
Andrzej Murawski
UNIVERSITY OF OXFORD

Nikos Tzevelekos
QUEEN MARY 

UNIVERSITY OF LONDON

GAME SEMANTICS
(DAY 3)



f : int → int ⊢ let y = f(0) in (λxint.f(x+ y) + 1) : int → int

† (cf , 0) (rf , j) (r↓, †) (c, i1) (cf , i1 + j) (rf , j1) (r, j1 + 1) · · ·
O P O P O P O P

f : ( int → int) ⊢ int → int

O †

P (cf , 0)

O (rf , j)

P (r↓, †)

O (c, i1)

P (cf , i1 + j)
O (rf , j1)

P (rf , j1 + 1)

27

f : int → int ⊢ let y = f(0) in (λxint.f(x+ y) + 1) : int → int

† (cf , 0) (rf , j) (r↓, †) (c, i1) (cf , i1 + j) (rf , j1) (r, j1 + 1) · · ·
O P O P O P O P

f : ( int → int) ⊢ int → int

O †

P (cf , 0)

O (rf , j)

P (r↓, †)

O (c, i1)

P (cf , i1 + j)
O (rf , j1)

P (rf , j1 + 1)

27



204 GroundML

(i ⊕ j, S) −→ (k, S) (k = i ⊕ j)
((λx.M)V, S) −→ (M [V/x], S)

(π1⟨V1, V2⟩, S) −→ (V1, S)
(π2⟨V1, V2⟩, S) −→ (V2, S)

(if 0 then M else M ′, S) −→ (M ′, S)
(if i then M else M ′, S) −→ (M, S) (i > 0)

(while(M), S) −→ (if M then while(M) else (), S)
(a = b, S) −→ (0, S) (a ≠ b)
(a = a, S) −→ (1, S)

(!a, S) −→ (S(a), S)
(a := V, S) −→ ((), S[a '→ V ])
(ref(V ), S) −→ (a′, S[a′ '→ V ]) (a′ /∈ dom(S))

(M, S) −→ (M ′, S′)

(E[M ], S) −→ (E[M ′], S′)

Figure 3.2: Operational semantics of GroundML.

Next we take a closer look at some examples of GroundML terms
and their behaviour.

Example 3.4 (Name generators). Consider the following (closed) terms
that generate integer references.

gen ≡ λzint. let x = ref(0) in (x := z; x) : int → ref int

gen′ ≡ let x = ref(0) in λzint.(x := z; x) : int → ref int

The two terms differ in one crucial aspect: while gen returns a fresh
reference name each time it is called, gen′ always returns the same name
(which is indeed fresh the first time it is called).

Example 3.5 (Name channels). The fact that names can be stored in
GroundML enables us to simulate the behaviour of channels, in the style
of the π-calculus. Consider the following term trmit.

f : ref ref int → unit, g : unit → ref ref int ⊢

let c1 = ref(ref(0)) in (fc1; let c2 = g() in λ_unit. c2 := !c1) : unit → unit

⊢ int → ref int

O ⋆
P (r↓, †)
O (c, i1)
P (r, a)(a,i1)

O (c, i2)(a,i
′
1)

P (r, a)(a,i2)

O (c, i3)(a,i
′
2)

P (r, a)(a,i3)

· · ·

44



⋆ (r↓, †) (c, i1) (r, a)(a,i1) (c, i2)(a,i
′
1) (r, a)(a,i2) (c, i3)(a,i

′
2) (r, a3)(a,i3) · · ·

O P O P O P O P

ai ≠ aj

⋆ (r↓, †) (c, i1) (r, a1)(a1,i1)

O P O P

(c, i2)(a1,i
′
1) (r, a2)(a1,i

′
1)(a2,i2) (c, i3)(a1,i

′′
1)(a2,i

′
2) (r, a3)(a1,i

′′
1)(a2,i

′
2)(a3,i3) · · ·

O P O P

ai ≠ aj

⊢ int → ref int

O ⋆
P (r↓, †)
O (c, i1)
P (r, a1)(a1,i1)

O (c, i2)(a1,i
′
1)

P (r, a2)(a1,i
′
1)(a2,i2)

O (c, i3)(a1,i
′′
1)(a2,i

′
2)

P (r, a3)(a1,i
′′
1)(a2,i

′
2)(a3,i3)

· · ·

ai ≠ aj
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Arithmetic operations (x� y)
L� ` x� y : int M is given by complete plays of the form

i
S
(r#, ix � iy).

Reference creation (ref(x))
L� ` ref(x) : ref int M is defined by complete plays of the

form

i
S
(r#, a)

S[a 7!ix]

with a 2 Aint \ dom(S).

