
Game Semantics

Andrzej S. Murawski and Nikos Tzevelekos

Day 4: The model for GroundML

Recap: game semantics for GroundML

2 / 37

Recall:

■ we started off by introducing GroundML, a higher-order language with
full ground references

■ we restricted ourselves to ToyML and presented the game semantics
of ToyML in terms of regular-like expressions of tagged moves

■ we returned to GroundML and starting looking at its game semantics

Recap: game semantics for GroundML

2 / 37

Recall:

■ we started off by introducing GroundML, a higher-order language with
full ground references

■ we restricted ourselves to ToyML and presented the game semantics
of ToyML in terms of regular-like expressions of tagged moves

■ we returned to GroundML and starting looking at its game semantics
formally:

◆ arenas: represent types, contain moves of the games and
structure (pointers, polarity of moves, etc.)

◆ prearenas: combinations of arenas, where the games are played

◆ plays: sequences of moves with stores, representing computations

◆ strategies: sets of even-length plays, representing what plays each
term is ready to play

Recall GroundML

3 / 37

U,Γ ⊢ () : unit
i ∈ Z

U,Γ ⊢ i : int

(x : θ) ∈ Γ

U,Γ ⊢ x : θ

a ∈ U ∩ Aζ

U,Γ ⊢ a : refζ

U,Γ ⊢ M : int U,Γ ⊢ N0 : θ U,Γ ⊢ N1 : θ

U,Γ ⊢ ifM thenN1 elseN0 : θ

U,Γ ⊢ M : int

U,Γ ⊢ while(M) : unit

U,Γ ⊎ {x : θ } ⊢ M : θ′

U,Γ ⊢ λxθ.M : θ → θ′
U,Γ ⊢ M : θ → θ′ U,Γ ⊢ N : θ

U,Γ ⊢ MN : θ′

U,Γ ⊢ M : θ U,Γ ⊢ N : θ′

U,Γ ⊢ 〈M,N〉 : θ × θ′
U,Γ ⊢ M : θ1 × θ2
U,Γ ⊢ πiM : θi

i∈{1,2}

U,Γ ⊢ M : int U,Γ ⊢ N : int

U,Γ ⊢ M ⊕N : int

U,Γ ⊢ M : refζ U,Γ ⊢ N : refζ

U,Γ ⊢ M = N : int

U,Γ ⊢ M : ζ

U,Γ ⊢ ref(M) : refζ

U,Γ ⊢ M : refζ

U,Γ ⊢ !M : ζ

U,Γ ⊢ M : refζ U,Γ ⊢ N : ζ

U,Γ ⊢ M :=N : unit

Example strategies

4 / 37

Let us look at some example strategies:

• Jy : int ⊢ 2 ∗ y : int → intK : Z → Z

• Jf : int → int, x : int ⊢ fx+ 1 : int → intK : ((Z ⇒ Z)⊗ Z) → Z

• J⊢ λyint. 2 ∗ y : int → intK : 1 → (Z ⇒ Z)

• Jf : int → int ⊢ λxint. fx+ 1 : int → intK : (Z ⇒ Z) → (Z ⇒ Z)

• J⊢ ref(0)K : 1 → Aint

• Jx : ref int ⊢ λzint. x := z;xK : Aint → (Z ⇒ Aint)

• Jx : ref int ⊢ λzref int. x = zK : Aint → (Aint ⇒ Z)

Example strategies

4 / 37

Let us look at some example strategies:

• Jy : int ⊢ 2 ∗ y : int → intK : Z → Z

• Jf : int → int, x : int ⊢ fx+ 1 : int → intK : ((Z ⇒ Z)⊗ Z) → Z

• J⊢ λyint. 2 ∗ y : int → intK : 1 → (Z ⇒ Z)

• Jf : int → int ⊢ λxint. fx+ 1 : int → intK : (Z ⇒ Z) → (Z ⇒ Z)

• J⊢ ref(0)K : 1 → Aint

• Jx : ref int ⊢ λzint. x := z;xK : Aint → (Z ⇒ Aint)

• Jx : ref int ⊢ λzref int. x = zK : Aint → (Aint ⇒ Z)

– how did we get them??

Translating GroundML terms into strategies

5 / 37

So far, we have seen the static ingredients of the game model for
GroundML: arenas, prearenas, moves, plays, strategies.

■ With them, we can define the translation J K for basic terms, such as:

J⊢ ref(0)K = { ⋆ a(a,0) | a ∈ Aint}

■ To be able to translate larger terms, we need:

◆ for every syntactic construct (e.g. composition, λ-abstraction, etc.)

◆ to define a corresponding construction on strategies.

We start off with the most fundamental construct: strategy composition.

We first look at a few example compositions, then define composition
formally.

Strategy composition

6 / 37

Strategy composition is the following operation:

■ given strategies: σ : A → B and τ : B → C

■ define a strategy: σ; τ : A → C
that composes the behaviours of σ and τ .

Pictorially:
A

σ
−−→ B

τ
−−→ C

A
σ;τ

−−−→ C

Note: we read composite strategies left-to-right, hence we write σ; τ .
This is equivalent to writing τ ◦ σ (in function notation).

Composition example

7 / 37

Recall our example terms:

⊢ λyint. 2 ∗ y : int → int and f : int → int ⊢ λxint. fx+ 1 : int → int

⊢ let f = λyint. 2 ∗ y in λxint. fx+ 1 : int → int

The corresponding strategies σ = Jλyint. 2 ∗ yK and τ = Jλxint. fx+ 1K:

1
σ

−−→ Z ⇒ Z

⋆

†

i1

2 ∗ i1
...

in

2 ∗ in

Z ⇒ Z
τ

−−→ Z ⇒ Z

†

†

i1

i1
j1

j1+1
...

Composition example – sync and hide

8 / 37

Taking σ = Jλyint. 2 ∗ yK and τ = Jλxint. fx+ 1K:

1
σ

−−→ Z ⇒ Z

⋆

†

i1

2 ∗ i1
...

in

2 ∗ in

Z ⇒ Z
τ

−−→ Z ⇒ Z

†

†

i1

i1
j1

j1+1
...

