Game Semantics

Andrzej S. Murawski and Nikos Tzevelekos

Day 5: General references, operational games

Lift Beyond the Ground: RefML

Recall the **types** of GroundML:

$$\theta ::= \zeta \mid \theta \times \theta \mid \theta \to \theta$$

$$\zeta ::= \text{unit} \mid \text{int} \mid \text{ref } \zeta$$

Restriction: all references are of ground type

- lacksquare OK: let x = ref(0) in \cdots
- lacksquare OK: let x = ref(ref(0)) in \cdots
- lacksquare not OK: let $x = \operatorname{ref}(\langle 0, 1 \rangle)$ in \cdots
- not OK: let $f = \operatorname{ref}(\lambda x^{\operatorname{int}}.x)$ in \cdots

Lift Beyond the Ground: RefML

Recall the **types** of GroundML:

$$\theta ::= \zeta \mid \theta \times \theta \mid \theta \to \theta$$

$$\zeta ::= \text{unit} \mid \text{int} \mid \text{ref } \zeta$$

Restriction: all references are of ground type

- lacksquare OK: let x = ref(0) in \cdots
- lacksquare OK: let x = ref(ref(0)) in \cdots
- lacksquare not OK: let $x = \operatorname{ref}(\langle 0, 1 \rangle)$ in \cdots
- lacksquare not OK: let $f = \operatorname{ref}(\lambda x^{\operatorname{int}}.x)$ in \cdots

Does this matter?

we can simulate let $x = \operatorname{ref}(\langle 0, 1 \rangle)$ in M by:

let
$$x_l = \operatorname{ref}(0)$$
 in let $x_r = \operatorname{ref}(1)$ in ' $M\{\langle x_l, x_r \rangle / x\}$ '

But we cannot simulate let $f = ref(\lambda x^{int}.x)$ in M.

Does it matter – can we express fewer programs?

But we cannot simulate let $f = ref(\lambda x^{int}.x)$ in M.

Does it matter – can we express fewer programs?

 \blacksquare $\vdash M: \mathsf{int}$

But we cannot simulate let $f = ref(\lambda x^{int}.x)$ in M.

Does it matter – can we express fewer programs?

- \blacksquare $\vdash M$: int: same programs (i.e. same integers)
- \blacksquare $\vdash M : \mathsf{int} \to \mathsf{int}$

But we cannot simulate let $f = ref(\lambda x^{int}.x)$ in M.

Does it matter – can we express fewer programs?

- \blacksquare $\vdash M$: int: same programs (i.e. same integers)
- $lacktriangledown \ dash M: \mathsf{int} o \mathsf{int}: \mathsf{same} \mathsf{ programs} \mathsf{ (i.e. same terms up to equivalence)}$
- but this does not hold in general!

A delay buffer

Example. Consider a term

$$\vdash$$
 dBuf : (int \rightarrow int) \rightarrow (int \rightarrow int)

evaluating to some function f such that:

- the first time we call f, say by executing $f(f_1)$, it returns $\lambda x^{\text{int}}.x$;
- \blacksquare the second time we call f, say by executing $f(f_2)$, it returns f_1 ;
- . . .
- lacktriangle the i-th time we call f, say by $f(f_i)$, it returns f_{i-1} .

A delay buffer

Example. Consider a term

$$\vdash$$
 dBuf : (int \rightarrow int) \rightarrow (int \rightarrow int)

evaluating to some function f such that:

- \blacksquare the first time we call f, say by executing $f(f_1)$, it returns $\lambda x^{\mathsf{int}}.x$;
- \blacksquare the second time we call f, say by executing $f(f_2)$, it returns f_1 ;
- . . .
- lacktriangle the i-th time we call f, say by $f(f_i)$, it returns f_{i-1} .

We can implement it using references of type int \rightarrow int:

dBuf
$$\equiv \det r = \operatorname{ref}(\lambda x^{\operatorname{int}}.x)$$
 in $\lambda f^{\operatorname{int}\to\operatorname{int}}$. $\det f_{old} = !r$ in $r := f; \ f_{old}$

A delay buffer - not codable in GroundML

Example. Consider a term

$$\vdash$$
 dBuf : (int \rightarrow int) \rightarrow (int \rightarrow int)

evaluating to some function f such that:

- \blacksquare the first time we call f, say by executing $f(f_1)$, it returns $\lambda x^{\text{int}}.x$;
- \blacksquare thereafter, the *i*-th time we call f, say by $f(f_i)$, it returns f_{i-1} .