Reference equality check (x = y)
We take L� ` x = y : int M to be

{iS(r#, 0)S | iS 2 I
st
� , ix 6= iy}[ {iS(r#, 1)S | iS 2 I

st
� , ix = iy}.

Note that ix, iy are names from Aint.

Dereferencing (!x)
In this instance P simply returns the value provided in

the store of the initial move:

L� ` !x : int M = {iS(r#, S(ix))S | iS 2 I
st
� }.

Note again that ix 2 Aint.

15



Reference update (x := y)

L� ` x := y : unit M = {iS(r#, ?)S[ix 7!iy] | iS 2 I
st
� }

Here P modifies the store of the initial move using the

value for y from the initial move. The types of x, y specify

that ix is a name and iy is an integer.

Conditionals (if x thenN elseN 0)
In this case we simply borrow plays from L� ` N M or

L� ` N
0 M depending on the value of x inside the initial

move, i.e. L� ` if x thenN elseN 0 M is equal to:

{iSs | ix > 0, i
S
s 2 L� ` N M}[{iSs | ix = 0, i

S
s 2 L� ` N

0 M }.

• Most terms considered so far were minimalistic (re-

stricted to being performed on variables).

• If it is necessary to translate a term that involves

more complex terms, we can follow the relevant recipe

and combine it with the way that application will be

interpreted, which will be explained shortly.

• This relies on the fact that, for example, the complete-

play interpretations ofM :=N and let x = M in (let y =

N in x := y) are guaranteed to be the same.

16



MORE COMPLICATED CASES

Reference update (x := y)
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is equal to:

{iSs | ix > 0, iSs ∈ ! Γ ⊢ N "} ∪ {iSs | ix = 0, iSs ∈ ! Γ ⊢ N ′ " }.

Observe that, in contrast to previous cases, here we allow for plays of
length greater than 2. This is because N and N ′ may be terms of the
more complicated shapes addressed below. More intuitively, though,
we can say that the terms we had examined before did not engage in
higher-order behaviours, which can lead to further exchange of moves
between P and O.

Remark 4.7. In the above cases, most operations were restricted to
being performed on variables. This allowed us to explain the essence
of each operation in a minimalistic setting. However, if it is necessary
to translate a term that involves more complex terms, we can follow
the relevant recipe above and combine it with the way that application
will be interpreted, which will be explained below. This relies on the
fact that, for example, the complete-play interpretations of M := N and
let x = M in (let y = N in x := y) are guaranteed to be the same.

Next we turn our attention to more complicated ways of extracting
corresponding plays, involved in the remaining cases of our interpreta-
tion:

λxβ.M | while(M) | xy | (λxβ .M)N

Remark 4.8. The cases we shall examine concern application. Note
that in ToyML the argument has to be of type β and the
function term of type β → β′. Moreover, the scope for creating
terms of function type is quite limited: they can be identifiers,
λ-abstractions or branches of a conditional expression. Since the
game interpretation of (if M then M ′ else M ′′)N is the same as that of
if M then (M ′N) else (M ′′N), we only cover the first two cases in this
chapter. As before, the general approach to modelling application in
game semantics will be defined in the next chapter.

Lambda abstraction (λxβ.M)
! Γ ⊢ λxβ .M : β → β′ " is defined to consist of all complete plays of the
form

iS(r↓, †)SX1 · · · Xk .



Lambda abstraction (�x�.M)
L� ` �x

�
.M : � ! �

0 M is defined to consist of all com-

plete plays of the form

i
S
(r#, †)SX1 · · ·Xk .

where X1 · · ·Xk resembles interleaving plays from

L�, x : � ` M : �
0 M

in such a fashion that the names created in each thread

by P are disjoint and fresh with respect to the preceding

dialogue.

• Due to multiple calls, more and more names can be

generated than those participating in a single call.

• Such names have to be carried along by the play, even

though they do not take part in a call. Accordingly,

P will not be allowed to modify them.

While loop (while(M))
Suppose � ` M : int. We first calculate L� ` M : int M
and observe that it must be equal to L�, x : unit ` M : int M
except that there is an extra ? in the initial move. Note

that the ? has no bearing on names. while(M) will then

be interpreted by restricting L� ` �x
unit

.M : int M. Re-

call that sequences from L� ` �x
unit

.M : int M match the

pattern

X (r#, †)(c, ?)X1 (r, `1)(c, ?) · · · (r, `k�1)(c, ?)Xk (r, `k).