Composition example – sync and hide

8 / 37

Taking σ = Jλyint. 2 ∗ yK and τ = Jλxint. fx+ 1K:

1
σ

−−→ Z ⇒ Z

⋆

†

i1

2 ∗ i1
...

Z ⇒ Z
τ

−−→ Z ⇒ Z

†

†

i1

i1
2 ∗ i1

2∗i1+1
...

Composition example – sync and hide

8 / 37

Taking σ = Jλyint. 2 ∗ yK and τ = Jλxint. fx+ 1K:

1
σ

−−−→ Z ⇒ Z
τ

−−−→ Z ⇒ Z

⋆

†

†

i1

i1

2 ∗ i1
2∗i1+1

...
...

Composition example – sync and hide

8 / 37

Taking σ = Jλyint. 2 ∗ yK and τ = Jλxint. fx+ 1K:

1
σ

−−−→ Z ⇒ Z
τ

−−−→ Z ⇒ Z

⋆

†

†

i1

i1

2 ∗ i1
2∗i1+1

...
...

Composition example – sync and hide

8 / 37

Taking σ = Jλyint. 2 ∗ yK and τ = Jλxint. fx+ 1K:

1
σ;τ

−−−−−−−−−−−−−→ Z ⇒ Z

⋆

†

i1

2∗i1+1
...

Thus: σ; τ = { ⋆ † i1 (2 ∗ i1 + 1) i2 (2 ∗ i2 + 1) · · · }

and that is also Jlet f = λyint. 2 ∗ y in λxint. fx+ 1K.

Composition example II

9 / 37

We look at an example with name generation:

⊢ ref(0) : ref int and x : ref int ⊢ λzint. x := z;x : int → ref int

⊢ let x = ref(0) in λzint. x := z;x : int → ref int

The corresponding strategies σ = Jref(0)K and τ = Jλzint. x := z;xK:

1
σ

−−→ Aint

⋆

a(a,0)

Aint
τ

−−→ Z ⇒ Aint

a(a,i0)

†(a,i0)

i
(a,i′

0
)

1

a(a,i1)

i
(a,i′

1
)

2

a(a,i2)

...

Composition example II – sync and hide

10 / 37

Taking σ = Jref(0)K and τ = Jλzint. x := z;xK:

1
σ

−−→ Aint

⋆

a(a,0)

Aint
τ

−−→ Z ⇒ Aint

a(a,i0)

†(a,i0)

i
(a,i′

0
)

1

a(a,i1)

i
(a,i′

1
)

2

a(a,i2)

...

Composition example II – sync and hide

10 / 37

Taking σ = Jref(0)K and τ = Jλzint. x := z;xK:

1
σ

−−→ Aint

⋆

a(a,0)

Aint
τ

−−→ Z ⇒ Aint

a(a,0)

†(a,0)

i
(a,i′

0
)

1

a(a,i1)

i
(a,i′

1
)

2

a(a,i2)

...

Composition example II – sync and hide

10 / 37

Taking σ = Jref(0)K and τ = Jλzint. x := z;xK:

1
σ

−−−→ Aint
τ

−−−→ Z ⇒ Aint

⋆

a(a,0)

†(a,0)

i
(a,i′

0
)

1

a(a,i1)

i
(a,i′

1
)

2

a(a,i2)

...

Composition example II – sync and hide

10 / 37

Taking σ = Jref(0)K and τ = Jλzint. x := z;xK:

1
σ

−−−→ Aint
τ

−−−→ Z ⇒ Aint

⋆

a(a,0)

†(a,0)

i
(a,i′

0
)

1

a(a,i1)

i
(a,i′

1
)

2

a(a,i2)

...

Composition example II – sync and hide

10 / 37

Taking σ = Jref(0)K and τ = Jλzint. x := z;xK:

1
σ;τ

−−−−−−−−−−→ Z ⇒ Aint

⋆

†(a,0)

i
(a,i′

0
)

1

a(a,i1)

i
(a,i′

1
)

2

a(a,i2)

...

Extra care is needed:

• a appears in the store of †,

• but is not available at that
point!

Composition example II – sync and hide

10 / 37

Taking σ = Jref(0)K and τ = Jλzint. x := z;xK:

1
σ;τ

−−−−−−−−−−→ Z ⇒ Aint

⋆

†(a,0)

i
(a,i′

0
)

1

a(a,i1)

i
(a,i′

1
)

2

a(a,i2)

...

Extra care is needed:

• a appears in the store of †,

• but is not available at that
point!

We need to hide it as well.

Composition example II – sync and hide

10 / 37

Taking σ = Jref(0)K and τ = Jλzint. x := z;xK:

1
σ;τ

−−−−−−−−−−→ Z ⇒ Aint

⋆

†(a,0)

i
(a,i′

0
)

1

a(a,i1)

i
(a,i′

1
)

2

a(a,i2)

...

Extra care is needed:

• a appears in the store of †,

• but is not available at that
point!

We need to hide it as well.

Thus: σ; τ = { ⋆ † i1 a(a,i1) i
(a,i′

1
)

2 a(a,i2) · · · }

and that is also Jlet x = ref(0) in λzint. x := z;xK.

Composition example III

11 / 37

We look at another example with name generation:

⊢ ref(0) : ref int and x : ref int ⊢ λzref int. x = z : ref int → int

⊢ let x = ref(0) in λzref int. x = z : ref int → int

The corresponding strategies σ = Jref(0)K and τ = Jλzref int. x = zK:

1
σ

−−→ Aint

⋆

a(a,0)

Aint
τ

−−→ Aint ⇒ Z

a(a,i0)

†(a,i0)

aS1

1S1

bS2

0S2

...

Composition example III – sync and hide

12 / 37

Taking σ = Jref(0)K and τ = Jλzref int. x = zK:

1
σ

−−→ Aint

⋆

a(a,0)

Aint
τ

−−→ Aint ⇒ Z

a(a,i0)

†(a,i0)

aS1

1S1

bS2

0S2

...