Lemma. We cannot implement dBuf in GroundML.

A delay buffer - not codable in GroundML

Example. Consider a term

$$\vdash$$
 dBuf : (int \rightarrow int) \rightarrow (int \rightarrow int)

evaluating to some function f such that:

- \blacksquare the first time we call f, say by executing $f(f_1)$, it returns $\lambda x^{\mathsf{int}}.x$;
- \blacksquare thereafter, the *i*-th time we call f, say by $f(f_i)$, it returns f_{i-1} .

Lemma. We cannot implement dBuf in GroundML.

Proof (sketch). If we could, then [dBuf] would contain plays like:

$$\star$$
 † † † † † † † † 42 42 · · · · OQ PA OQ PA OQ PQ

(where there are no explicit pointers, assume the move points to its predecessor)

which would break visibility.

Recall Visibility

In any play

the move that m points to must be in the view of s

The view hides moves from suspended function calls

Higher-order references: more distinctions

Lemma. The following terms are equivalent in GroundML:

```
f: \mathsf{unit} 	o \mathsf{unit} \vdash \ \mathsf{let} \ n = \mathsf{ref}(0) \ \mathsf{in} \ \lambda_-. \ \mathsf{if} \ !n \ \mathsf{then} \ () \ \mathsf{else} \ n := 1; f() : \mathsf{unit} \to \mathsf{unit} f: \mathsf{unit} \to \mathsf{unit} \vdash \ \mathsf{let} \ n = \mathsf{ref}(0) \ \mathsf{in} \ \lambda_-. \ \mathsf{if} \ !n \ \mathsf{then} \ () \ \mathsf{else} \ f(); n := 1 : \mathsf{unit} \to \mathsf{unit}
```

Higher-order references: more distinctions

Lemma. The following terms are equivalent in GroundML:

 $f: \mathsf{unit} o \mathsf{unit} \vdash \mathsf{let} \, n = \mathsf{ref}(0) \, \mathsf{in} \, \lambda_-. \, \mathsf{if} \, !n \, \mathsf{then} \, () \, \mathsf{else} \, n := 1; f() : \mathsf{unit} o \mathsf{unit}$ $f: \mathsf{unit} \to \mathsf{unit} \vdash \mathsf{let} \, n = \mathsf{ref}(0) \, \mathsf{in} \, \lambda_-. \, \mathsf{if} \, !n \, \mathsf{then} \, () \, \mathsf{else} \, f(); n := 1 : \mathsf{unit} \to \mathsf{unit}$

Proof. Computing the game semantics in each case, we get that it must consist of plays of the form:

In particular, the question \star_f must be immediately answered as, at that point in the play, O has no other move to play (by visibility).

But the terms can be distinguished by a context that uses higher-order references.

The language RefML - Definition

$$\frac{\mathrm{U},\Gamma \vdash M:\theta}{\mathrm{U},\Gamma \vdash \mathrm{ref}(M):\mathrm{ref}\theta} \quad \frac{\mathrm{U},\Gamma \vdash M:\mathrm{ref}\theta}{\mathrm{U},\Gamma \vdash M:\theta} \quad \frac{\mathrm{U},\Gamma \vdash M:\mathrm{ref}\theta}{\mathrm{U},\Gamma \vdash M:\theta} \quad \frac{\mathrm{U},\Gamma \vdash M:\mathrm{ref}\theta}{\mathrm{U},\Gamma \vdash M:=N:\mathrm{unit}}$$