The above represents interleavings of calls of �x
unit

.M :

int or, equivalently, of evaluations of M . To interpret

17
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17

Vunit = { ? }
Vint = Z

Vref int = Aint

V�!�0 = { † }
We require that each Xi be of the shape

(c, `c)
S0]Ui,0 m

Si,1]Ui,0

i,1 · · · mSi,2k]Ui,k

i,2k (r, `r)
Si,2k+1]Ui,k

such that

(i, `c)
S0 m

Si,1

i,1 · · · mSi,2k

2k (r#, `r)
Si,2k+1

is a complete play from L�, x : � ` M M.

19
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While loop (while(M))

• Recall that sequences from L� ` �x
unit

.M : int M match

the pattern

X (r#, †)(c, ?)X1 (r, `1)(c, ?) · · · (r, `k�1)(c, ?)Xk (r, `k).

• To interpret � ` while(M) : unit we select only those

sequences above where the induced sequence `1 · · · `k
satisfies `k = 0 and `j > 0 (1  j  k).

• Subsequently, we erase all moves with tags r#, r, c and
add the move (r#, ?) at the end. This yields the se-

quence:

XX1 · · ·Xk(r#, ?).

In the above we have omitted stores, which simply

need to be copied over from one sequence to the

other.

Application (xy)
L� ` xy : �

0 M contains all complete plays of the shape

i
S
(cx, iy)

S
(rx, `)

S0
(r#, `)

S0
.

• P does not change the store in any of the plays, but

O can play a di↵erent store S
0
.

• We must have dom(S) ✓ dom(S
0
) and the inclusion

can be proper if ` 2 A \ dom(S).

JM1K = JM2K?

18
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only those sequences above where the induced sequence ℓ1 · · · ℓk satis-
fies ℓk = 0 and ℓj > 0 (1 ≤ j ≤ k). Subsequently, we erase all moves
with tags c, r, r↓ and add the move (r↓, ⋆) at the end. This yields the
sequence:

XX1 · · · Xk(r↓, ⋆).

In the above we have omitted stores, which simply need to be copied
over from one sequence to the other.

Application (xy)
! Γ ⊢ xy : β′ " contains all complete plays of the shape

iS(cx, iy)S(rx, ℓ)S′
(r↓, ℓ)S′

.

Note that the second move is a move with a call-tag and a value cor-
responding to the value of y in the initial move. The third move is an
O-move corresponding to a return from the call. The returned result
is subsequently used in the last move. P does not change the store in
any of the plays, but O can play a different store S′. We must have
dom(S) ⊆ dom(S′) and the inclusion can be proper if ℓ ∈ A \ dom(S).

Application ((λxβ.M)N)
Observe that this case corresponds to let x = N in M , where N is of base
type. The corresponding complete plays will be obtained by concate-
nating those from N with those from M . However, not all combinations
can be used for that purpose. For a start, the respective initial moves
must be compatible, i.e. identical for shared identifiers and, addition-
ally, the value occurring in the last move of the complete play from N
must be present in the initial move of the complete play from M . The
latter will mimic parameter passing.

Accordingly, let us consider

s = iS0 u (r↓, ℓ)S ∈ ! Γ ⊢ N : β " ,

t = (i, ℓ)T0 mT1
1 · · · m

T2k+1
2k+1 ∈ ! Γ, x : β ⊢ M : β′ " .

Note that the initial move of t contains ℓ, which also occurs in
the last move of s. Still, not all s, t will be used to calculate
! Γ ⊢ let x = N in M ". In order to qualify, they will have to fulfil the
three conditions given below:

Store-free case

In the store-free case, given

s = i u (r#, `) 2 L� ` N : � M
t = (i, `)m1 · · · m2k+1 2 L�, x : � ` M : �

0 M

take

i um1 · · ·m2k+1.

20

Store-free case

In the store-free case, given

s = i u (r#, `) 2 L� ` N : � M
t = (i, `)m1 · · · m2k+1 2 L�, x : � ` M : �

0 M

take

i um1 · · ·m2k+1.

20
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1 · · · m
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the last move of s. Still, not all s, t will be used to calculate
! Γ ⊢ let x = N in M ". In order to qualify, they will have to fulfil the
three conditions given below:

In the general case, consider

s = i
S0 u (r#, `)S 2 L� ` N : � M ,

t = (i, `)
T0 m

T1
1 · · · mT2k+1

2k+1 2 L�, x : � ` M : �
0 M .

Not all such s, t are allowed to contribute to L� ` let x = N inM M.

s = i
S0 u (r#, `)S 2 L� ` N : � M ,

t = (i, `)
T0 m

T1
1 · · · mT2k+1

2k+1 2 L�, x : � ` M : �
0 M .