Composition example III – sync and hide

12 / 37

Taking σ = Jref(0)K and τ = Jλzref int. x = zK:

1
σ

−−→ Aint

⋆

a(a,0)

Aint
τ

−−→ Aint ⇒ Z

a(a,0)

†(a,0)

aS1

1S1

bS2

0S2

...

Composition example III – sync and hide

12 / 37

Taking σ = Jref(0)K and τ = Jλzref int. x = zK:

1
σ

−−−→ Aint
τ

−−−→ Aint ⇒ Z

⋆

a(a,0)

†(a,0)

aS1

1S1

bS2

0S2

...

Composition example III – sync and hide

12 / 37

Taking σ = Jref(0)K and τ = Jλzref int. x = zK:

1
σ

−−−→ Aint
τ

−−−→ Aint ⇒ Z

⋆

a(a,0)

†(a,0)

aS1

1S1

bS2

0S2

...

Composition example III – sync and hide

12 / 37

Taking σ = Jref(0)K and τ = Jλzref int. x = zK:

1
σ

−−−→ Aint
τ

−−−→ Aint ⇒ Z

⋆

a(a,0)

†(a,0)

aS1

1S1

bS2

0S2

...

Extra care is needed:

• the name a is private to P in σ; τ

• but O is able to guess it!

We need to disallow this.

Composition example III – sync and hide

12 / 37

Taking σ = Jref(0)K and τ = Jλzref int. x = zK:

1
σ

−−−→ Aint
τ

−−−→ Aint ⇒ Z

⋆

a(a,0)

†(a,0)

aS1

1S1

bS2

0S2

...

Extra care is needed:

• the name a is private to P in σ; τ

• but O is able to guess it!

We need to disallow this.

Composition example III – sync and hide

12 / 37

Taking σ = Jref(0)K and τ = Jλzref int. x = zK:

1
σ;τ

−−−−−−−−−−−→ Aint ⇒ Z

⋆

†(a,0)

bS2

0S2

...

Extra care is needed:

• the name a is private to P in σ; τ

• but O is able to guess it!

We need to disallow this.

Thus: σ; τ = { ⋆ † bS1

1 0S1 bS2

2 0S2 · · · }

and that is also Jlet x = ref(0) in λzref int. x = zK.

Composition example IV

13 / 37

We look at an example with name generation in both strategies:

f : ref int → int ⊢ f(ref(0)) : int and x : int ⊢ ref(x) : ref int

f : ref int → int ⊢ let x = f(ref(0)) in ref(x) : ref int

The corresponding strategies σ = Jf(ref(0))K and τ = Jref(x)K:

Aint ⇒ Z
σ

−−→ Z

†

a(a,0)

i(a,j)

i(a,j)

Z
τ

−−→ Aint

i
a(a,i)

Composition example IV – sync and hide

14 / 37

Taking σ = Jf : ref int → int ⊢ f(ref(0)) : intK and τ = Jref(x)K:

Aint ⇒ Z
σ

−−→ Z

†

a(a,0)

i(a,j)

i(a,j)

Z
τ

−−→ Aint

i
a(a,i)

Composition example IV – sync and hide

14 / 37

Taking σ = Jf : ref int → int ⊢ f(ref(0)) : intK and τ = Jref(x)K:

Aint ⇒ Z
σ

−−→ Z

†

a(a,0)

i(a,j)

i(a,j)

Z
τ

−−→ Aint

i
a(a,i)

Composition example IV – sync and hide

14 / 37

Taking σ = Jf : ref int → int ⊢ f(ref(0)) : intK and τ = Jref(x)K:

Aint ⇒ Z
σ

−−→ Z

†

a(a,0)

i(a,j)

i(a,j)

Z
τ

−−→ Aint

i

b(b,i)

Composition example IV – sync and hide

14 / 37

Taking σ = Jf : ref int → int ⊢ f(ref(0)) : intK and τ = Jref(x)K:

Aint ⇒ Z
σ

−−−→ Z
τ

−−−→ Aint

†

a(a,0)

i(a,j)

i(a,j)

b(b,i)

Extra care:

• the name a should be carried over to the last move

• its value should remain the same

Composition example IV – sync and hide

14 / 37

Taking σ = Jf : ref int → int ⊢ f(ref(0)) : intK and τ = Jref(x)K:

Aint ⇒ Z
σ

−−−→ Z
τ

−−−→ Aint

†

a(a,0)

i(a,j)

i(a,j)

b(b,i),(a,j)

Extra care:

• the name a should be carried over to the last move

• its value should remain the same

Composition example IV – sync and hide

14 / 37

Taking σ = Jf : ref int → int ⊢ f(ref(0)) : intK and τ = Jref(x)K:

Aint ⇒ Z
σ

−−−→ Z
τ

−−−→ Aint

†

a(a,0)

i(a,j)

i(a,j)

b(b,i),(a,j)

Extra care:

• the name a should be carried over to the last move

• its value should remain the same

Composition example IV – sync and hide

14 / 37

Taking σ = Jf : ref int → int ⊢ f(ref(0)) : intK and τ = Jref(x)K:

Aint ⇒ Z
σ;τ

−−−−−−−−−→ Aint

†

a(a,0)

i(a,j)

b(b,i),(a,j)

Extra care:

• the name a should be carried over to the last move

• its value should remain the same

Thus: σ; τ = { † a(a,0) i(a,j) b(a,j),(b,i) · · · }

and that is also Jlet x = f(ref(0)) in ref(x)K.

Composition formally

15 / 37

Thus, when composing strategies with names, we need to impose
additional constraints on names and their privacy, such as:

■ a name that is private in one strategy (by P) cannot be guessed by
the other (by P), nor by the overall O

■ any names that after composition remain in a store without being
available should be removed from that store

Composition formally

15 / 37

Thus, when composing strategies with names, we need to impose
additional constraints on names and their privacy, such as:

■ a name that is private in one strategy (by P) cannot be guessed by
the other (by P), nor by the overall O

■ any names that after composition remain in a store without being
available should be removed from that store

Formally, in order to compose strategies σ : A → B and τ : B → C, we
define a notion of play between the three arenas A,B,C, i.e. in:

A −→ B −→ C

and impose on these plays conditions like above to ensure name privacy
is ensured.

