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Recall the types of GroundML:

θ ::= ζ | θ × θ | θ → θ

ζ ::= unit | int | ref ζ

Restriction: all references are of ground type

■ OK: letx = ref(0) in · · ·

■ OK: letx = ref(ref(0)) in · · ·

■ not OK: letx = ref(〈0, 1〉) in · · ·

■ not OK: let f = ref(λxint.x) in · · ·
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Restriction: all references are of ground type

■ OK: letx = ref(0) in · · ·

■ OK: letx = ref(ref(0)) in · · ·

■ not OK: letx = ref(〈0, 1〉) in · · ·

■ not OK: let f = ref(λxint.x) in · · ·

Does this matter?

■ we can simulate letx = ref(〈0, 1〉) inM by:

let xl = ref(0) in letxr = ref(1) in ’M{〈xl, xr〉/x}’
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But we cannot simulate let f = ref(λxint.x) inM .

Does it matter – can we express fewer programs?
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But we cannot simulate let f = ref(λxint.x) inM .

Does it matter – can we express fewer programs?

■ ⊢ M : int : same programs (i.e. same integers)

■ ⊢ M : int → int: same programs (i.e. same terms up to equivalence)

■ but this does not hold in general!



A delay buffer
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Example. Consider a term

⊢ dBuf : (int → int) → (int → int)

evaluating to some function f such that:

■ the first time we call f , say by executing f(f1), it returns λx
int.x;

■ the second time we call f , say by executing f(f2), it returns f1;

■ · · ·

■ the i-th time we call f , say by f(fi), it returns fi−1.
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Example. Consider a term

⊢ dBuf : (int → int) → (int → int)

evaluating to some function f such that:

■ the first time we call f , say by executing f(f1), it returns λx
int.x;

■ the second time we call f , say by executing f(f2), it returns f1;

■ · · ·

■ the i-th time we call f , say by f(fi), it returns fi−1.

We can implement it using references of type int → int:

dBuf ≡ let r = ref(λxint.x) in

λf int→int. let fold = !r in r := f ; fold
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Example. Consider a term

⊢ dBuf : (int → int) → (int → int)

evaluating to some function f such that:

■ the first time we call f , say by executing f(f1), it returns λx
int.x;

■ thereafter, the i-th time we call f , say by f(fi), it returns fi−1.

Lemma. We cannot implement dBuf in GroundML.
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Example. Consider a term

⊢ dBuf : (int → int) → (int → int)

evaluating to some function f such that:

■ the first time we call f , say by executing f(f1), it returns λx
int.x;

■ thereafter, the i-th time we call f , say by f(fi), it returns fi−1.

Lemma. We cannot implement dBuf in GroundML.

Proof (sketch). If we could, then JdBufK would contain plays like:

⋆ † †1 †′1 †2 †′2 42 42 · · ·
(where there are no explicit
pointers, assume the move
points to its predecessor)

OQ PA OQ PA OQ PA OQ PQ

which would break visibility.



Recall Visibility
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In any play
s m

the move that m points to must be in the view of s

⋆ † †1 †′1 †2 †′2 42 42

OQ PA OQ PA OQ PA OQ PQ

⇓

⋆ † †1 †′1 †2 †′2 42 42

The view hides moves from suspended function calls



Higher-order references: more distinctions
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Lemma. The following terms are equivalent in GroundML:

f : unit→unit ⊢ letn = ref(0) inλ . if !n then () elsen := 1; f() : unit→unit

f : unit→unit ⊢ letn = ref(0) inλ . if !n then () else f();n := 1 : unit→unit
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Lemma. The following terms are equivalent in GroundML:

f : unit→unit ⊢ letn = ref(0) inλ . if !n then () elsen := 1; f() : unit→unit

f : unit→unit ⊢ letn = ref(0) inλ . if !n then () else f();n := 1 : unit→unit

Proof. Computing the game semantics in each case, we get that it must
consist of plays of the form:

†f † ⋆ ⋆f ⋆ ⋆ · · ·
OQ PA OQ PQ OA PA

In particular, the question ⋆f must be immediately answered as, at that
point in the play, O has no other move to play (by visibility).

But the terms can be distinguished by a context that uses higher-order
references.