1. T0 ✓ S

2. ⌫(s) \ P (t) = ;, where we let P (t) be the set of

P -names of t.

3. If ` 2 A and ` is fresh (does not occur in i
S0u) then,

in t, the first move that contains ` must be a P -move

and until that moment O cannot change the stored

values of `. If ` does not occur in any mi, O cannot

change ` at all.
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SELECTION CRITERIA

In the general case, consider

s = i
S0 u (r#, `)S 2 L� ` N : � M ,

t = (i, `)
T0 m

T1
1 · · · mT2k+1

2k+1 2 L�, x : � ` M : �
0 M .

Not all such s, t are allowed to contribute to L� ` let x = N inM M.

s = i
S0 u (r#, `)S 2 L� ` N : � M

t = (i, `)
T0 m

T1
1 · · · mT2k+1

2k+1 2 L�, x : � ` M : �
0 M

1. T0 ✓ S

2. ⌫(s) \ P (t) = ;, where we let P (t) be the set of

P -names of t.

3. If ` 2 A and ` is fresh (does not occur in i
S0u) then

the first move mi that contains ` must be a P -move

and until that moment O cannot change the stored

values of `. If ` does not occur in any mi, O cannot

change ` at all.

21



OUTCOME 1

In the general case, consider
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1. T0 ⊆ S

2. ν(s) ∩ P (t) = ∅, where we let P (t) be the set of P -names of t:
P (t) = { a ∈ ν(t) | ∃t′mT ⊑ t. a ∈ dom(T ) \ ν(t′), |t′| odd } .

3. If ℓ ∈ A and ℓ does not occur in iS0u then, if there is an occurrence
of ℓ in some mi (1 ≤ i ≤ 2k+1), the first such occurrence (if any)
must be in a P -move m2k′+1 for some k′. Up to that moment, O
may not change the stored value of ℓ, i.e. T2l(ℓ) = T2l−1(ℓ) for
1 ≤ l < k′. If ℓ does not occur in any mi, we also insist on the
above property with k′ = k + 1, i.e. O does not change ℓ at all.

Intuitively, the first condition ensures continuity between the evaluation
of N and M : the first store in M must be consistent with the store left
over after the evaluation of N . Note that dom(S) may properly contain
dom(T0). This will be the case if s contains more names than those in
(i, ℓ).

The second and third conditions ensure privacy of freshly created
names. The former insists that names generated by M be disjoint from
any names interacting for N . The third condition is specific to the
case where the last move of N generates a fresh name, which can only
happen if β = ref int, so that the last value ℓ be a (fresh) name. If that
is the case, in the ensuing computation the name cannot be guessed
by the environment. Thus, if it is to be revealed, this has to be done
through a P -move (m1, m3, · · · or m2k+1). Before that happens, the
environment is forbidden from modifying the corresponding part of the
store, to recognise the fact that it does not have access to that name.

When s, t satisfy all of the above conditions, they can be combined
to form complete plays for let x = N in M . We distinguish two cases.

• If ℓ /∈ A, or ℓ ∈ A ∩ ν(iS0u), we include in ! Γ ⊢ let x = N in M "
all complete plays over Γ ⊢ β′ that match the following shape.

iS0u mT1#(S\T0)
1 mT2#U1

2 mT3#U1
3 · · · mT2k#Ul

2k m
T2k+1#Ul

2k+1

If ℓ ∈ A, in the above complete plays ℓ will feature in every store
from the moment it appears in iS0u. The stores Ui consist of
names that are recognisable to N , but not to M . They can be

In the general case, consider

s = iS0 u (r#, `)S 2 L� ` N : � M ,
t = (i, `)T0 m

T1
1 · · · mT2k+1

2k+1 2 L�, x : � ` M : �0 M .

Not all such s, t are allowed to contribute to L� ` let x = N inM M.

s = iS0 u (r#, `)S 2 L� ` N : � M
t = (i, `)T0 m

T1
1 · · · mT2k+1

2k+1 2 L�, x : � ` M : �0 M

1. T0 ✓ S

2. ⌫(s) \ P (t) = ;, where we let P (t) be the set of
P -names of t.

3. If ` 2 A and ` is fresh (does not occur in iS0u) then
the first move mi that contains ` must be a P -move
and until that moment O cannot change the stored
values of `. If ` does not occur in any mi, O cannot
change ` at all.

` not fresh or not a name

` fresh
(` cannot feature in a play until P reveals it to O)

T
`
i = Ti � (dom(Ti) \ `)
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OUTCOME II
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values of `. If ` does not occur in any mi, O cannot

change ` at all.
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arbitrary as long as they give rise to a complete play. Observe
that P will not be modifying the Ui’s in his responses to reflect
the fact that M has not access to these names and, hence, they
cannot be modified. The same recipe as above applies to the case
ℓ ̸∈ A.