Name ownership and availability

16 / 37

When composing plays in A → B → C it is important to know:

• name ownership: which player produced what names

• what names did P in A → B produce

• what names did P in B → C produce

• what names did O in A → C produce

Name ownership and availability

16 / 37

When composing plays in A → B → C it is important to know:

• name ownership: which player produced what names

• what names did P in A → B produce

• what names did P in B → C produce

• what names did O in A → C produce

• name availability: what names have been revealed (and are not
private to a player)

Interaction sequences

17 / 37

Let γ restrict stores of move sequences to available names, and ↾ X restrict
sequences to moves from component X. Also: ↾γX = γ(↾ X).

A justified sequence u on A → B → C is an interaction sequence if
(u ↾γAB) ∈ PA→B, (u ↾γBC) ∈ PB→C and:

■ u is frugal, that is, γ(u) = u;

■ P(u ↾γAB) ∩ P(u ↾γBC) = ∅;

■ O(u ↾γAC) ∩ (P(u ↾γAB) ∪ P(u ↾γBC)) = ∅;

Interaction sequences

17 / 37

Let γ restrict stores of move sequences to available names, and ↾ X restrict
sequences to moves from component X. Also: ↾γX = γ(↾ X).

A justified sequence u on A → B → C is an interaction sequence if
(u ↾γAB) ∈ PA→B, (u ↾γBC) ∈ PB→C and:

■ u is frugal, that is, γ(u) = u;

■ P(u ↾γAB) ∩ P(u ↾γBC) = ∅;

■ O(u ↾γAC) ∩ (P(u ↾γAB) ∪ P(u ↾γBC)) = ∅;

■ for each u′ ⊑ u ending in mSm′S′

and a ∈ dom(S′) if

◆ m′ is a P-move in AB and a /∈ Av(u′ ↾ AB),

◆ or m′ is a P-move in BC and a /∈ Av(u′ ↾ BC),

◆ or m′ is an O-move in AC and a /∈ Av(u′ ↾ AC),

then S(a) = S′(a).

We write Int(ABC) for the set of interaction sequences on ABC.

Interaction sequence examples

18 / 37

1 −−−→ Z ⇒ Z −−−→ Z ⇒ Z

⋆

†

†

i1

i1

2 ∗ i1
2∗i1+1

...
...

Interaction sequence examples

18 / 37

1
σ

−−−→ Aint
τ

−−−→ Z ⇒ Aint

⋆

a(a,0)

†(a,0)

i
(a,i′

0
)

1

a(a,i1)

i
(a,i′

1
)

2

a(a,i2)

...

Interaction sequence examples

18 / 37

1
σ

−−−→ Aint
τ

−−−→ Aint ⇒ Z

⋆

a(a,0)

†(a,0)

aS1

1S1

bS2

0S2

...
■ · · ·

■ O(u ↾γAC) ∩ (P(u ↾γAB) ∪ P(u ↾γBC)) = ∅;

Interaction sequence examples

18 / 37

Aint ⇒ Z
σ

−−−→ Z
τ

−−−→ Aint

†

a(a,0)

i(a,j)

i(a,j)

b(b,i),(a,j)

■ · · ·

■ for each u′ ⊑ u ending in mSm′S′

and a ∈ dom(S ′) if

◆ m′ is a P-move in AB and a /∈ Av(u′ ↾ AB),

◆ or m′ is a P-move in BC and a /∈ Av(u′ ↾ BC),

◆ or m′ is an O-move in AC and a /∈ Av(u′ ↾ AC),

then S(a) = S ′(a).

Strategy composition

19 / 37

Proposition. If u ∈ Int(ABC) then (u ↾γAC) ∈ PA→C .

Thus, given s ∈ PA→B and t ∈ PB→C , we can compose them by:

■ finding some u ∈ Int(ABC) such that

■ (u ↾γAB) = s and (u ↾γBC) = t.

Then, the composite of s and t is u ↾γAC.

Definition. For each pair of strategies σ : A → B and τ : B → C, their
composition σ; τ ⊆ PA→C is given by:

σ; τ = { u ↾γAC | u ∈ Int(ABC) ∧ (u ↾γAB) ∈ σ ∧ (u ↾γBC) ∈ τ } .

Strategy composition results

20 / 37

Proposition. σ; τ is a strategy in A → C.

The identity morphisms of our category of games are given by:

idA = { s ∈ PA→A | s ↾ Al = s ↾ Ar }

where Al above denotes the left A in A → A (and dually for Ar). This
strategy behaviour, whereby P copies moves from one sub-areana A to
another, is called a copycat.
We can immediately verify the following.

Proposition. For any σ : A → B, we have that σ = idA;σ = σ; idB.

Proposition. Given strategies σ : A → B, τ : B → C and ρ : C → D,
we have (σ; τ); ρ = σ; (τ ; ρ).