The language RefML – Definition
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θ ::= unit | int | ref θ | θ × θ | θ → θ A =
⊎

θ Aθ

U,Γ ⊢ () : unit
i ∈ Z

U,Γ ⊢ i : int

(x : θ) ∈ Γ

U,Γ ⊢ x : θ

a ∈ U ∩ Aθ

U,Γ ⊢ a : refθ

U,Γ ⊢ M : int U,Γ ⊢ N0 : θ U,Γ ⊢ N1 : θ

U,Γ ⊢ ifM thenN1 elseN0 : θ

U,Γ ⊢ M : int

U,Γ ⊢ while(M) : unit

U,Γ ⊎ {x : θ } ⊢ M : θ′

U,Γ ⊢ λxθ.M : θ → θ′
U,Γ ⊢ M : θ → θ′ U,Γ ⊢ N : θ

U,Γ ⊢ MN : θ′

U,Γ ⊢ M : θ U,Γ ⊢ N : θ′

U,Γ ⊢ 〈M,N〉 : θ × θ′
U,Γ ⊢ M : θ1 × θ2
U,Γ ⊢ πiM : θi

i∈{1,2}

U,Γ ⊢ M : int U,Γ ⊢ N : int

U,Γ ⊢ M ⊕N : int

U,Γ ⊢ M : refθ U,Γ ⊢ N : refθ

U,Γ ⊢ M = N : int

U,Γ ⊢ M : θ

U,Γ ⊢ ref(M) : refθ

U,Γ ⊢ M : refθ

U,Γ ⊢ !M : θ

U,Γ ⊢ M : refθ U,Γ ⊢ N : θ

U,Γ ⊢ M :=N : unit



Operational semantics of RefML – remains the same
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(i⊕ j, S) −→ (k, S) (k = i⊕ j)

((λx.M)V, S) −→ (M [V/x], S)

(π1〈V1, V2〉, S) −→ (V1, S)

(π2〈V1, V2〉, S) −→ (V2, S)

(if 0 thenM elseM ′, S) −→ (M ′, S)

(if i thenM elseM ′, S) −→ (M,S) (i > 0)

(while(M), S) −→ (ifM then while(M) else (), S)

(a = b, S) −→ (0, S) (a 6= b)

(a = a, S) −→ (1, S)

(!a, S) −→ (S(a), S)

(a :=V, S) −→ ((), S[a 7→ V ])

(ref(V ), S) −→ (a′, S[a′ 7→ V ]) (a′ /∈ dom(S))

(M,S) −→ (M ′, S ′)

(E[M ], S) −→ (E[M ′], S ′)
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dBuf ≡ let r = ref(λxint.x) in

λf int→int. let fold = !r in r := f ; fold : (int → int) → (int → int)
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dBuf ≡ let r = ref(λxint.x) in

λf int→int. let fold = !r in r := f ; fold : (int → int) → (int → int)

lambdaMax ≡ let r = ref(λxint.x), n = ref(1) in

λf int→int. ( if !n thenn := 0; r := f

else let fold = !r in r := λxint. max(foldx, fx) );

!r

: (int → int) → (int → int)
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dBuf ≡ let r = ref(λxint.x) in

λf int→int. let fold = !r in r := f ; fold : (int → int) → (int → int)

lambdaMax ≡ let r = ref(λxint.x), n = ref(1) in

λf int→int. ( if !n thenn := 0; r := f

else let fold = !r in r := λxint. max(foldx, fx) );

!r

: (int → int) → (int → int)

How to distinguish:

f : unit→unit ⊢ letn = ref(0) inλ . if !n then () elsen := 1; f() : unit→unit

f : unit→unit ⊢ letn = ref(0) inλ . if !n then () else f();n := 1 : unit→unit
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How can we adapt the game model of GroundML to model higher-order
references? How should we change:

arenas?

moves?

plays?

strategies?
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How can we adapt the game model of GroundML to model higher-order
references? How should we change:

arenas? these remain the same

moves? stores need to be higher-order

plays? can break visibility

strategies? same conditions as before

+ additional conditions for composition



Stores with higher-order values
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What is a higher-order value?



Stores with higher-order values
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What is a higher-order value?

It is a move opening an arena, and should contain some †.