Operational semantics of RefML – remains the same

$$\begin{array}{ccccc} (i \oplus j,S) & \longrightarrow & (k,S) & (k=i \oplus j) \\ ((\lambda x.M)V,S) & \longrightarrow & (M[V/x],S) \\ (\pi_1\langle V_1,V_2\rangle,S) & \longrightarrow & (V_1,S) \\ (\pi_2\langle V_1,V_2\rangle,S) & \longrightarrow & (V_2,S) \\ (\text{if } 0 \text{ then } M \text{ else } M',S) & \longrightarrow & (M',S) \\ (\text{if } i \text{ then } M \text{ else } M',S) & \longrightarrow & (M,S) & (i>0) \\ (\text{while}(M),S) & \longrightarrow & (\text{if } M \text{ then while}(M) \text{ else } (),S) \\ (a=b,S) & \longrightarrow & (0,S) & (a\neq b) \\ (a=a,S) & \longrightarrow & (1,S) \\ (a=a,S) & \longrightarrow & (1,S) \\ (!a,S) & \longrightarrow & (S(a),S) \\ (a:=V,S) & \longrightarrow & ((),S[a\mapsto V]) \\ (ref(V),S) & \longrightarrow & (a',S[a'\mapsto V]) & (a'\notin \text{dom}(S)) \\ \hline & & \underbrace{(M,S) & \longrightarrow & (M',S')}_{(E[M],S) & \longrightarrow & (E[M'],S')} \end{array}$$

Example RefML terms

```
dBuf \equiv \det r = \operatorname{ref}(\lambda x^{\operatorname{int}}.x) in \lambda f^{\operatorname{int}\to\operatorname{int}}. Let f_{old} = !r in r := f; \ f_{old} : (\operatorname{int} \to \operatorname{int}) \to (\operatorname{int} \to \operatorname{int})
```

Example RefML terms

```
\mathbf{dBuf} \ \equiv \ \operatorname{let} r = \operatorname{ref}(\lambda x^{\operatorname{int}}.x) \operatorname{in} \lambda f^{\operatorname{int} \to \operatorname{int}}. \ \operatorname{let} f_{old} = !r \operatorname{in} \ r := f; \ f_{old} : (\operatorname{int} \to \operatorname{int}) \to (\operatorname{int} \to \operatorname{int}) \mathbf{lambdaMax} \ \equiv \ \operatorname{let} r = \operatorname{ref}(\lambda x^{\operatorname{int}}.x), n = \operatorname{ref}(1) \operatorname{in} \lambda f^{\operatorname{int} \to \operatorname{int}}. \ ( \ \operatorname{if} \ !n \ \operatorname{then} n := 0; r := f \operatorname{else} \ \operatorname{let} f_{old} = !r \operatorname{in} r := \lambda x^{\operatorname{int}}. \ \operatorname{max}(f_{old}x, fx) \ ); !r : (\operatorname{int} \to \operatorname{int}) \to (\operatorname{int} \to \operatorname{int})
```

Example RefML terms

```
\mathbf{dBuf} \equiv \operatorname{let} r = \operatorname{ref}(\lambda x^{\operatorname{int}}.x) \operatorname{in} \lambda f^{\operatorname{int} \to \operatorname{int}}. \operatorname{let} f_{old} = !r \operatorname{in} \ r := f; \ f_{old} : (\operatorname{int} \to \operatorname{int}) \to (\operatorname{int} \to \operatorname{int})
```

```
\begin{array}{l} \textbf{lambdaMax} \; \equiv \; \det r = \operatorname{ref}(\lambda x^{\operatorname{int}}.x), n = \operatorname{ref}(1) \operatorname{in} \\ \qquad \qquad \qquad \lambda f^{\operatorname{int} \to \operatorname{int}}. \; ( \; \operatorname{if} \; !n \; \operatorname{then} \; n := 0; r := f \\ \qquad \qquad \qquad \qquad \operatorname{else} \; \det f_{old} = !r \; \operatorname{in} \; r := \lambda x^{\operatorname{int}}. \; \operatorname{max}(f_{old}x, fx) \; ); \\ \qquad \qquad \qquad !r \\ \qquad \qquad \qquad : (\operatorname{int} \to \operatorname{int}) \to (\operatorname{int} \to \operatorname{int}) \end{array}
```

How to distinguish:

 $f: \mathsf{unit} o \mathsf{unit} \vdash \mathsf{let} \, n = \mathsf{ref}(0) \, \mathsf{in} \, \lambda_-. \, \text{if} \, !n \, \mathsf{then} \, () \, \mathsf{else} \, n := 1; f() : \mathsf{unit} o \mathsf{unit}$ $f: \mathsf{unit} \to \mathsf{unit} \vdash \mathsf{let} \, n = \mathsf{ref}(0) \, \mathsf{in} \, \lambda_-. \, \text{if} \, !n \, \mathsf{then} \, () \, \mathsf{else} \, f(); n := 1 : \mathsf{unit} \to \mathsf{unit}$

arenas?	
moves?	
plays?	
strategies?	

arenas?	these remain the same
moves?	
plays?	
strategies?	

arenas?	these remain the same
moves?	stores need to be higher-order
plays?	
strategies?	

arenas?	these remain the same
moves?	stores need to be higher-order
plays?	can break visibility
strategies?	

arenas?	these remain the same	
moves?	stores need to be higher-order	
plays?	can break visibility	
strategies?	same conditions as before	
	+ additional conditions for composition	

Stores with higher-order values

What is a higher-order value?

Stores with higher-order values

What is a higher-order value?

It is a move opening an arena, and should contain some †.

Stores storing ground and higher-order values:

GroundML	RefML
$S = \{(a,0), (b,a), \cdots\}$	$S = \{(a, i_A), (b, i_B), \cdots\}$ $A \longrightarrow B$

Plays

There are two kinds of modifications we make on plays:

■ There are now two kinds of pointers: to-move and to-store pointers:

Visibility is no longer imposed

Composition: more copycat conditions

$$\begin{split} \sigma &= \llbracket \operatorname{ref}(\lambda x^{\operatorname{int}}. \, x : \operatorname{int} \to \operatorname{int}) \rrbracket \\ \tau &= \llbracket r : \operatorname{ref}(\operatorname{int} \to \operatorname{int}) \vdash \lambda f^{\operatorname{int} \to \operatorname{int}}. \operatorname{let} f_{old} = !r \operatorname{in} \ r := f; \ f_{old} : (\operatorname{int} \to \operatorname{int}) \to (\operatorname{int} \to \operatorname{int}) \rrbracket \\ 1 &\xrightarrow{\sigma} \mathbb{A}_{\operatorname{int} \to \operatorname{int}} \xrightarrow{\tau} (\mathbb{Z} \Rightarrow \mathbb{Z}) \Rightarrow (\mathbb{Z} \Rightarrow \mathbb{Z}) \\ & \star \\ & a^{(a,\dagger)} \\ & \downarrow^{(a,\dagger)} \end{split}$$

Composition: more copycat conditions

$$\begin{split} \sigma &= \llbracket \operatorname{ref}(\lambda x^{\operatorname{int}}. \, x : \operatorname{int} \to \operatorname{int}) \rrbracket \\ \tau &= \llbracket r : \operatorname{ref}(\operatorname{int} \to \operatorname{int}) \vdash \lambda f^{\operatorname{int} \to \operatorname{int}}. \operatorname{let} f_{old} = !r \operatorname{in} \ r := f; \ f_{old} : (\operatorname{int} \to \operatorname{int}) \to (\operatorname{int} \to \operatorname{int}) \rrbracket \\ 1 &\xrightarrow{\sigma} \mathbb{A}_{\operatorname{int} \to \operatorname{int}} \xrightarrow{\tau} (\mathbb{Z} \Rightarrow \mathbb{Z}) \Rightarrow (\mathbb{Z} \Rightarrow \mathbb{Z}) \\ \star & \bullet \\ a^{(a,\dagger)} & \bullet \\ \uparrow (a,\dagger) & \uparrow (a,\dagger) \\ \uparrow (a,\dagger) & \bullet \\ \downarrow (a,\dagger) & \bullet \\ \uparrow (a,\dagger) & \bullet \\ \downarrow (a,\dagger) & \bullet \\$$