Building the model

21 / 37

U,Γ ⊢ () : unit
i ∈ Z

U,Γ ⊢ i : int

(x : θ) ∈ Γ

U,Γ ⊢ x : θ

a ∈ U ∩ Aζ

U,Γ ⊢ a : refζ

U,Γ ⊢ M : int U,Γ ⊢ N0 : θ U,Γ ⊢ N1 : θ

U,Γ ⊢ ifM thenN1 elseN0 : θ

U,Γ ⊢ M : int

U,Γ ⊢ while(M) : unit

U,Γ ⊎ {x : θ } ⊢ M : θ′

U,Γ ⊢ λxθ.M : θ → θ′
U,Γ ⊢ M : θ → θ′ U,Γ ⊢ N : θ

U,Γ ⊢ MN : θ′

U,Γ ⊢ M : θ U,Γ ⊢ N : θ′

U,Γ ⊢ 〈M,N〉 : θ × θ′
U,Γ ⊢ M : θ1 × θ2
U,Γ ⊢ πiM : θi

i∈{1,2}

U,Γ ⊢ M : int U,Γ ⊢ N : int

U,Γ ⊢ M ⊕N : int

U,Γ ⊢ M : refζ U,Γ ⊢ N : refζ

U,Γ ⊢ M = N : int

U,Γ ⊢ M : ζ

U,Γ ⊢ ref(M) : refζ

U,Γ ⊢ M : refζ

U,Γ ⊢ !M : ζ

U,Γ ⊢ M : refζ U,Γ ⊢ N : ζ

U,Γ ⊢ M :=N : unit

Building the model – base cases

22 / 37

U,Γ ⊢ () : unit
i ∈ Z

U,Γ ⊢ i : int

(x : θ) ∈ Γ

U,Γ ⊢ x : θ

a ∈ U ∩ Aζ

U,Γ ⊢ a : refζ

JU,ΓK
J()K

−−−→ 1

iS

⋆S

JU,ΓK
JiK

−−→ Z

iS

iS

JU,ΓK
JxK

−−−→ JθK

iS

iSi

JU,ΓK
JxK

−−−→ Aζ

iS

iSi

■ in the last two rules, we assume x/a is the i-th component in U, γ.

■ in the rule for x, if θ is a function type, the strategy copycats
between ii and (the i-th component of) i.

Building the model – pairs and projections

23 / 37

U,Γ ⊢ M : θ U,Γ ⊢ N : θ′

U,Γ ⊢ 〈M,N〉 : θ × θ′
U,Γ ⊢ M : θ1 × θ2
U,Γ ⊢ πiM : θi

i∈{1,2}

Given σ : A → B, τ : A → C, form their product strategy 〈σ, τ〉 by:

A
〈σ,τ〉

−−−−→ B ⊗ C

iSA
... play like σ, until next move is some iS

′

B
... play like τ (from iS

′

A), until next is some iS
′′

C

(iB, iC)
S′′

...
... play like σ or τ , depending on component

Building the model – pairs and projections

23 / 37

U,Γ ⊢ M : θ U,Γ ⊢ N : θ′

U,Γ ⊢ 〈M,N〉 : θ × θ′
U,Γ ⊢ M : θ1 × θ2
U,Γ ⊢ πiM : θi

i∈{1,2}

Given σ : A → B, τ : A → C, form their product strategy 〈σ, τ〉 [. . .]

JMK : JU,ΓK −→ JθK JNK : JU,ΓK −→ Jθ′K

J〈M,N〉K = 〈JMK, JNK〉 : JU,ΓK −→ JθK ⊗ Jθ′K

Building the model – pairs and projections

23 / 37

U,Γ ⊢ M : θ U,Γ ⊢ N : θ′

U,Γ ⊢ 〈M,N〉 : θ × θ′
U,Γ ⊢ M : θ1 × θ2
U,Γ ⊢ πiM : θi

i∈{1,2}

Given σ : A → B, τ : A → C, form their product strategy 〈σ, τ〉 [. . .]

JMK : JU,ΓK −→ JθK JNK : JU,ΓK −→ Jθ′K

J〈M,N〉K = 〈JMK, JNK〉 : JU,ΓK −→ JθK ⊗ Jθ′K

On the other hand, syntactic projections are modelled using projection
strategies:

A⊗B
π1−−→ A

(iA, iB)
S

iSA copycat from here on

Building the model – pairs and projections

23 / 37

U,Γ ⊢ M : θ U,Γ ⊢ N : θ′

U,Γ ⊢ 〈M,N〉 : θ × θ′
U,Γ ⊢ M : θ1 × θ2
U,Γ ⊢ πiM : θi

i∈{1,2}

Given σ : A → B, τ : A → C, form their product strategy 〈σ, τ〉 [. . .]

JMK : JU,ΓK −→ JθK JNK : JU,ΓK −→ Jθ′K

J〈M,N〉K = 〈JMK, JNK〉 : JU,ΓK −→ JθK ⊗ Jθ′K

On the other hand, syntactic projections are modelled using projection
strategies:

JMK : JU,ΓK −→ Jθ1K ⊗ Jθ2K

JπiMK = JU,ΓK
JMK

−−−→ Jθ1K ⊗ Jθ2K
πi−−→ JθiK

Building the model – basic operations

24 / 37

U,Γ ⊢ M : int U,Γ ⊢ N : int

U,Γ ⊢ M ⊕N : int

U,Γ ⊢ M : refζ U,Γ ⊢ N : refζ

U,Γ ⊢ M = N : int

JMK, JNK : JU,ΓK −→ Z

JM ⊕NK = JU,ΓK
〈JMK,JNK〉

−−−−−−−→ Z⊗ Z
⊕

−−→ Z

JMK, JNK : JU,ΓK −→ Aζ

JM = NK = JU,ΓK
〈JMK,JNK〉

−−−−−−−→ Aζ ⊗ Aζ
=

−−→ Z

Building the model – λ-abstractions

25 / 37

U,Γ ⊎ { x : θ } ⊢ M : θ′

U,Γ ⊢ λxθ.M : θ → θ′
U,Γ ⊢ M : θ → θ′ U,Γ ⊢ N : θ

U,Γ ⊢ MN : θ′

Given σ : A⊗B → C, form its Λ-abstraction strategy Λ(σ) by:

A
Λ(σ)

−−−−→ B ⇒ C

iSA

†S

iS
′

B
...

... play like σ (from (iA, iB)
S′

)

i′S
′′

B
...

... play like σ (from (iA, i
′
B)

S′′

)

Building the model – λ-abstractions

25 / 37

U,Γ ⊎ { x : θ } ⊢ M : θ′

U,Γ ⊢ λxθ.M : θ → θ′
U,Γ ⊢ M : θ → θ′ U,Γ ⊢ N : θ

U,Γ ⊢ MN : θ′

Given σ : A⊗B → C, form its Λ-abstraction strategy Λ(σ) [. . .]

