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GAME SEMANTICS

★ Two players:  O (System) and P (Program)

★ Types are interpreted by games. 

★ Programs are interpreted as strategies for P.

★ No winners or losers.

★ The dialogue is the central object of study.
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following grammar,

θ ::= ζ | θ × θ | θ → θ

ζ ::= unit | int | ref ζ

and types of the ζ kind are called ground.

Let us fix a set A =
⊎

ζ Aζ of location names, which precisely
correspond to names as in nominal sets (cf. Chapter 2, where A =
⊎

i∈ω Ai). That is, we assume an enumeration ζ1, ζ2, · · · of ground types
so that, for each i, the sets Aζi

and Ai coincide. Note that each location
name is associated with a unique ground type, namely the type indexing
its originating name set.

Definition 3.2. The syntax of supported terms is given as follows,

M ::= () | a | i | x | M ⊕ M | while(M) | if M then M else M | λxθ.M

| MM | ⟨M, M⟩ | π1M | π2M | ref(M) | M = M | !M | M := M

where ⊕ ranges over a set of arithmetic operators, x and i range over
variables and integers respectively, and a over elements of A. A term
is a supported term featuring no locations (i.e. with empty support).

Supported terms are typed in environments U, Γ, where U is a finite
set of location names and Γ is a variable typing context. The typing
rules are given in Figure 3.1.

Remark 3.3. Why are there distinct categories for terms and supported
terms? This distinction is meant to convey the difference between a
syntactic phrase that a user can write, which cannot contain location
names2, and the syntactic phrases produced when a program is exe-
cuted, where locations appear as soon as a ref(...) operator is evaluated.

Thus, the language is best described as the call-by-value λ-calculus
with products over base types ζ, augmented with the do-nothing com-
mand, integer constants, arithmetic operations, looping and reference
manipulation (allocation, dereferencing, assignment).

In what follows, we often use the following shorthand notation:

2in the sense that the set A is not accessible to the programmer (think of Java
or ML programs).
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U, Γ ⊢ () : unit
i ∈ Z

U, Γ ⊢ i : int

(x : θ) ∈ Γ

U, Γ ⊢ x : θ

a ∈ U ∩ Aζ

U, Γ ⊢ a : refζ

U, Γ ⊢ M : int U, Γ ⊢ N0 : θ U, Γ ⊢ N1 : θ
U, Γ ⊢ if M then N1 else N0 : θ

U, Γ ⊢ M : int

U, Γ ⊢ while(M) : unit

U, Γ $ { x : θ } ⊢ M : θ′

U, Γ ⊢ λxθ.M : θ → θ′

U, Γ ⊢ M : θ → θ′ U, Γ ⊢ N : θ

U, Γ ⊢ MN : θ′

U, Γ ⊢ M : θ U, Γ ⊢ N : θ′

U, Γ ⊢ ⟨M, N⟩ : θ × θ′
U, Γ ⊢ M : θ1 × θ2

U, Γ ⊢ πiM : θi
i∈{1,2}

U, Γ ⊢ M : int U, Γ ⊢ N : int
U, Γ ⊢ M ⊕ N : int

U, Γ ⊢ M : refζ U, Γ ⊢ N : refζ
U, Γ ⊢ M = N : int

U, Γ ⊢ M : ζ

U, Γ ⊢ ref(M) : refζ
U, Γ ⊢ M : refζ
U, Γ ⊢ !M : ζ

U, Γ ⊢ M : refζ U, Γ ⊢ N : ζ
U, Γ ⊢ M := N : unit

Figure 3.1: Typing rules of GroundML.

• let x = M in N for the term (λxθ.N)M ;

• M ; N for let x = M in N , where x does not occur in N ;

• λ_θ.M for λxθ.M , where x does not occur in M .

Observe that, for any type θ, we can define some closed term ⊢ Mθ : θ.
Hence, we can also define:

divθ ≡ while(1); Mθ ,

which will be used as a canonical divergent term of type θ.