• If ℓ ∈ A and the only occurrence of ℓ in s is the final move then
we shall proceed differently. Recall that then, by condition 3, the
first move of t in which ℓ may occur after the initial move must
be odd-numbered. Let it be m2k′+1. In order to reflect the fact
that ℓ was freshly generated by N , we shall suppress it in stores
coming from M until the name is eventually played by P . Let
T ℓ

i = Ti ! (dom(Ti) \ ℓ). Then we include in ! Γ ⊢ let x = N in M "
all complete plays over Γ ⊢ β′ of the shape:

iS0 u m
T ℓ

1 "(S\T0)
1 m

T ℓ
2 "U1

2 · · · m
T ℓ

2k′"Uk′

2k′ m
T2k′+1"Uk′

2k′+1 · · · mT2k"Uk
2k m

T2k+1"Uk

2k+1

Note that ℓ is being hidden in the stores before m2k′+1 is played.
From this point onwards it becomes part of the play and is carried
on as in the previous case. Analogously, if ℓ does not occur in t
(apart from the initial occurrence) then ℓ must be deleted from
all stores.

This completes the semantic translation. We next look at some
examples that demonstrate the above constructions.

Example 4.9. We calculate the complete plays corresponding to
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(ℓ1, · · · , ℓn)

(cxk+1
, vk+1) · · · (cxn

, vn) (r↓, †)

(rxk+1
, v′k+1) · · · (cxn

, v′n) (c, v)

(r, v′)
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ARENAS
An arena A = (MA, IA,`A,�A) is given by:

• a set MA of moves,

• a subset IA ✓ MA of initial moves,

• a relation `A ✓ MA ⇥ (MA \ IA),

• a function �A : MA ! {O,P}⇥ {Q,A},

satisfying, for each m,m
0 2 MA, the conditions:

• m 2 IA =) �A(m) = (P,A) ,

• m `A m
0 ^ �

QA

A
(m) = A =) �

QA

A
(m0) = Q ,

• m `A m
0 =) �

OP

A
(m) 6= �

OP

A
(m0) .

We call `A the justification relation of A, and �A its
labelling function.
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224 Game Model

next. Consequently, an arena A = !θ" is the domain of all values of
type θ. The simplest arena is (∅, ∅, ∅, ∅) and could be used to represent
the empty type, had we included it in our language. Other flat arenas
are 1, Z and Aζ , for each ground type ζ, defined by:

M1 = I1 = {⋆} , MZ = IZ = Z , MAζ
= IAζ

= Aζ ,

whereby “flat” means that the arenas only contain initial moves and,
therefore, the justification relation is empty. These arenas allow us to
model all ground types:

!unit" = 1 !int" = Z !ref ζ" = Aζ .

Given arenas A and B, we can build more interesting arenas using
the following constructions (depicted in Figure 5.1). The coproduct
arena A + B is constructed by simply taking the (disjoint) union of A
and B:

MA+B = MA + MB λA+B = [λA, λB ]

IA+B = IA ∪ IB ⊢A+B = ⊢A ∪ ⊢B

where the notation [λA, λB ] means [λA, λB ](m) = λA(m) if m ∈ MA,
and λB(m) otherwise. Here MA + MB stands for the disjoint union
of MA and MB. For simplicity, in definitions we assume that MA and
MB are disjoint, so that no indexing of their elements is required. In
cases like A + A, such an indexing will be left implicit and we shall
work under the assumption that moves from the left-hand-side A can
be uniquely identified and in particular distinguished from those of the
right-hand-side A, and vice versa.

The product arena of A and B has initial moves which are pairings
of initial moves from A and B respectively. The non-initial moves are
precisely those of A and B, and in particular moves in A that were
justified by some initial move iA are now justified by (iA, iB), for all
iB ∈ IB (and dually for B). That is, writing ĪA for MA \ IA, we have:

MA⊗B = (IA × IB) + ĪA + ĪB IA⊗B = IA × IB
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224 Game Model

next. Consequently, an arena A = !θ" is the domain of all values of
type θ. The simplest arena is (∅, ∅, ∅, ∅) and could be used to represent
the empty type, had we included it in our language. Other flat arenas
are 1, Z and Aζ , for each ground type ζ, defined by:

M1 = I1 = {⋆} , MZ = IZ = Z , MAζ
= IAζ

= Aζ ,

whereby “flat” means that the arenas only contain initial moves and,
therefore, the justification relation is empty. These arenas allow us to
model all ground types:

!unit" = 1 !int" = Z !ref ζ" = Aζ .