JMK : JU,ΓK ⊗ JθK −→ Jθ′K

Jλxθ.MK = Λ(JMK) : JU,ΓK −→ JθK ⇒ Jθ′K

Building the model – λ-abstractions

25 / 37

U,Γ ⊎ { x : θ } ⊢ M : θ′

U,Γ ⊢ λxθ.M : θ → θ′
U,Γ ⊢ M : θ → θ′ U,Γ ⊢ N : θ

U,Γ ⊢ MN : θ′

Given σ : A⊗B → C, form its Λ-abstraction strategy Λ(σ) [. . .]

JMK : JU,ΓK ⊗ JθK −→ Jθ′K

Jλxθ.MK = Λ(JMK) : JU,ΓK −→ JθK ⇒ Jθ′K

On the other hand, applications are modelled using evaluation strategies:

(A ⇒ B)⊗ A
evA,B

−−−−→ B

(† , iA)
S

iSA copycat from here on

iS
′

B

iS
′

B copycat from here on

Building the model – λ-abstractions

25 / 37

U,Γ ⊎ { x : θ } ⊢ M : θ′

U,Γ ⊢ λxθ.M : θ → θ′
U,Γ ⊢ M : θ → θ′ U,Γ ⊢ N : θ

U,Γ ⊢ MN : θ′

Given σ : A⊗B → C, form its Λ-abstraction strategy Λ(σ) [. . .]

JMK : JU,ΓK ⊗ JθK −→ Jθ′K

Jλxθ.MK = Λ(JMK) : JU,ΓK −→ JθK ⇒ Jθ′K

On the other hand, applications are modelled using evaluation strategies:

JMK : JU,ΓK −→ JθK ⇒ Jθ′K JNK : JU,ΓK −→ JθK

JMNK = JU,ΓK
〈JMK,JNK〉

−−−−−−−→ (JθK⇒Jθ′K)⊗ JθK
ev

−−→ Jθ′K

Building the model – references

26 / 37

U,Γ ⊢ M : ζ

U,Γ ⊢ ref(M) : refζ

U,Γ ⊢ M : refζ

U,Γ ⊢ !M : ζ

U,Γ ⊢ M : refζ U,Γ ⊢ N : ζ

U,Γ ⊢ M :=N : unit

We rely on the following strategies for manipulating references and store:

JζK
newζ

−−−−→ Aζ

vS

aS,(a,v)

Aζ

getζ
−−−→ Z

aS

S(a)S

Aζ ⊗ JζK
setζ

−−−→ 1

(a, v)S

⋆S[a 7→v]

Working-out examples

27 / 37

Work out step-by-step the semantics of these terms:

■ ⊢ let f = λyint. 2 ∗ y in λxint. fx+ 1 : int → int

■ ⊢ let x = ref(0) in λzint. x := z;x : int → ref int

■ ⊢ λzint. let x = ref(0) in x := z;x : int → ref int

■ f : ref int → int ⊢ let x = f(ref(0)) in ref(x) : ref int

Properties of the game model

28 / 37

Summing up, we have shown that, for each term U,Γ ⊢ M : θ:

JMK : JU,ΓK −→ JθK

Properties of the game model

28 / 37

Summing up, we have shown that, for each term U,Γ ⊢ M : θ:

JMK : JU,ΓK −→ JθK

What properties do we require? The model be:

■ compositional

Properties of the game model

28 / 37

Summing up, we have shown that, for each term U,Γ ⊢ M : θ:

JMK : JU,ΓK −→ JθK

What properties do we require? The model be:

■ compositional

■ correct wrt the operational semantics:

(M,S) −→ (M ′, S ′) =⇒ Jnew S in MK = Jnew S ′ in M ′K

Properties of the game model

28 / 37

Summing up, we have shown that, for each term U,Γ ⊢ M : θ:

JMK : JU,ΓK −→ JθK

What properties do we require? The model be:

■ compositional

■ correct wrt the operational semantics:

(M,S) −→ (M ′, S ′) =⇒ Jnew S in MK = Jnew S ′ in M ′K

■ adequate: if J⊢ M : unitK = {⋆⋆} then M ⇓

Properties of the game model

28 / 37

Summing up, we have shown that, for each term U,Γ ⊢ M : θ:

JMK : JU,ΓK −→ JθK

What properties do we require? The model be:

■ compositional

■ correct wrt the operational semantics:

(M,S) −→ (M ′, S ′) =⇒ Jnew S in MK = Jnew S ′ in M ′K

■ adequate: if J⊢ M : unitK = {⋆⋆} then M ⇓

■ sound: if JMK and JNK have the same complete plays then M ∼= N

■ fully abstract: the converse of sound

– why just complete plays?

Correctness

29 / 37

(i⊕ j, S) −→ (k, S) (k = i⊕ j)
((λx.M)V, S) −→ (M [V/x], S)
(π1〈V1, V2〉, S) −→ (V1, S)
(π2〈V1, V2〉, S) −→ (V2, S)

(if 0 thenM elseM ′, S) −→ (M ′, S)
(if i thenM elseM ′, S) −→ (M,S) (i > 0)

(while(M), S) −→ (ifM then while(M) else (), S)
(a = b, S) −→ (0, S) (a 6= b)
(a = a, S) −→ (1, S)

(!a, S) −→ (S(a), S)
(a :=V, S) −→ ((), S[a 7→ V])
(ref(V), S) −→ (a′, S[a′ 7→ V]) (a′ /∈ dom(S))

(M,S) −→ (M ′, S′)

(E[M], S) −→ (E[M ′], S′)

Correctness – stateless rules

30 / 37

(i⊕ j, S) −→ (k, S) (k = i⊕ j)
((λx.M)V, S) −→ (M [V/x], S)
(π1〈V1, V2〉, S) −→ (V1, S)
(π2〈V1, V2〉, S) −→ (V2, S)

(if 0 thenM elseM ′, S) −→ (M ′, S)
(if i thenM elseM ′, S) −→ (M,S) (i > 0)

(while(M), S) −→ (ifM then while(M) else (), S)
(a = b, S) −→ (0, S) (a 6= b)
(a = a, S) −→ (1, S)

(M,S) −→ (M ′, S′)

(E[M], S) −→ (E[M ′], S′)

Lemma. For all the reductions (M,S) −→ (M ′, S′) above, JMK = JM ′K.