3.2 Operational semantics

We give an operational semantics for GroundML by means of a small-
step transition relation. It relates pairs consisting of (typed) supported
terms together with a representation of the state of the memory. For-
mally, we define the set of stores as:

Stores = { S : A ⇀ ({ ⋆ } ∪ Z ∪ A) | S finite and legal }
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where a partial function S : A ⇀ ({ ⋆ } ∪ Z ∪ A) is called legal just if
cod(S) ∩ A ⊆ dom(S) and for all names a ∈ dom(S):

(a ∈ Aunit =⇒ S(a) = ⋆) ∧ (a ∈ Aint =⇒ S(a) ∈ Z)

∧ (a ∈ Arefζ =⇒ S(a) ∈ Aζ)

Intuitively, a store is legal if it is well typed and, moreover, all the
location names that are stored in it are also part of its domain. Put
otherwise, there are no locations with undefined values in a store. Note
here that we use ⋆ as the unique value of type unit as () can be cum-
bersome when mixed with other brackets. In the sequel we follow the
convention that ⋆ and () are aliases of one another, with the former
used in stores (and in game moves), and the latter in syntactic terms.

Given a store S, a name a and some x ∈ { ⋆ }∪Z∪A, we define the
update S[a '→ x] by:

(S[a '→ x])(a′) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

S(a′) if a′ ∈ dom(S) \ {a}

x if a′ = a

undefined otherwise

with the proviso that the latter is still a store. We extend this notation
to:

S[T ] = S[a1 '→ T (a1)] · · · [an '→ T (an)]

for any stores S and T with dom(T ) = { a1, · · · , an }. Finally, a con-
figuration is a pair (M, S) of a supported term and a store such that
dom(S) contains all the names which appear in M .

The transition relation is produced by the rules in Figure 3.2. The
context rule uses evaluation contexts, which are given by the syntax:

E ::= [ ] | E ⊕ M | V ⊕ E | if E then M else M | EM | V E | ⟨E, M⟩

| ⟨V, E⟩ | πiE | ref(E) | E = M | x = E | !E | E := M | V := E

where [ ] denotes the hole of the context and M ranges over supported
terms. On the other hand, V ranges over values, which are given by:

V ::= () | i | x | a | ⟨V, V ⟩ | λxθ.M

Note in particular that values are supported terms. For any term ⊢ M :
unit, we write M ⇓ if (∅, M) −→→ (S, ()), for some store S.
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(i ⊕ j, S) −→ (k, S) (k = i ⊕ j)
((λx.M)V, S) −→ (M [V/x], S)

(π1⟨V1, V2⟩, S) −→ (V1, S)
(π2⟨V1, V2⟩, S) −→ (V2, S)

(if 0 then M else M ′, S) −→ (M ′, S)
(if i then M else M ′, S) −→ (M, S) (i > 0)

(while(M), S) −→ (if M then while(M) else (), S)
(a = b, S) −→ (0, S) (a ≠ b)
(a = a, S) −→ (1, S)

(!a, S) −→ (S(a), S)
(a := V, S) −→ ((), S[a '→ V ])
(ref(V ), S) −→ (a′, S[a′ '→ V ]) (a′ /∈ dom(S))

(M, S) −→ (M ′, S′)

(E[M ], S) −→ (E[M ′], S′)

Figure 3.2: Operational semantics of GroundML.

Next we take a closer look at some examples of GroundML terms
and their behaviour.

Example 3.4 (Name generators). Consider the following (closed) terms
that generate integer references.

gen ≡ λzint. let x = ref(0) in (x := z; x) : int → ref int

gen′ ≡ let x = ref(0) in λzint.(x := z; x) : int → ref int

The two terms differ in one crucial aspect: while gen returns a fresh
reference name each time it is called, gen′ always returns the same name
(which is indeed fresh the first time it is called).