Given arenas A and B, we can build more interesting arenas using
the following constructions (depicted in Figure 5.1). The coproduct
arena A + B is constructed by simply taking the (disjoint) union of A
and B:

MA+B = MA + MB λA+B = [λA, λB ]

IA+B = IA ∪ IB ⊢A+B = ⊢A ∪ ⊢B

where the notation [λA, λB ] means [λA, λB ](m) = λA(m) if m ∈ MA,
and λB(m) otherwise. Here MA + MB stands for the disjoint union
of MA and MB. For simplicity, in definitions we assume that MA and
MB are disjoint, so that no indexing of their elements is required. In
cases like A + A, such an indexing will be left implicit and we shall
work under the assumption that moves from the left-hand-side A can
be uniquely identified and in particular distinguished from those of the
right-hand-side A, and vice versa.

The product arena of A and B has initial moves which are pairings
of initial moves from A and B respectively. The non-initial moves are
precisely those of A and B, and in particular moves in A that were
justified by some initial move iA are now justified by (iA, iB), for all
iB ∈ IB (and dually for B). That is, writing ĪA for MA \ IA, we have:
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CONSTRUCTIONS
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A B

(iA, iB)

A− B−

†
iA

A−
B

A + B A ⊗ B A ⇒ B

Figure 5.1: Arena constructions. The arena for A + B is simply the combination
of the arenas for A and B, seen as bipartite graphs. In the case of A ⊗ B, the arena
has as initial moves pairs of initial moves from A and B, from which the remainder
sub-arenas of A (denoted A−) and B (resp. B−) are justified — we write A− for A
with its initial moves removed. The function arena A ⇒ B has a unique initial move
(†) which justifies the initial moves of the input arena A, the latter justifying A−

but also the initial moves of the output arena B.

form ζ1 → ζ2. They translate to !ζ1" ⇒ !ζ2", which are generally given
by a diagram of the form:

†

v1

v2

where v1, v2 ∈ {⋆} ∪ Z ∪ A are moves from !ζ1" and !ζ2" respectively.
The † is initial, and justifies (all) questions v1, each of which justifies
(all) answers v2.

Games used to interpret terms are played between arenas, and in
particular between the arenas denoting the context/input and the re-
sult/output type respectively. The structures that encode such com-
binations of input and output arenas are called prearenas. They are
defined in the same way as arenas with the exception that initial moves
are O-questions.

Given arenas A and B, we define the prearena A → B by:

MA→B = MA + MB IA→B = IA



TYPE INTERPRETATION

The types of GroundML are interpreted into arenas by

JunitK = 1
JintK = Z

Jref ⇣K = A⇣

J✓1 ⇥ ✓2K = J✓1K ⌦ J✓2K
J✓1 ! ✓2K = J✓1K ) J✓2K

Type signatures � ` ✓, with � = {x1 : ✓1, · · · , xk :
✓k }, are interpreted as (the prearena)

JUK ⌦ J✓1K ⌦ · · ·⌦ J✓kK ! J✓K

which we shall denote by J� ` ✓K.
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ζ ::= unit | int | ref ζ

!ζ1 → ζ2" = !ζ1" ⇒ !ζ2"

†

v1

v2

†

(cx, v1)

(rx, v2)

(r↓, †)

(c, v1)

(r, v2)
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(r, v2)
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TAGGING
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PLAYGROUND (PREARENA)
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A B
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form ζ1 → ζ2. They translate to !ζ1" ⇒ !ζ2", which are generally given
by a diagram of the form:

†

v1

v2

where v1, v2 ∈ {⋆} ∪ Z ∪ A are moves from !ζ1" and !ζ2" respectively.
The † is initial, and justifies (all) questions v1, each of which justifies
(all) answers v2.

Games used to interpret terms are played between arenas, and in
particular between the arenas denoting the context/input and the re-
sult/output type respectively. The structures that encode such com-
binations of input and output arenas are called prearenas. They are
defined in the same way as arenas with the exception that initial moves
are O-questions.

Given arenas A and B, we define the prearena A → B by:

MA→B = MA + MB IA→B = IA
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and, for all m ∈ MA→B and (m, n) ∈ M2
A→B :

λA→B(m) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

OQ if m = iA ∈ IA

λ̄A(m) if m ∈ ĪA

λB(m) if m ∈ MB

m ⊢A⇒B n ⇐⇒ ((m, n) ∈ IA × IB) ∨ (m ⊢A n) ∨ (m ⊢B n)

Pictorially, A → B looks just like A ⇒ B albeit having its initial †
move removed.