For all but the last rule, this follows either directly from the definitions of the
model constructs, or from the properties of products and abstractions. For the
last rule, we do induction on the number of applications, relying on
compositionality: if JMK = JM ′K then JE[M]K = JE[M ′]K.

Correctness – state rules

31 / 37

(!a, S) −→ (S(a), S)
(a :=V, S) −→ ((), S[a 7→ V])
(ref(V), S) −→ (a′, S[a′ 7→ V]) (a′ /∈ dom(S))

(M,S) −→ (M ′, S′)

(E[M], S) −→ (E[M ′], S′)

Lemma. For (M,S) −→ (M ′, S′) as above, Jnew S in MK = Jnew S′ in M ′K.

For all but the last rule, this follows either directly from the definitions of the
model constructs for manipulating state. For the last rule, we need to show
that the new and the E commute.

Correctness – state rules

31 / 37

(!a, S) −→ (S(a), S)
(a :=V, S) −→ ((), S[a 7→ V])
(ref(V), S) −→ (a′, S[a′ 7→ V]) (a′ /∈ dom(S))

(M,S) −→ (M ′, S′)

(E[M], S) −→ (E[M ′], S′)

Lemma. For (M,S) −→ (M ′, S′) as above, Jnew S in MK = Jnew S′ in M ′K.

For all but the last rule, this follows either directly from the definitions of the
model constructs for manipulating state. For the last rule, we need to show
that the new and the E commute.

Proposition. (M,S) −→ (M ′, S′) implies Jnew S in MK = Jnew S′ in M ′K.

Adequacy

32 / 37

Adequacy ensures that diverging terms have diverging semantics:

M 6⇓ =⇒ J⊢ M : unitK = {ǫ}

We rely on the fact that any transition sequence with a bounded number
of while unfolding is terminating. Suppose M 6⇓ and J⊢ M : unitK = {⋆⋆}:

Adequacy

32 / 37

Adequacy ensures that diverging terms have diverging semantics:

M 6⇓ =⇒ J⊢ M : unitK = {ǫ}

We rely on the fact that any transition sequence with a bounded number
of while unfolding is terminating. Suppose M 6⇓ and J⊢ M : unitK = {⋆⋆}:

• then, (M, ∅) −→ · · · has infinitely many while unfoldings

• pick some fresh x and let M0 be obtained from M by:

• replacing each while(N) in it with while(x := !x+ 1;N)

• wrapping the resulting term in letx = ref(0) in []; !x

Adequacy

32 / 37

Adequacy ensures that diverging terms have diverging semantics:

M 6⇓ =⇒ J⊢ M : unitK = {ǫ}

We rely on the fact that any transition sequence with a bounded number
of while unfolding is terminating. Suppose M 6⇓ and J⊢ M : unitK = {⋆⋆}:

• then, (M, ∅) −→ · · · has infinitely many while unfoldings

• pick some fresh x and let M0 be obtained from M by:

• replacing each while(N) in it with while(x := !x+ 1;N)

• wrapping the resulting term in letx = ref(0) in []; !x

• then, because JMK = {⋆⋆}, we have JM0K = {⋆ j} (some j ≥ 0)

• but (M0, ∅) −→ (M ′
0, (a, 0)) −→ · · · (M ′′

0 , S) with S(a) = j + 1

• so, by correctness, ⋆ j ∈ Jnew S in M ′′
0 K, contradiction as in JM ′′

0 K
the value of a is non-decreasing.

Soundness

33 / 37

Proposition. Given Γ ⊢ M : θ and Γ ⊢ N : θ, if comp(JMK) = comp(JNK)
then M ∼= N .

Proof. Suppose M 6∼= N . Then,

• there is C such that (WLOG) C[M]⇓ and C[N] 6⇓

Soundness

33 / 37

Proposition. Given Γ ⊢ M : θ and Γ ⊢ N : θ, if comp(JMK) = comp(JNK)
then M ∼= N .

Proof. Suppose M 6∼= N . Then,

• there is C such that (WLOG) C[M]⇓ and C[N] 6⇓

• then, from correctness, JC[M]K = J()K so ⋆⋆ ∈ JC[M]K

• and, from adequacy, JC[N]K = {ǫ}

Soundness

33 / 37

Proposition. Given Γ ⊢ M : θ and Γ ⊢ N : θ, if comp(JMK) = comp(JNK)
then M ∼= N .

Proof. Suppose M 6∼= N . Then,

• there is C such that (WLOG) C[M]⇓ and C[N] 6⇓

• then, from correctness, JC[M]K = J()K so ⋆⋆ ∈ JC[M]K

• and, from adequacy, JC[N]K = {ǫ}

• now, taking Γ = {x1 : θ1, · · · , xn : θn} and f : θ1 → · · · → θn → θ,

JΓ ⊢ C[M] : unitK = JC[(λ~x.M)x1 · · · xn]K = ~Λ(JMK); JC[fx1 · · · xn]K

and same for N

• ⋆⋆ ∈ JC[M]K\ JC[N]K implies that comp(~Λ(JMK)) \ comp(~Λ(JNK)) is
non-empty, so comp(JMK) \ comp(JNK) is non-empty, contradiction.

Definability and full abstraction

34 / 37

Full abstraction is proven via definability: the model has no (finitary)
garbage.

Proposition. Any finitary strategy (i.e. finite up to permuting names)
σ : JU,ΓK → JθK is the translation of some GroundML term.

This is proven by induction on the length of the longest play in σ,
deconstructing it into smaller strategies.

Definability and full abstraction

34 / 37

Full abstraction is proven via definability: the model has no (finitary)
garbage.

Proposition. Any finitary strategy (i.e. finite up to permuting names)
σ : JU,ΓK → JθK is the translation of some GroundML term.

This is proven by induction on the length of the longest play in σ,
deconstructing it into smaller strategies.