Example 3.5 (Name channels). The fact that names can be stored in
GroundML enables us to simulate the behaviour of channels, in the style
of the π-calculus. Consider the following term trmit.

f : ref ref int → unit, g : unit → ref ref int ⊢

let c1 = ref(ref(0)) in (fc1; let c2 = g() in λ_unit. c2 := !c1) : unit → unit
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The transition relation is produced by the rules in Figure 3.2. The
context rule uses evaluation contexts, which are given by the syntax:

E ::= [ ] | E ⊕ M | V ⊕ E | if E then M else M | EM | V E | ⟨E, M⟩
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where [ ] denotes the hole of the context and M ranges over supported
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V ::= () | i | x | a | ⟨V, V ⟩ | λxθ.M

Note in particular that values are supported terms. For any term ⊢ M :
unit, we write M ⇓ if (∅, M) −→→ (S, ()), for some store S.

For any term ` M : unit, we write M + if

(;,M) �!! (S, ())

for some store S.

23



SHORTHANDS

• let x = M inN stands for the term (�x✓.N)M

• M ;N stands for let x = M inN , where x does not
occur in N

• whileM doN can be coded as

ifM thenwhile((N ;M)) else ()

• We can define divergent terms of type ✓ by

div✓ ⌘ while(1);M✓,

where M✓ is an arbitrary term of type ✓.

22
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The term creates an input channel c1 and passes it to its context (via
fc1); then receives an output channel c2 from the context; and finally
returns a process that listens at c1 and transmits back to c2.

The operational semantics allows us to evaluate terms to values.
For closed terms of ground type, this will be sufficient to reveal all
there is to their behaviour. However, the case of higher-order terms
is much more complicated. In order to understand their computational
potential, not only does one need to evaluate the term, but also consider
the behaviour of the resultant value in future interactions. It is worth
remarking that these subsequent uses cannot be restricted to single
applications, because the behaviour of GroundML terms may evolve over
time and different results can be returned for the same arguments if a
function is applied to them repeatedly. This highlights the challenges
inherent in analysing higher-order programs with state. In order to
compare terms formally, one tests their behaviour in arbitrary contexts
whose shape is given below.

C ::= [ ] | if C then M else M | if M then C else M | if M then M else C

| while(C) | λxθ.C | MC | CM | ⟨C, M⟩ | ⟨M, C⟩ | πiC | C ⊕ M

| M ⊕ C | C = M | M = C | ref(C) | !C | C := M | M := C

Contexts are also used to define what it means for the terms to be
equivalent.

Definition 3.6. We say that the term-in-context Γ ⊢ M1 : θ approxi-
mates Γ ⊢ M2 : θ (written Γ ⊢ M1 ⊑ M2) if C[M1] ⇓ implies C[M2] ⇓
for any context C such that ⊢ C[M1], C[M2] : unit.

Two terms-in-context are equivalent if one approximates the other
(written Γ ⊢ M1

∼= M2).

For instance, the name generators of Example 3.4 are not equiva-
lent, as they can be distinguished by any context that calls the gener-
ator twice and compares the results. For instance, setting

C ≡ (λf int→ref int. if (f0 = f0) then () else div) [ ]

we obtain C[gen] ̸⇓ and C[gen′] ⇓. On the other hand, proving that
two terms are equivalent is trickier since picking a specific context (or



EQUIVALENCE
For any term ` M : unit, we write M + if

(;,M) �!! (S, ())

for some store S.

� ` M1 : ✓ and � ` M2 : ✓ are equivalent (written � ` M1
⇠= M2)

if, for any context C such that ` C[M1], C[M2] : unit,

C[M1]+ if and only if C[M2]+.
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Two terms-in-context are equivalent if one approximates the other
(written Γ ⊢ M1

∼= M2).