Stores storing ground and higher-order values:

GroundML RefML

S = {(a, 0), (b, a), · · · }

S = {(a, iA), (b, iB), · · · }

A− B−



Pointers pointers everywhere
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r : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int) → (int→int)

Aint→int −→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

a(a,†)

†(a,†)

†(a,†)

†(a,†)

42(a,†)
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r : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int) → (int→int)

Aint→int −→ (Z ⇒ Z) ⇒ (Z ⇒ Z)
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Plays
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There are two kinds of modifications we make on plays:

■ There are now two kinds of pointers: to-move and to-store pointers:

a(a,†) †(a,†) †(a,†) †(a,†) 42(a,†) 42(a,†) · · ·
OQ PA OQ PA OQ PQ

■ Visibility is no longer imposed

⋆ † †1 † †2 † 42 42 · · ·
OQ PA OQ PA OQ PA OQ PQ



Composition: more copycat conditions
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σ = Jref(λxint. x : int → int)K
τ = Jr : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int)→(int → int)K

1
σ

−−−→ Aint→int
τ

−−−→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

⋆

a(a,†)

†(a,†)

†
(a,†)
1

†(a,†)
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Results
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■ the game model for RefML if fully abstract

comp(JMK) = comp(JNK) ⇐⇒ M ∼= N

(and we also have correctness and adequacy)

■ conceptually:

Higher-order references ⇐⇒ Loosen visibility



Something different: operational games
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We started from informal dialogues and moved to formal games via:

• defining the rules of the games (arenas, moves, plays, etc.)

• defining the translation of basic terms (e.g. constant, variables, etc.)

• defining composition and other syntactic constructs

• combine the above to produce the semantics of terms
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We started from informal dialogues and moved to formal games via:

• defining the rules of the games (arenas, moves, plays, etc.)

• defining the translation of basic terms (e.g. constant, variables, etc.)

• defining composition and other syntactic constructs

• combine the above to produce the semantics of terms

An alternative idea is:

just execute terms operationally to produce their plays

• reduce the term internally via its operational semantics

• when an external function needs to be called, play a move

• and take it on from there
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⊢ λyint. 2 ∗ y + 1 : int → int :

◦ what is the result?

• it is a function m

◦ what is the result of m on 42?

• (...) it is 85

◦ what is the result of m on 22?

• (...) it is 45

...

An operational reading of the game semantics is:

call () ret (m) callm(42) retm(85) callm(22) retm(25) · · ·

m here is a function name (think of it as a method name)



Example II

19 / 36

f : int → int ⊢ λxint. fx+ 1 : int → int :

◦ given m (for f), what is the result?

• it is a function m′
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f : int → int ⊢ λxint. fx+ 1 : int → int :

◦ given m (for f), what is the result?

• it is a function m′

◦ what is the result of m′ on 42?

• what is the result of m on 42?

◦ it is 85
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f : int → int ⊢ λxint. fx+ 1 : int → int :

◦ given m (for f), what is the result?

• it is a function m′

◦ what is the result of m′ on 42?

• what is the result of m on 42?

◦ it is 85

• (...) it is 86

◦ what is the result of m′ on 22?

• what is the result of m on 22?

◦ it is 25

• (...) it is 26

call (m) ret (m′) callm′(42) callm(42) retm(85) retm′(86) · · ·



How to obtain the games operationally
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■ For ⊢ λyint. 2 ∗ y + 1 : int → int. Start with initial move:

(⊢ λyint. 2 ∗ y + 1 : int → int)
call ()
−−−−→ (λyint. 2 ∗ y + 1, S0, R0)

where S0 an empty store, and R0 an empty repository (stores method
names and their definitions)
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■ For ⊢ λyint. 2 ∗ y + 1 : int → int. Start with initial move:

(⊢ λyint. 2 ∗ y + 1 : int → int)
call ()
−−−−→ (λyint. 2 ∗ y + 1, S0, R0)

where S0 an empty store, and R0 an empty repository (stores method
names and their definitions)

■ proceed to evaluation, producing a name for the function:

(λyint. 2 ∗ y + 1, S0, R0) −→ (m,S0, {m 7→ λy.2 ∗ y + 1})

■ return the function name:

(m,S0, {m 7→ λy.2 ∗ y + 1})
ret (m)
−−−−−→ (◦, S0, {m 7→ λy.2 ∗ y + 1})

■ now it is Opponent’s turn:

(◦, S0, {m 7→ λy.2 ∗ y + 1})
callm(42)
−−−−−−→ (m 42, S0, {m 7→ λy.2 ∗ y + 1})

■ compute and return:

(m 42, S0, {m 7→ λy.2∗y+1}) −→ (2∗42+1, ...) −→ (85, ...)
retm(85)
−−−−−−→ (◦, ...)
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(⊢ λyint. 2 ∗ y + 1 : int → int)

call ()
−−−−→ (λyint. 2 ∗ y + 1, S0, R0)

−→ (m,S0, R1) R1 = {m 7→ λy.2 ∗ y + 1}

ret (m)
−−−−−→ (◦, S0, R1)

callm(42)
−−−−−−→ (m 42, S0, R1)

−→ (2 ∗ 42 + 1, S0, R1) −→ (85, S0, R1)
retm(85)
−−−−−−→ (◦, S0, R1)

callm(22)
−−−−−−→ (m 22, S0, R1)

−→ (2 ∗ 22 + 1, S0, R1) −→ (45, S0, R1)
retm(45)
−−−−−−→ (◦, S0, R1)

· · ·
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(f : int → int ⊢ λxint. fx+ 1 : int → int)

call (m)
−−−−−→ (λxint.mx+ 1, S0, R0)

−→ (m′, S0, R1) R1 = {m′ 7→ λxint.mx+ 1}

ret (m′)
−−−−−→ (◦, S0, R1)

callm′(42)
−−−−−−→ (m′ 42, S0, R1) −→ (m 42 + 1, S0, R1)

callm(42)
−−−−−−→ (•+ 1, S0, R1)

retm(85)
−−−−−→ (85 + 1, S0, R1) −→ (86, S0, R1)

retm′(86)
−−−−−−→ (◦, S0, R1)

· · ·



Plays vs traces
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To distinguish them from plays we call these sequences of calls and
returns traces.

There is a correspondence between plays and traces:

† † 42 42 84 86 · · ·

⇓

call (m) ret (m′) callm′(42) callm(42) retm(85) retm′(86) · · ·
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Traces are based on configurations:

(M, E , S, R,P) or (◦, E , S, R,P)
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Traces are based on configurations:

(M, E , S, R,P) or (◦, E , S, R,P)

these are P and O configurations respectively
and:

■ M is a term

■ E is a stack of evaluation contexts and method names (we’ll see why)

■ S is a store

■ R is a repository

■ P is a map of public names: names of P that have been made public,
or names revealed by O



Example formally
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(⊢ λyint. 2 ∗ y + 1 : int → int)

call ()
−−−−→ (λyint. 2 ∗ y + 1, ǫ, ∅, ∅, ∅)

−→ (m, ǫ, ∅, R1, ∅) R1 = {m 7→ λy.2 ∗ y + 1}

ret (m)
−−−−−→ (◦, ǫ, ∅, R1,P1) P1 = {m 7→ P}

callm(42)
−−−−−−→ (m 42,m, ∅, , R1,P1)

−→ (2 ∗ 42 + 1, · · · ) −→ (85, · · · )
retm(85)
−−−−−−→ (◦, ǫ, ∅, R1,P1)

callm(22)
−−−−−−→ (m 22,m, ∅, R1,P1)

−→ (2 ∗ 22 + 1, · · · ) −→ (45, · · · )
retm(45)
−−−−−−→ (◦, ǫ, ∅, R1,P1)

· · ·
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(f : int → int ⊢ λxint. fx+ 1 : int → int)

call (m)
−−−−−→ (λxint.mx+ 1, ǫ, ∅, ∅,P1) P1 = {m 7→ O}

−→ (m′, ǫ, ∅, R1,P1) R1 = {m′ 7→ λxint.mx+ 1}

ret (m′)
−−−−−→ (◦, ǫ, ∅, R1,P2) P2 = P1[m

′ 7→ P ]

callm′(42)
−−−−−−→ (m′ 42,m′, ∅, R1,P2) −→ (m 42 + 1,m′, ∅, R1,P2)

callm(42)
−−−−−−→ (◦, (m, •+ 1) :: m′, ∅, R1,P2)

retm(85)
−−−−−→ (85 + 1,m′, ∅, R1,P2) −→ (86,m′, ∅, R1,P2)

retm′(86)
−−−−−−→ (◦, ǫ, ∅, R1,P2)

· · ·
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The evaluation stack is needed in order to stack method calls:

(x : int ⊢ λf int→int. fx+ 1 : (int → int) → int)

call (42)
−−−−−→ (λf int→int. f 42 + 1, ǫ, ∅, ∅, ∅)