 $\dot{\dagger}(a,\dagger)$

$$\sigma = \llbracket \operatorname{ref}(\lambda x^{\operatorname{int}}. \, x : \operatorname{int} \to \operatorname{int}) \rrbracket$$

$$\tau = \llbracket r : \operatorname{ref}(\operatorname{int} \to \operatorname{int}) \vdash \lambda f^{\operatorname{int} \to \operatorname{int}}. \operatorname{let} f_{old} = !r \operatorname{in} \ r := f; \ f_{old} : (\operatorname{int} \to \operatorname{int}) \to (\operatorname{int} \to \operatorname{int}) \rrbracket$$

$$1 \xrightarrow{\sigma} \mathbb{A}_{\operatorname{int} \to \operatorname{int}} \xrightarrow{\tau} (\mathbb{Z} \Rightarrow \mathbb{Z}) \Rightarrow (\mathbb{Z} \Rightarrow \mathbb{Z})$$

$$\star \underbrace{a^{(a,\dagger)}}_{\dagger (a,\dagger)}$$

$$\uparrow (a,\dagger)$$

$$\uparrow (a,\dagger)$$

$$\uparrow (a,\dagger)$$

$$\uparrow (a,\dagger)$$

$$\uparrow (a,\dagger)$$

 $42^{(a,\dagger)}$

Results

■ the game model for RefML if fully abstract

$$\mathsf{comp}(\llbracket M \rrbracket) = \mathsf{comp}(\llbracket N \rrbracket) \iff M \cong N$$

(and we also have correctness and adequacy)

conceptually:

Higher-order references \iff Loosen visibility

Something different: operational games

We started from informal dialogues and moved to formal games via:

- defining the rules of the games (arenas, moves, plays, etc.)
- defining the translation of basic terms (e.g. constant, variables, etc.)
- defining composition and other syntactic constructs
- combine the above to produce the semantics of terms

Something different: operational games

We started from informal dialogues and moved to formal games via:

- defining the rules of the games (arenas, moves, plays, etc.)
- defining the translation of basic terms (e.g. constant, variables, etc.)
- defining composition and other syntactic constructs
- combine the above to produce the semantics of terms

An alternative idea is:

just execute terms operationally to produce their plays

- reduce the term internally via its operational semantics
- when an external function needs to be called, play a move
- and take it on from there

- $\vdash \lambda y^{\text{int}}.2 * y + 1 : \text{int} \rightarrow \text{int} :$
- what is the result?
- it is a function m

```
\vdash \lambda y^{\text{int}}.2 * y + 1 : \text{int} \rightarrow \text{int} :
```

- what is the result?
- it is a function m
 - \circ what is the result of m on 42?
 - (...) it is 85

```
\vdash \lambda y^{\text{int}}.2 * y + 1 : \text{int} \rightarrow \text{int} :
```

- what is the result?
- it is a function m
 - \circ what is the result of m on 42?
 - (...) it is 85
 - \circ what is the result of m on 22?
 - (...) it is 45

```
\vdash \lambda y^{\text{int}}.2 * y + 1 : \text{int} \rightarrow \text{int} :
```

- what is the result?
- it is a function m
 - \circ what is the result of m on 42?
 - (...) it is 85
 - \circ what is the result of m on 22?
 - (...) it is 45

. . .

An operational reading of the game semantics is:

$$\operatorname{call}() \operatorname{ret}(m) \operatorname{call} m(42) \operatorname{ret} m(85) \operatorname{call} m(22) \operatorname{ret} m(25) \cdots$$

m here is a function name (think of it as a method name)

```
f: \mathsf{int} \to \mathsf{int} \vdash \lambda x^{\mathsf{int}}. fx + 1: \mathsf{int} \to \mathsf{int}:
• given m (for f), what is the result?
• it is a function m'
```

```
f: \mathsf{int} \to \mathsf{int} \vdash \lambda x^{\mathsf{int}}. fx + 1: \mathsf{int} \to \mathsf{int}:
```

- \circ given m (for f), what is the result?
- it is a function m'
 - what is the result of m' on 42?
 - what is the result of m on 42?
 - it is 85

```
f: \mathsf{int} \to \mathsf{int} \vdash \lambda x^{\mathsf{int}}. fx + 1: \mathsf{int} \to \mathsf{int}:
```

- given m (for f), what is the result?
- it is a function m'
 - what is the result of m' on 42?
 - what is the result of m on 42?
 - o it is 85
 - (...) it is 86

```
f: \mathsf{int} \to \mathsf{int} \vdash \lambda x^{\mathsf{int}}. fx + 1: \mathsf{int} \to \mathsf{int}:
```