For instance, the name generators of Example 3.4 are not equiva-
lent, as they can be distinguished by any context that calls the gener-
ator twice and compares the results. For instance, setting

C ≡ (λf int→ref int. if (f0 = f0) then () else div) [ ]

we obtain C[gen] ̸⇓ and C[gen′] ⇓. On the other hand, proving that
two terms are equivalent is trickier since picking a specific context (or
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a bounded class of them) is not enough: rather, one needs to prove
equi-termination in every enclosing context.

Game semantics sets out to provide a semantic characterisation of
equivalence. We shall see that, for all terms Γ ⊢ M, N : θ:

Γ ⊢ M ∼= N ⇐⇒ comp(!Γ ⊢ M") = comp(!Γ ⊢ N")

that is, to show Γ ⊢ M ∼= N , it will suffice to calculate the game-
semantic denotations of terms and compare them for equality on “com-
plete” plays.

Example 3.7 (Equivalences). Terms in GroundML can create reference
names that are fresh and private (cannot be guessed by the environ-
ment). Next we consider three equivalences that explore these capabil-
ities. Our first equivalence is between the terms:

M1 ≡ let x = ref(0) in λyref int. x = y : ref int → int,

M2 ≡ λyref int. 0 : ref int → int.

In the former case, y has no chance of being equal to x as the latter is
never exposed outside of M1.

In the next example, the name x is wrapped into a function that
is passed to the environment. However, the environment will still be
unable to discover it, because it is protected by the fact that the value
of c is 0 when the environment has access to the function:

M3 ≡ let x = ref(0) in let c = ref(0) in

f(λ_. if !c = 0 then div else x); c := 1; λyref int. x = y

M4 ≡ f(λ_. div); λyref int. 0

with types f : (unit → ref int) → unit ⊢ M3, M4 : ref int → int. Note
that this equivalence would not hold if our language supported higher-
order references. The environment could then store the function and
delay its use until the value of c becomes 1. In the game semantic
setting, the equivalence will rely on a combinatorial condition called
visibility.

In our final example, the term M5 retains a secret name of type
ref int in a private reference of type ref ref int. If the secret is guessed



FULL ABSTRACTION

JM1K = JM2K if and only if M1
⇠= M2

Robin Milner (1977)
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COMPOSITIONAL 
INTERPRETATION

• Types interpreted by games between O and P.

• Terms interpreted by strategies for P.

• Each syntactic construct interpreted through special 
strategies, constructions on strategies and composition.

• This is elegant but may obscure intuitions. We shall 
start with a more direct interpretation.



TOYML

4
ToyML: A First-Order Language with Integer

References

To give the reader a flavour of the nominal approach, we first consider
ToyML, a minimalistic language with first-order procedures, looping
and integer-valued references.

4.1 Types and terms

The types of ToyML are generated according to the following grammar.

θ ::= β | β → β β ::= unit | int | ref int

ToyML terms have shapes defined below.

M ::= () | i | x | M ⊕ M | if M then M else M | λxβ.M | MM |

while(M) | ref(M) | M = M | !M | M := M

The corresponding typing rules are provided in Figure 4.1. For sim-
plicity, we only consider (unsupported) terms and, hence, there is no
need to keep track of the U sets. The syntax allows for the creation of
anonymous (λxβ.M) and undefined (x) first-order functions and their
application (MM).
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Γ ⊢ () : unit
i ∈ Z

Γ ⊢ i : int

(x : θ) ∈ Γ

Γ ⊢ x : θ
Γ ⊢ M : int

Γ ⊢ while(M) : unit

Γ ⊢ M : int Γ ⊢ N : int
Γ ⊢ M ⊕ N : int

Γ ⊢ M : int Γ ⊢ N, N ′ : θ

Γ ⊢ if M then N else N ′ : θ

Γ $ { x : β } ⊢ M : β′

Γ ⊢ λxβ.M : β → β′

Γ ⊢ M : β → β′ Γ ⊢ N : β

Γ ⊢ MN : β′

Γ ⊢ M : int
Γ ⊢ ref(M) : ref int

Γ ⊢ M : ref int Γ ⊢ N : ref int
Γ ⊢ M = N : int

Γ ⊢ M : ref int
Γ ⊢ !M : int

Γ ⊢ M : ref int Γ ⊢ N : int
Γ ⊢ M := N : unit

Figure 4.1: Typing rules of ToyML.