Definition 5.3. The types of GroundML are interpreted into arenas by
!unit" = 1 , !int" = Z , !ref ζ" = Aζ , and

!θ1 × θ2" = !θ1" ⊗ !θ2" , !θ1 → θ2" = !θ1" ⇒ !θ2" .

Moreover, each finite U ⊆ A, say U = { a1, · · · , an } with each name ai

belonging to the set Aζi
, is mapped to:

!U" = { (a′
1, · · · , a′

n) ∈ Aζ1 × · · · × Aζn | (a′
1, · · · , a′

n) ∼ (a1, · · · , an) }

Finally, a typing environment U, Γ ⊢ θ, with Γ = { x1 : θ1, · · · , xk : θk },
is interpreted as the prearena1

!U" ⊗ !θ1" ⊗ · · · ⊗ !θk" → !θ"

which we shall denote by !U, Γ ⊢ θ", or just !Γ ⊢ θ" if U = ∅.

Remark 5.4. Let us look more closely at the structure of the prearena
!U, Γ ⊢ θ". Its initial moves are of the form (a′

1, a′
2, · · · , a′

n, i1, i2, · · · , ik),
where the i1, i2, · · · , ik part consists of initial moves from the denotation
of Γ. Put otherwise, each ii corresponds to an “opening” of the arena
!θi" with some semantic value provided by the Opponent (hence the
polarity of the initial move is OQ). The rest of !U, Γ ⊢ θ" comprises
the output arena, !θ", where Proponent himself provides a semantic
value, and the remainders !θi"− of the input arenas. On the other hand,
the a′

1, a′
2, · · · , a′

n part of the initial moves is a permutation variant
of (a1, a2, · · · , an), assuming U = {a1, a2, · · · , an}. That is, there is

1if k + |U| = 0 we take the left-hand side to be 1.



TYPING JUDGMENTS

Type signatures
Γ ⊢ θ

with Γ = { x1 : θ1, · · · , xk : θk } are interpreted as (the
prearena)

!θ1" ⊗ · · ·⊗ !θk" → !θ"

which we shall denote by !Γ ⊢ θ".
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Consider

x1 : ζ1, · · · , xk : ζk, xk+1 : ζk+1 → ζ ′k+1, · · · , xn : ζn → ζ ′n ⊢ ζ → ζ ′

This is interpreted by

( !ζ1" ⊗ · · ·⊗ !ζk" ⊗ (!ζk+1"⇒!ζ ′k+1") ⊗ · · ·⊗ (!ζ1"⇒!ζ ′1")) → !ζ"⇒!ζ ′"

which are generally of the following shape,

(ℓ1, · · · , ℓn)

vk+1 · · · vn †

v′k+1 · · · v′n v

v′

ℓi = † if i > k, and ℓi ∈ {⋆}∪Z∪A otherwise (depend-
ing on ζi). The moves (ℓ1, · · · , ℓn) and v are O-questions,
the vi’s are P-questions, the v′i’s are O-answers, and †, v′

are P-answers.
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COMPARISON

(ℓ1, · · · , ℓn)

(cxk+1
, vk+1) · · · (cxn

, vn) (r↓, †)

(rxk+1
, v′k+1) · · · (cxn

, v′n) (c, v)

(r, v′)
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TOWARDS HIGHER TYPES

⊢ int → int

O ⋆
P †
O v1
P v2

⊢ int → int

O ⋆
P (r↓, †)
O (c, v1)
P (r, v2)

⊢ int → (int → int)

O ⋆
P †
O v1
P †
O v2
P v3
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⊢ int → (int → int)

O ⋆
P (r↓, †)
O (c, v1)
P (r, †)
O (c′, v2)
P (r′, v3)

† (r↓, †) (c, 0) (r, †) (c, 1) (r, †) (c
′, 2)
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AMBIGUITY
⊢ int → (int → int)

O ⋆
P (r↓, †)
O (c, v1)
P (r, †)
O (c′, v2)
P (r′, v3)

† (r↓, †) (c, 0) (r, †) (c, 1) (r, †) (c
′, 2)
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⊢ int → (int → int)

O ⋆
P (r↓, †)
O (c, v1)
P (r, †)
O (c′, v2)
P (r′, v3)

† (r↓, †) (c, 0) (r, †) (c, 1) (r, †) (c
′, 2)

40



DISAMBIGUATION

† (r↓, †) (c, 0) (r, †) (c, 1) (r, †) (c
′, 2)

† (r↓, †) (c, 0) (r, †) (c, 1) (r, †) (c
′, 2)

† (r↓, †) (c, 0) (r, †) (c, 1) (r, †) (c
′, 2)
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JUSTIFICATION POINTERS† (r↓, †) (c, 0) (r, †) (c, 1) (r, †) (c
′, 2)

† (r↓, †) (c, 0) (r, †) (c, 1) (r, †) (c
′, 2)

† (r↓, †) (c, 0) (r, †) (c, 1) (r, †) (c
′, 2)
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JUSTIFIED SEQUENCES

A justified sequence on a prearena A is a sequence s
of moves-with-store on A such that:

• the first move is of the form iS with i ∈ IA;

• every other (i.e. not first) move nS′

in s is equipped
with a pointer to an earlier move mS such that m ⊢A

n.

