GAME SEMANTICS
() 73—

: . Nikos Tzevelekos
Andrzej Murawski QUEEN MARY

UNIVERSITY OF OXFORD  UNIVERSITY OF LONDON




BAME SEMANTICHE




ROUND ML

C|0x6

unit | int

0 — 0
ref ¢



S rPING RULESS

= (.CU:Q)GF CLGUﬂAC
U,T'F () : unit U, "¢ :int Wi IRt ) U, I'F a: ref

EREEYESint U LFENg:0 ULFFEN;:6 U I'EM:int
U,I' - if M then Nyelse Ny : 0 U,T" - while(M) : unit

U, 10 ) fa e e UT+-M:0—-0 UTLFN:#
EEEE 00— O UTHFMN:O




#TPING RULESTS

) U EE NG UTFM:6; x 6

UTF(MN):0x0 UTEr il 0
UT'FM:int UI'FN:int UIFM:ref( UTFEN:refC
UT'FEM@®N :int UT'-M=N :int
U AR e R G UTL'FM:ref¢ UT'EM :ref¢ Ul =Siye

s ef () s ref¢ U I'EIM : ¢ U, ' M:=N : unit



O

ERATIONAL S

-MAIN T

(AUXILIARY NOTATION)

Stores = {S:A— ({*x}UZUA) | S finite and legal }

S(a) if a’ € dom(S) \ {a}
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SVALUATION CONTEXTS
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For any term F M : unit, we write M | if

for some store S.



SHORTHANDS

e letz = M in N stands for the term (A\z?.N)M

e M: N stands for letx = M in N, where x does not
occur in NV

o while M do N can be coded as
if M then while((N; M)) else ()

e We can define divergent terms of type 6 by
divy = while(1); My,

where My is an arbitrary term of type 6.



CONTERTS

| | if Cthen M else M | if M then Celse M | if M then M else C
while(C) | A\2?.C | MC | CM | (C,M) | (M,C) | mC | C & M
MeC|C=M|M=C|ref(C)|!1C|C:=M | M:=C
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COMPOSITIONAL
INTERPRETATION

- Jypes interpreted by games between O and P
 [erms interpreted by strategies for P

» Each syntactic construct interpreted through special
strategies, constructions on strategies and composition.

» This is elegant but may obscure inturtions. We shall
start with a more direct interpretation.



B andl

The types of ToyML are generated according to the following grammar.

B = unit | int | ref int
i

E 0
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EAAMPLES

x:refintElz+1:int

GO (e 1)
O iz
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MOVES

LetI' ={x1:01,--- , 2 : 0} and ' M : 6 be a ToyML
typing judgment. The set M9 of moves associated
with I' and 60 is defined to be

Mrig=Ir UMy U| | M,

1<i<m .



) Il U U M,

1<i<m Z

e /1 is the set of initial moves given by

e My is the set of output moves defined by
— My ={(r,0) | £ €Vy} if 0 is a base type,

— ity = R CR RS IR A 7 UL ([ ) | 2 <
Vor } if 8 =0 — 0"

o )M, is the set of variable moves, taken to be empty
if 6; is a base type and, if §; = 8 — 8!, equal to

{(cai, €) | L€V }U(re,8) | £€Vor }.



MOVES SUMMARY

e Each non-initial move consists of a pair (¢, ) of a tag
and a (semantic) value.

e For each function-type identifier  in I', we have in-
troduced tags ¢, and r,. They can be viewed as calls
and returns related to that identifier. The accompa-
nying value in e.g. a move (c;, £) corresponds to the
value that identifier is called with.

e Similarly, r; can be taken to correspond to the fact
that our modelled term was successfully evaluated,
and, if # is a function type, c and r refer respectively
to calling the corresponding value and obtaining a
result.



NOTATION
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1<i<m !

e [ is the set of initial moves given by

[F:{(gl,'”,gm)‘&EV@,lSiSm};

Moves are ranged over by m and variants. We shall use
i to range over Ip, and we shall often write i,, for ¢;.



MOVE OWNERSHIP

e O-moves (context)
initial moves and those with tags r;, c

e P-moves (program)
those with tags ry, c,,r
Using ownership of moves, we can extend the definition

to names saying that a name a is owned by the owner of
the first move m in which it occurs.



BEOUENCES AND PLATS

- We aim to define a notion of complete play
next.

* |t s iIntended to model successful interactions
between a program and some environment.

- We begin with the underlying sequences of
moves.

* Sequences augmented with stores yield plays.



EOMPLE | E SEQUENCES

A complete sequence over I' - 6 is a (possibly empty)
sequence of moves i(ty,01) -+ (tg, ;) such that the se-
quence t; - - -t of tags matches the grammar:

BEIRcER where X0 — (Z( ” 0//)@(%%)) .
4 Beal0= e

We assume that Xr (cXr)* degenerates to Xr| when c,r
are not available in My, i.e. 6 is a base type.



EOMPL

A complete play over I' - 0 is
of moves-with-store satistying the conditions below.

LA

S S
sequence mj' - --m;"

® my---my is a complete sequence over I' - 6.

e For any 1 <1 <k, dom(S;) = v(my---my).

v(x) stands for the set of elements of A (names) that

oCccur 1n x.



INTERPRETATION

e Next we shall discuss how to assign, to any ToyML

term I' = M : 6, a set of complete plays over I' - 6.
We shall write (I' = M : §) for that set.

e This constitutes a very direct account of the game-
semantic interpretation of GroundML (to follow), spe-
cialised to ToyML.

e The complete-play interpretation is guaranteed to
yield the following result.

Theorem (Full Abstraction)

Let I' = My, M, : 8 be ToyML terms. Then
FI—leéMglfandonlylf(]Fl—Mll) — (]Fl_MQD



INITIAL CASES

Olilz|z@y|ref(z)|z=1y|

lx | x:=vy | if xthen N else N’



SKIP AND INTEGERS

Skip command (())

(T F () : unit) is defined to contain all complete plays over I' F unit
that have the shape i”(r 1 *)°. Here P simply responds with the move
(ry, =) without modifying the store.

Integer constant (z)
The defining complete plays for (I I~ : int) have the shape i%(r|, ).
This follows the same pattern as above, except that the value is 7.



VARIABLES

e The complete plays in (I' - x : 5 all have the form
12 (el el

e For (I'+z: 8 — ('), the complete plays must have
the form

£5(ry, £)5X1 - - X
where £ > 0 and
X = <C7gi)SZ(vagi)Si(rwvgg)Sz{(ngé')Sg
for all 1 <1 < k.

P never changes the stores played by O. In contrast, O
is allowed to modify the stores insofar as the definition
of complete play allows, i.e. the integer values in S may
be different from the corresponding values in S;.



Arithmetic operations (z @ y)
(T'Fx@®y:int) is given by complete plays of the form

170 T 4 1

Reference creation (ref(x))
(T F ref(x) : refint) is defined by complete plays of the

form
iS ( r, a) Slar—iz]

with a € Aj; \ dom(S).