4.2 Concrete games

This section presents a game model of ToyML formulated in a direct
way that avoids references to (too much) game-semantic jargon. We
trust it will facilitate the passage to the following chapter of the tuto-
rial, in which a full-blown game model is presented for a higher-order
language. We shall focus on presenting a special kind of play, called
complete, as these are the plays that eventually deliver full abstraction
for GroundML.

Let us recall that game semantics views computation as a dialogue
between the environment (Opponent, O) and the program (Proponent,
P ). The game model we are about to sketch is based on sequences of
moves that involve names drawn from the infinite set A and which are
stable under name-invariance. Put otherwise, they form nominal sets.

We begin with several auxiliary definitions before specifying how
complete plays look like in our setting. For every type θ, we first define
the set Vθ of associated semantic values as follows:

Vunit = { ⋆ }, Vint = Z, Vref int = Aint, Vβ→β′ = { † },

and write V for the set of all semantic values. We shall use ℓ and variants



EXAMPLES

` 1 : int

? (r#, 1)
O P

x : int ` x+ 1 : int

i (r#, i+ 1)
O P
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` 1 : int

? (r#, 1)
O P

x : int ` x+ 1 : int

i (r#, i+ 1)
O P

24



EXAMPLES
x : int, f : int ! int ` fx+ fx : int

(i, †) (cf , i) (rf , j) (cf , i) (rf , j0) (r#, j + j
0)

O P O P O P

f : int ! int, g : int ! int ` f(g(0)) + 1 : int

(†, †) (cg, 0) (rg, i) (cf , i) (rf , j) (r#, j + 1)
O P O P O P
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EXAMPLES
` �x

int
.x+ 1 : int ! int

? (r#, †) (c, i1) (r, i1 + 1) (c, i2) (r, i2 + 1) · · ·
O P O P O P

f : int ! int ` let y = f(0) in (�xint.f(x+ y) + 1) : int ! int

† (cf , 0) (rf , j) (r#, †) (c, i1) (cf , i1 + j) (rf , j1) (r, j1 + 1) · · ·
O P O P O P O P

26



EXAMPLES
x : ref int ` !x+ 1 : int

a
(a,i) (r#, i+ 1)(a,i)

O P

x : ref int, f : int ! int ` f(!x)+!x : int

(a, †)(a,i) (cf , i)(a,i) (rf , j)(a,i
0) (r#, j + i

0)(a,i
0)

O P O P

27



EXAMPLES

` �x
int
.ref(x) : int ! ref int

? (r#, †) (c, i1) (r, a1)(a1,i1)

O P O P

(c, i2)(a1,i
0
1) (r, a2)(a1,i

0
1)(a2,i2) (c, i3)(a1,i

00
1)(a2,i

0
2) (r, a3)(a1,i

00
1)(a2,i

0
2)(a3,i3) · · ·

O P O P

ai 6= aj

28



LET’S PLAY!
• Dialogue between the environment (O) and the 

program (P).

• Technically, sequences of moves that involve names 
drawn from an infinite set (stable under name 
invariance, i.e. nominal sets).

• Moves are accompanied by evolving stores.

• We focus on complete plays (all questions answered, all 
calls have returns), as these characterize contextual 
equivalence.