−→ (m, ǫ, ∅, R1, ∅) R1 = {m 7→ λf.f42 + 1}

ret (m)
−−−−−→ (◦, ǫ, ∅, R1,P1) P1 = {m 7→ P}

callm(m1)
−−−−−−−→ (mm1,m, ∅, R1,P1)

−→ (m142 + 1,m, ∅, R1,P1)

callm1(42)
−−−−−−−→ (◦, (m1, •+ 1) :: m, ∅, R1,P1)
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The evaluation stack is needed in order to stack method calls:

(x : int ⊢ λf int→int. fx+ 1 : (int → int) → int)

call (42)
−−−−−→ (λf int→int. f 42 + 1, ǫ, ∅, ∅, ∅)

−→
ret (m)
−−−−−→ (◦, ǫ, ∅, R1,P1) R1 = {m 7→ λf.f42 + 1}

callm(m1)
−−−−−−−→ (mm1,m, ∅, R1,P1)

−→
callm1(42)
−−−−−−−→ (◦, (m1, •+ 1) :: m, ∅, R1,P1)
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The evaluation stack is needed in order to stack method calls:

(x : int ⊢ λf int→int. fx+ 1 : (int → int) → int)

call (42)
−−−−−→ (λf int→int. f 42 + 1, ǫ, ∅, ∅, ∅)

−→
ret (m)
−−−−−→ (◦, ǫ, ∅, R1,P1) R1 = {m 7→ λf.f42 + 1}

callm(m1)
−−−−−−−→ (mm1,m, ∅, R1,P1)

−→
callm1(42)
−−−−−−−→ (◦, (m1, •+ 1) :: m, ∅, R1,P1)

retm1(85)
−−−−−−−→ (85 + 1,m, ∅, R1,P1) −→ · · ·
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The evaluation stack is needed in order to stack method calls:

(x : int ⊢ λf int→int. fx+ 1 : (int → int) → int)

call (42)
−−−−−→ (λf int→int. f 42 + 1, ǫ, ∅, ∅, ∅)

−→
ret (m)
−−−−−→ (◦, ǫ, ∅, R1,P1) R1 = {m 7→ λf.f42 + 1}

callm(m1)
−−−−−−−→ (mm1,m, ∅, R1,P1)

−→
callm1(42)
−−−−−−−→ (◦, (m1, •+ 1) :: m, ∅, R1,P1)

callm(m2)
−−−−−−−→ (mm2,m :: (m1, •+ 1) :: m, ∅, R1,P1)

−→ (m2 42 + 1,m :: (m1, •+ 1) :: m, ∅, R1,P1)

callm2(42)
−−−−−−−→ (◦, (m2, •+ 1) :: m :: (m1, •+ 1) :: m, ∅, R1,P1)

· · ·
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The language we examine is RefML.

First, we modify the operational semantics to include method names:

V ::= () | i | a | 〈V, V 〉 | m

and modify the operational semantics by adding repositories:
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The language we examine is RefML.

First, we modify the operational semantics to include method names:

V ::= () | i | a | 〈V, V 〉 | m

and modify the operational semantics by adding repositories:

(i⊕ j, R, S) −→ (k,R, S) (k = i⊕ j)

(πi〈V1, V2〉, R, S) −→ (Vi, R, S)

(if 0 thenM elseM ′, R, S) −→ (M ′, R, S)

(if i thenM elseM ′, R, S) −→ (M,R, S) (i > 0)

(while(M), R, S) −→ (ifM then while(M) else (), R, S)

(a = b, R, S) −→ (0, R, S) (a 6= b)

(a = a,R, S) −→ (1, R, S)

(!a,R, S) −→ (S(a), R, S)

(a :=V,R, S) −→ ((), R, S[a 7→ V ])

(ref(V ), R, S) −→ (a′, R, S[a′ 7→ V ]) (a′ /∈ dom(S))
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The language we examine is RefML.

First, we modify the operational semantics to include method names:

V ::= () | i | a | 〈V, V 〉 | m

and modify the operational semantics by adding repositories:

((λx.M)V,R, S) −→ (m,R[m 7→ λx.M ], S) (a /∈ dom(R))

(m,R, S) −→ (M [V/x], R, S) (R(m) = λx.M)

(M,R, S) −→ (M ′, R, S′)

(E[M ], R, S) −→ (E[M ′], R, S′)



Trace rules – internal
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(M,R, S) −→ (M ′, R′, S ′)

(M, E , R, S,P) −→ (M ′, E , R′, S ′,P)

so long all fresh names created are fresh for E ,P as well.