In the latter case, m is called the justifier of n; if n is an
answer, we also say that n answers m.
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CONSTRAINTS

• Alternation: players take turns,          
O begins.

• Bracketing: questions/calls and 
answers/returns are well-nested.

• Visibility: only visible functions can be 
called.



VISIBILITY

⊢ int → ref int

O ⋆
P (r↓, †)
O (c, i1)
P (r, a)(a,i1)

O (c, i2)(a,i
′
1)

P (r, a)(a,i2)

O (c, i3)(a,i
′
2)

P (r, a)(a,i3)

· · ·

f : int → int ⊢ λxint.f(1) + x : int → int

s = † (r↓, †) (c, 3) (cf , 1)
O P O P

O can play (cf , i) next but cannot play (c, i).

The view !s" of a justified sequence s is defined by:

!ε" = ε
!smSt nS′

" = !s"mSnS′

.

!s" = † (cf , 1)
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VIEW
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FRUGALITY

230 Game Model

s, we say that s in complete if all questions in s justify an answer
in s. If s is not complete, then there is a last (i.e. rightmost) question
in it that justifies no answer — we call this the pending question of
s. Bracketing would then amount to follow the rule of answering the
pending question.

The absence of higher-order state in the language is captured by
visibility: this disallows function invocations to jump outside their call-
ing context and e.g. interact with functions that are no longer in scope.
The calling context of a move is described by the following notion. We
let the view !s" of a justified sequence s to be given by:

!ε" = ε and !s mSt nS′
" = !s"mSnS′

.

Finally, the frugality condition controls the flow of names and in par-
ticular restricts the store to its public/available part. For each X ⊆ A

and store S we define S∗(X) =
⋃

i∈ω Si(X), where

S0(X) = X and Si+1(X) = S(Si(X)) ∩ A,

to be the set of names that can be reached from X through S. Then,
the set of available names of a justified sequence is defined inductively
by:

Av(ε) = ∅ and Av(smS) = S∗(Av(s) ∪ ν(m)).

Note below that we write s′ ⊑ s if s′ is a prefix of s.

Definition 5.7. A justified sequence s is a play if it satisfies the fol-
lowing conditions.

• No two adjacent moves belong to the same player (Alternation).

• For all tmS ⊑ s with m an answer, the justifier of m is the pending
question of t (Bracketing).

• For all tmS ⊑ s with non-empty t, the justifier of m is in !t"
(Visibility).

• For all tmS ⊑ s, dom(S) = Av(tmS) (Frugality).

The set of plays on A is denoted by PA.



PLAY

A justified sequence on a prearena A is a sequence s
of moves-with-store on A such that:

• the first move is of the form iS with i ∈ IA;

• every other (i.e. not first) move nS′

in s is equipped
with a pointer to an earlier move mS such that m ⊢A

n.

In the latter case, m is called the justifier of n; if n is an
answer, we also say that n answers m.

A justified sequence s is a play if it satisfies the following
conditions.

• No two adjacent moves belong to the same player
(Alternation).

• For all tmS ⊑ s with m an answer, the justifier of m
is the pending question of t (Bracketing).

• For all tmS ⊑ s with non-empty t, the justifier of m
is in !t" (Visibility).

• For all tmS ⊑ s, dom(S) = Av(tmS) (Frugality).

The set of plays on A is denoted by PA.
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STRATEGIES

A strategy σ on a prearena A is a non-empty set of
even-length plays of A satisfying:

• If soSpS
′

∈ σ then s ∈ σ (Even-prefix closure).

• If s ∈ σ then, for all permutations π, π · s ∈ σ
(Equivariance).

• If spS1

1 , spS2

2 ∈ σ then spS1

1 = π ·spS2

2 for some permu-
tation π (Determinacy).

We write σ : A to declare that σ is a strategy on A.
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GAME SEMANTICS

Terms
x1 : θ1, · · · , xk : θk ⊢ M : θ

are interpreted by strategies on

!θ1" ⊗ · · ·⊗ !θk" → !θ"

37