SEMANTIC VALUES
(USED BY PLAYERS)

Vunit = { ? }
Vint = Z

Vref int = Aint

V�!�0 = { † }

19



MOVES
Let � = {x1 : ✓1, · · · , xm : ✓m} and � ` M : ✓ be a ToyML
typing judgment. The set M�`✓ of moves associated
with � and ✓ is defined to be

M�`✓ = I� [M✓ [
[

1im
Mxi

where:

• I� is the set of initial moves given by

I� = { (`1, · · · , `m) | `i 2 V✓i, 1  i  m };

• M✓ is the set of output moves defined by

– M✓ = { (r#, `) | ` 2 V✓ } if ✓ is a base type,

– M✓ = { (r#, †) } [ { (c, `) | ` 2 V✓0 } [ { (r, `) | ` 2
V✓00 } if ✓ = ✓

0 ! ✓
00;

• Mxi is the set of variable moves, taken to be empty
if ✓i is a base type and, if ✓i = ✓

0
i ! ✓

00
i , equal to

{ (cxi, `) | ` 2 V✓0i } [ { (rxi, `) | ` 2 V✓00i }.

Moves are ranged over by m and variants. We shall use
i to range over I�, and we shall often write ixi for `i.
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MOVES SUMMARY• Free variable type: � or �0 ! �
00

• Term type: � or �0 ! �
00

• Each non-initial move consists of a pair (t, `) of a tag
and a (semantic) value.

• For each function-type identifier x in �, we have in-
troduced tags cx and rx. They can be viewed as calls
and returns related to that identifier. The accompa-
nying value in e.g. a move (cx, `) corresponds to the
value that identifier is called with.

• Similarly, r# can be taken to correspond to the fact
that our modelled term was successfully evaluated,
and, if ✓ is a function type, c and r refer respectively
to calling the corresponding value and obtaining a
result.

• O-moves (context)

initial moves and those with tags rx, c

• P -moves (program)

those with tags r#, cx, r

Using ownership of moves, we can extend the definition
to names saying that a name a is owned by the owner of
the first move m in which it occurs.

11



NOTATION FOR MOVES
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MOVE OWNERSHIP

• Free variable type: � or �0 ! �
00

• Term type: � or �0 ! �
00

• Each non-initial move consists of a pair (t, `) of a tag
and a (semantic) value.

• For each function-type identifier x in �, we have in-
troduced tags cx and rx. They can be viewed as calls
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SEQUENCES AND PLAYS
• We aim to define a notion of complete play 

next. 

• It is intended to model successful interactions 
between a program and some environment.

• We begin with the underlying sequences of 
moves.

• Sequences augmented with stores yield plays.



COMPLETE SEQUENCES

A complete sequence over � ` ✓ is a (possibly empty)
sequence of moves i (t1, `1) · · · (tk, `k) such that the se-
quence t1 · · · tk of tags matches the grammar:

X r# (cX r)⇤ where X =

✓X
(x : ✓0!✓00)2�

(cx rx)

◆⇤
.

We assume that Xr#(cXr)⇤ degenerates to Xr# when c, r
are not available in M�`✓, i.e. ✓ is a base type.

12



COMPLETE PLAYS

A complete sequence over � ` ✓ is a (possibly empty)
sequence of moves i (t1, `1) · · · (tk, `k) such that the se-
quence t1 · · · tk of tags matches the grammar:

X r# (cX r)⇤ where X =

✓X
(x : ✓0!✓00)2�

(cx rx)

◆⇤
.

We assume that Xr#(cXr)⇤ degenerates to Xr# when c, r
are not available in M�`✓, i.e. ✓ is a base type.

A complete play over � ` ✓ is a sequence m
S1
1 · · ·mSk

k

of moves-with-store satisfying the conditions below.

• m1 · · ·mk is a complete sequence over � ` ✓.

• For any 1  i  k, dom(Si) = ⌫(m1 · · ·mi).

⌫(x) stands for the set of elements of A (names) that
occur in x.

12



INTERPRETATION
• Next we shall discuss how to assign, to any ToyML
term � ` M : ✓, a set of complete plays over � ` ✓.
We shall write L� ` M : ✓ M for that set.