Trace rules – PQ
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(E[mv], E , R, S,P)
callm(v′)S

′

−−−−−−→ (◦, (m,E) :: E , R⊎R′, S,P⊎P ′)

where P(m) = O and:

■ if v not a method name, then v′ = v

■ if v = m, then v′ = m′ (fresh) and:

◆ in R′ we include {m′ 7→ λx.mx}

◆ in P ′ we include {m′ 7→ P}

■ S ′ is S restricted to public reference names (i.e. those on P ), with
method names refreshed as above



Trace rules – OA

31 / 36

(◦, (m,E) :: E , R, S,P)
retm(v)S

′

−−−−−−→ (E[v], E , R, S[S ′],P ⊎P ′)

■ if v = m then it must be fresh and:

◆ in P ′ we include {m′ 7→ O}

■ S ′ can differ from S only for public reference names (i.e. those on P ),
with any method names being refresh as above



Trace rules – OQ
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(◦, E , R, S,P)
callm(v)S

′

−−−−−−→ (mv,m :: E , R, S[S ′],P ⊎ P ′)

where P(m) = P and:

■ if v = m then it must be fresh and:

◆ in P ′ we include {m′ 7→ O}

■ S ′ can differ from S only for public reference names (i.e. those on P ),
with any method names being refresh as above



Trace rules – PA
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(v,m :: E , R, S,P)
retm(v′)S

′

−−−−−−→ (◦,m :: E , R ⊎R′, S,P ⊎ P ′)

■ if v not a method name, then v′ = v

■ if v = m, then v′ = m′ (fresh) and:

◆ in R′ we include {m′ 7→ λx.mx}

◆ in P ′ we include {m′ 7→ P}

■ S ′ is S restricted to public reference names (i.e. those on P ), with
method names refreshed as above
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We define:

JU,Γ ⊢ M : θK′ = { t | (U,Γ ⊢ M : θ)
t
−→ (◦, E , R, S,P) }
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We define:

JU,Γ ⊢ M : θK′ = { t | (U,Γ ⊢ M : θ)
t
−→ (◦, E , R, S,P) }

What we can show:

■ Correctness and adequacy (by construction)

■ Soundness: if comp(JMK′) = comp(JNK′) then M ∼= N

◆ problem: the model is not compositional, so we cannot relate
JC[M ]K′ with JMK′ and JCK′

◆ we actually need to prove it is compositional (hard)

■ Full abstraction (via definability and compositionality)



Further game models (operationally)
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We can capture more paradigms:

■ Objects: Cell : {get : unit → int, set : int → unit}

Jx : Cell ⊢ x.set(2 ∗ x.get()) : voidK =

a call a.get() ret a.get(42) call a.set(84) ret a.set() ⋆
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We can capture more paradigms:

■ Objects: Cell : {get : unit → int, set : int → unit}

Jx : Cell ⊢ x.set(2 ∗ x.get()) : voidK =

a call a.get() ret a.get(42) call a.set(84) ret a.set() ⋆

■ Exceptions:

J⊢ λxint. if x then 1/x else raise(DivZero) : int → ratioK =

call () ret (m) callm(5) retm(1/5) callm(0) retm(e!)(e:DivZero) · · ·
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We can capture more paradigms:

■ Objects: Cell : {get : unit → int, set : int → unit}

Jx : Cell ⊢ x.set(2 ∗ x.get()) : voidK =

a call a.get() ret a.get(42) call a.set(84) ret a.set() ⋆

■ Exceptions:

J⊢ λxint. if x then 1/x else raise(DivZero) : int → ratioK =

call () ret (m) callm(5) retm(1/5) callm(0) retm(e!)(e:DivZero) · · ·

■ Polymorphism:

J⊢ ΛX.λxX . x : ∀X.X → XK =

call () ret (m) callm(α) retm(m′)(m
′:α→α) callm′(p)··· ,(p:α) retm′(p)···
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We presented a general framework for constructing accurate models of
programming languages:

■ produces (in many cases the only) fully abstract models for a range of
languages

■ geared towards higher-order (realistic) languages: we saw up to
RefML, but we can also model objects, exceptions, polymorphism,
non-determinism, probability, etc.

■ combines traditional denotational (based on strategy composition)
with operational (based on traces) presentations
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