M_{x_i} is the set of *variable moves*, taken to be empty if θ_i is a base type and, if $\theta_i = \theta'_i \to \theta''_i$, equal to

$$\{ (\mathsf{c}_{x_i}, \ell) \mid \ell \in \mathcal{V}_{\theta_i'} \} \cup \{ (\mathsf{r}_{x_i}, \ell) \mid \ell \in \mathcal{V}_{\theta_i''} \}.$$

MOVES SUMMARY

- Each non-initial move consists of a pair (t, ℓ) of a tag and a (semantic) value.
- For each function-type identifier x in Γ , we have introduced tags \mathbf{c}_x and \mathbf{r}_x . They can be viewed as calls and returns related to that identifier. The accompanying value in e.g. a move (\mathbf{c}_x, ℓ) corresponds to the value that identifier is called with.
- Similarly, \mathbf{r}_{\downarrow} can be taken to correspond to the fact that our modelled term was successfully evaluated, and, if θ is a function type, \mathbf{c} and \mathbf{r} refer respectively to calling the corresponding value and obtaining a result.

NOTATION FOR MOVES

$$M_{\Gamma \vdash \theta} = I_{\Gamma} \cup M_{\theta} \cup \bigcup_{1 < i < m} M_{x_i}$$

• I_{Γ} is the set of *initial moves* given by

$$I_{\Gamma} = \{ (\ell_1, \cdots, \ell_m) \mid \ell_i \in \mathcal{V}_{\theta_i}, 1 \leq i \leq m \};$$

Moves are ranged over by m and variants. We shall use i to range over I_{Γ} , and we shall often write i_{x_i} for ℓ_i .

MOVE OWNERSHIP

• O-moves (context)

initial moves and those with tags \mathbf{r}_x , \mathbf{c}

• P-moves (program)

those with tags r_{\downarrow} , c_x , r_{\downarrow}

Using ownership of moves, we can extend the definition to names saying that a name a is owned by the owner of the first move m in which it occurs.

SEQUENCES AND PLAYS

- We aim to define a notion of complete play next.
- It is intended to model successful interactions between a program and some environment.
- We begin with the underlying sequences of moves.
- Sequences augmented with stores yield plays.

COMPLETE SEQUENCES

A **complete sequence** over $\Gamma \vdash \theta$ is a (possibly empty) sequence of moves $i(t_1, \ell_1) \cdots (t_k, \ell_k)$ such that the sequence $t_1 \cdots t_k$ of tags matches the grammar:

$$X \operatorname{\mathsf{r}}_{\downarrow} (\operatorname{\mathsf{c}} X \operatorname{\mathsf{r}})^* \quad \text{where} \quad X = \left(\sum_{(x:\theta' \to \theta'') \in \Gamma} (\operatorname{\mathsf{c}}_x \operatorname{\mathsf{r}}_x) \right)^*.$$

We assume that $Xr_{\downarrow}(cXr)^*$ degenerates to Xr_{\downarrow} when c, r are not available in $M_{\Gamma \vdash \theta}$, i.e. θ is a base type.

COMPLETE PLAYS

A **complete play** over $\Gamma \vdash \theta$ is a sequence $m_1^{S_1} \cdots m_k^{S_k}$ of moves-with-store satisfying the conditions below.

- $m_1 \cdots m_k$ is a complete sequence over $\Gamma \vdash \theta$.
- For any $1 \leq i \leq k$, $dom(S_i) = \nu(m_1 \cdots m_i)$.

 $\nu(x)$ stands for the set of elements of A (names) that occur in x.

INTERPRETATION

- Next we shall discuss how to assign, to any ToyML term $\Gamma \vdash M : \theta$, a set of complete plays over $\Gamma \vdash \theta$. We shall write $(\Gamma \vdash M : \theta)$ for that set.
- This constitutes a very direct account of the gamesemantic interpretation of GroundML (to follow), specialised to ToyML.
- The complete-play interpretation is guaranteed to yield the following result.

Theorem (Full Abstraction)

Let $\Gamma \vdash M_1, M_2 : \theta$ be ToyML terms. Then $\Gamma \vdash M_1 \cong M_2$ if and only if $(\Gamma \vdash M_1) = (\Gamma \vdash M_2)$.

INITIAL CASES

$$() \mid i \mid x \mid x \oplus y \mid \mathsf{ref}(x) \mid x = y \mid$$

$$!x \mid x := y \mid \text{if } x \text{ then } N \text{ else } N'$$

SKIP AND INTEGERS

Skip command (())

 $(\Gamma \vdash () : \mathsf{unit})$ is defined to contain all complete plays over $\Gamma \vdash \mathsf{unit}$ that have the shape $i^S(\mathsf{r}_{\downarrow}, \star)^S$. Here P simply responds with the move $(\mathsf{r}_{\downarrow}, \star)$ without modifying the store.

Integer constant (i)

The defining complete plays for $(\Gamma \vdash i : \text{int})$ have the shape $i^S(r_{\downarrow}, i)^S$. This follows the same pattern as above, except that the value is i.

VARIABLES

- The complete plays in $(\Gamma \vdash x : \beta)$ all have the form $i^S(\mathsf{r}_{\downarrow}, i_x)^S$.
- For $(\Gamma \vdash x : \beta \to \beta')$, the complete plays must have the form

$$i^S(\mathbf{r}_{\downarrow},\dagger)^S X_1 \cdots X_k$$

where $k \geq 0$ and

$$X_i = (\mathsf{c},\ell_i)^{S_i}(\mathsf{c}_x,\ell_i)^{S_i}(\mathsf{r}_x,\ell_i')^{S_i'}(\mathsf{r},\ell_i')^{S_i'}$$

for all $1 \le i \le k$.

P never changes the stores played by O. In contrast, O is allowed to modify the stores insofar as the definition of complete play allows, i.e. the integer values in S'_i may be different from the corresponding values in S_i .

Arithmetic operations $(x \oplus y)$

 $(\Gamma \vdash x \oplus y : int)$ is given by complete plays of the form

$$\mathrm{i}^S(\mathsf{r}_\downarrow,\mathrm{i}_x\oplus\mathrm{i}_y).$$

Reference creation (ref(x))

 $(\Gamma \vdash \mathsf{ref}(x) : \mathsf{refint})$ is defined by complete plays of the form

$$\mathrm{i}^S(\mathsf{r}_\downarrow,a)^{S[a\mapsto \mathrm{i}_x]}$$

with $a \in \mathbb{A}_{int} \setminus dom(S)$.