• This constitutes a very direct account of the game-
semantic interpretation of GroundML (to follow), spe-
cialised to ToyML.

• The complete-play interpretation is guaranteed to
yield the following result.

Theorem (Full Abstraction)

Let � ` M1,M2 : ✓ be ToyML terms. Then
� ` M1

⇠= M2 if and only if L� ` M1 M = L� ` M2 M.

13



INITIAL CASES

() | i | x | x� y | ref(x) | x = y |

!x | x := y | if x thenN elseN 0

14



SKIP AND INTEGERS
4.3. Interpretation of ToyML terms 213

Skip command (())
! Γ ⊢ () : unit " is defined to contain all complete plays over Γ ⊢ unit
that have the shape iS(r↓, ⋆)S . Here P simply responds with the move
(r↓, ⋆) without modifying the store.

Integer constant (i)
The defining complete plays for ! Γ ⊢ i : int " have the shape iS(r↓, i)S .
This follows the same pattern as above, except that the value is i.

Variable (x)
We distinguish two cases depending on the type of x.

The complete plays in ! Γ ⊢ x : β " all have the form iS(r↓, ix)S . P
simply responds by copying the value of x provided by O in the initial
move and pairing it with the tag r↓.

For ! Γ ⊢ x : β → β′ ", the complete plays must have the form

iS(r↓, †)SX1 · · · Xk

where k ≥ 0 and

Xi = (c, ℓi)
Si(cx, ℓi)

Si(rx, ℓ′
i)

S′
i(r, ℓ′

i)
S′

i

for all 1 ≤ i ≤ k. Intuitively, this corresponds to P first replying with
the † value. Subsequently, a series of calls can be initiated by O. Each
such call (tag c) is forwarded by P to x by changing the tag to cx while
copying the value. Similarly, return moves by O (tag rx), which must
happen right after the matching call moves, are copied by modifying
the tag to r. Note that P never changes the stores played by O. In
contrast, O is allowed to modify the stores insofaras the definition of
complete play allows, i.e. the integer values in S′

i may be different from
the corresponding values in Si.

Arithmetic operations (x ⊕ y)
! Γ ⊢ x ⊕ y : int " is given by complete plays of the form iS(r↓, ix ⊕ iy).

Reference creation (ref(x))
! Γ ⊢ ref(x) : ref int " is defined by complete plays of the form

iS(r↓, a)S[a#→ix]



VARIABLES
() | i | x | x� y | ref(x) | x = y |

!x | x := y | if x thenN elseN 0

• The complete plays in L� ` x : � M all have the form

i
S
(r#, ix)S.

• For L� ` x : � ! �
0 M, the complete plays must have

the form

i
S
(r#, †)SX1 · · ·Xk

where k � 0 and

Xi = (c, `i)
Si(cx, `i)

Si(rx, `
0
i)
S0
i(r, `0i)

S0
i

for all 1  i  k.

P never changes the stores played by O. In contrast, O

is allowed to modify the stores insofar as the definition

of complete play allows, i.e. the integer values in S
0
i may

be di↵erent from the corresponding values in Si.
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Arithmetic operations (x� y)
L� ` x� y : int M is given by complete plays of the form

i
S
(r#, ix � iy).

Reference creation (ref(x))
L� ` ref(x) : ref int M is defined by complete plays of the

form

i
S
(r#, a)

S[a 7!ix]

with a 2 Aint \ dom(S).

Reference equality check (x = y)
We take L� ` x = y : int M to be

{iS(r#, 0)S | iS 2 I
st
� , ix 6= iy}[ {iS(r#, 1)S | iS 2 I

st
� , ix = iy}.

Note that ix, iy are names from Aint.

Dereferencing (!x)
In this instance P simply returns the value provided in

the store of the initial move:

L� ` !x : int M = {iS(r#, S(ix))S | iS 2 I
st
� }.

Note again that ix 2 Aint.
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