Theorem. Given Γ ⊢ M : θ and Γ ⊢ N : θ,

comp(JMK) = comp(JNK) ⇐⇒ M ∼= N

Full abstraction

35 / 37

Theorem. Given Γ ⊢ M,N : θ, comp(JMK) = comp(JNK) ⇐⇒ M ∼= N .

Proof. We need only prove the right-to-left implication. Let
Γ = {x1 : θ1, · · · , xn : θn} and suppose s ∈ comp(JMK) \ comp(JNK).

Full abstraction

35 / 37

Theorem. Given Γ ⊢ M,N : θ, comp(JMK) = comp(JNK) ⇐⇒ M ∼= N .

Proof. We need only prove the right-to-left implication. Let
Γ = {x1 : θ1, · · · , xn : θn} and suppose s ∈ comp(JMK) \ comp(JNK).

• then, there is a corresponding s′ ∈ comp(~Λ(JMK)) \ comp(~Λ(JNK)),

a play in 1 → (Jθ1K ⇒ · · · ⇒ JθnK ⇒ JθK), say s′ = ⋆ †1 iS1

1 †S1

2 · · · iSn
n s′′

Full abstraction

35 / 37

Theorem. Given Γ ⊢ M,N : θ, comp(JMK) = comp(JNK) ⇐⇒ M ∼= N .

Proof. We need only prove the right-to-left implication. Let
Γ = {x1 : θ1, · · · , xn : θn} and suppose s ∈ comp(JMK) \ comp(JNK).

• then, there is a corresponding s′ ∈ comp(~Λ(JMK)) \ comp(~Λ(JNK)),

a play in 1 → (Jθ1K ⇒ · · · ⇒ JθnK ⇒ JθK), say s′ = ⋆ †1 iS1

1 †S1

2 · · · iSn
n s′′

• take t to be the play in (Jθ1K ⇒ · · · ⇒ JθnK ⇒ JθK) → 1 given by:

t = †1 i
S1

1 †S1

2 · · · iSn

n s′′ ⋆S

where S the last store in s′. By Definability, there is
f : ~θ → θ ⊢ M ′ : unit such that JM ′K contains just t (and prefixes)

• then ⋆⋆ ∈ J(λf.M ′)(λ~x.M)K but J(λf.M ′)(λ~x.N)K = {ǫ}

Full abstraction

35 / 37

Theorem. Given Γ ⊢ M,N : θ, comp(JMK) = comp(JNK) ⇐⇒ M ∼= N .

Proof. We need only prove the right-to-left implication. Let
Γ = {x1 : θ1, · · · , xn : θn} and suppose s ∈ comp(JMK) \ comp(JNK).

• then, there is a corresponding s′ ∈ comp(~Λ(JMK)) \ comp(~Λ(JNK)),

a play in 1 → (Jθ1K ⇒ · · · ⇒ JθnK ⇒ JθK), say s′ = ⋆ †1 iS1

1 †S1

2 · · · iSn
n s′′

• take t to be the play in (Jθ1K ⇒ · · · ⇒ JθnK ⇒ JθK) → 1 given by:

t = †1 i
S1

1 †S1

2 · · · iSn

n s′′ ⋆S

where S the last store in s′. By Definability, there is
f : ~θ → θ ⊢ M ′ : unit such that JM ′K contains just t (and prefixes)

• then ⋆⋆ ∈ J(λf.M ′)(λ~x.M)K but J(λf.M ′)(λ~x.N)K = {ǫ}

• by adequacy-correctness, (λf.M ′)(λ~x.M)⇓ and (λf.M ′)(λ~x.N) 6⇓,

so M 6∼= N .

Examples

36 / 37

M1 ≡ let x = ref(0) inλyref int. x = y

M2 ≡ λyref int. 0

M3 ≡ let x = ref(0) in let c = ref(0) in

f(λ . if !c = 0 then div elsex); c := 1;λyref int. x = y

M4 ≡ f(λ . div);λyref int. 0

M5 ≡ let x = ref(ref(0)) in

λyref int. let z = !x in if y = z then div else (x := ref(0); z)

M6 ≡ λyref int. ref(0)

Exercises

37 / 37

1. Work out the game semantics of these terms:

• f : int → int ⊢ let y = f(0) inλxint. f(x+ y) + 1 : int → int

• ⊢ λf int→int. let y = f(0) inλxint. f(x+ y) + 1 : (int → int) → (int → int)

note that, in the second case, O can repeatedly play a move † (for f).

2. Complete the modelling of the following syntactic constructs (cf. slide 22):

U,Γ ⊢ M : ζ

U,Γ ⊢ ref(M) : refζ

U,Γ ⊢ M : refζ

U,Γ ⊢ !M : ζ

U,Γ ⊢ M : refζ U,Γ ⊢ N : ζ

U,Γ ⊢ M :=N : unit

3. Let wh : (1 ⇒ Z) → 1 be the strategy that plays in 1 ⇒ Z while positive integers
are returned, until 0 is returned and the strategy plays the unique move on the
RHS (which we denote ⋆′):

wh = { † ⋆ i1 ⋆ i2 · · · ⋆ in ⋆ 0 ⋆′ | n ≥ 0 ∧ ij > 0}

Use the wh strategy in order to model the while loop construct:

U,Γ ⊢ M : int

U,Γ ⊢ while(M) : unit

	Recap: game semantics for GroundML
	Recall GroundML
	Example strategies
	Translating GroundML terms into strategies
	Strategy composition
	Composition example
	Composition example – sync and hide
	Composition example II
	Composition example II – sync and hide
	Composition example III
	Composition example III – sync and hide
	Composition example IV
	Composition example IV – sync and hide
	Composition formally
	Name ownership and availability
	Interaction sequences
	Interaction sequence examples
	Strategy composition
	Strategy composition results
	Building the model
	Building the model – base cases
	Building the model – pairs and projections
	Building the model – basic operations
	Building the model – -abstractions
	Building the model – references
	Working-out examples
	Properties of the game model
	Correctness
	Correctness – stateless rules
	Correctness – state rules
	Adequacy
	Soundness
	Definability and full abstraction
	Full abstraction
	Examples
	Exercises