- \circ given m (for f), what is the result?
- it is a function m'
 - what is the result of m' on 42?
 - what is the result of m on 42?
 - o it is 85
 - (...) it is 86
 - what is the result of m' on 22?
 - what is the result of m on 22?
 - o it is 25

```
f: \mathsf{int} \to \mathsf{int} \vdash \lambda x^{\mathsf{int}}. fx + 1: \mathsf{int} \to \mathsf{int}:
```

- \circ given m (for f), what is the result?
- it is a function m'
 - what is the result of m' on 42?
 - what is the result of m on 42?
 - o it is 85
 - (...) it is 86
 - what is the result of m' on 22?
 - what is the result of m on 22?
 - o it is 25
 - (...) it is 26

```
f: \operatorname{int} \to \operatorname{int} \vdash \lambda x^{\operatorname{int}}. fx + 1: \operatorname{int} \to \operatorname{int}:
```

- given m (for f), what is the result?
- it is a function m'
 - what is the result of m' on 42?
 - what is the result of m on 42?
 - o it is 85
 - (...) it is 86
 - what is the result of m' on 22?
 - what is the result of m on 22?
 - o it is 25
 - (...) it is 26

 $\operatorname{call}(m) \operatorname{ret}(m') \operatorname{call} m'(42) \operatorname{call} m(42) \operatorname{ret} m(85) \operatorname{ret} m'(86) \cdots$

For $\vdash \lambda y^{\text{int}} \cdot 2 * y + 1 : \text{int} \rightarrow \text{int}$. Start with initial move:

$$(\vdash \lambda y^{\mathsf{int}}.\ 2*y+1: \mathsf{int} \to \mathsf{int}) \xrightarrow{\mathsf{call}\,()} (\lambda y^{\mathsf{int}}.\ 2*y+1, S_0, R_0)$$

where S_0 an empty store, and R_0 an empty repository (stores method names and their definitions)

For $\vdash \lambda y^{\text{int}} \cdot 2 * y + 1 : \text{int} \rightarrow \text{int}$. Start with initial move:

$$(\vdash \lambda y^{\mathsf{int}}.\ 2*y+1: \mathsf{int} \to \mathsf{int}) \xrightarrow{\mathsf{call}\,()} (\lambda y^{\mathsf{int}}.\ 2*y+1, S_0, R_0)$$

where S_0 an empty store, and R_0 an empty repository (stores method names and their definitions)

proceed to evaluation, producing a name for the function:

$$(\lambda y^{\mathsf{int}}. \ 2 * y + 1, S_0, R_0) \longrightarrow (m, S_0, \{m \mapsto \lambda y. 2 * y + 1\})$$

For $\vdash \lambda y^{\text{int}} \cdot 2 * y + 1 : \text{int} \rightarrow \text{int}$. Start with initial move:

$$(\vdash \lambda y^{\mathsf{int}}.\ 2*y+1: \mathsf{int} \to \mathsf{int}) \xrightarrow{\mathsf{call}\,()} (\lambda y^{\mathsf{int}}.\ 2*y+1, S_0, R_0)$$

where S_0 an empty store, and R_0 an empty repository (stores method names and their definitions)

proceed to evaluation, producing a name for the function:

$$(\lambda y^{\mathsf{int}}. \ 2 * y + 1, S_0, R_0) \longrightarrow (m, S_0, \{m \mapsto \lambda y. 2 * y + 1\})$$

return the function name:

$$(m, S_0, \{m \mapsto \lambda y.2 * y + 1\}) \xrightarrow{\mathsf{ret}\,(m)} (\circ, S_0, \{m \mapsto \lambda y.2 * y + 1\})$$

For $\vdash \lambda y^{\text{int}} \cdot 2 * y + 1 : \text{int} \rightarrow \text{int}$. Start with initial move:

$$(\vdash \lambda y^{\mathsf{int}}.\ 2*y+1: \mathsf{int} \to \mathsf{int}) \xrightarrow{\mathsf{call}\,()} (\lambda y^{\mathsf{int}}.\ 2*y+1, S_0, R_0)$$

where S_0 an empty store, and R_0 an empty repository (stores method names and their definitions)

proceed to evaluation, producing a name for the function:

$$(\lambda y^{\text{int}}. 2 * y + 1, S_0, R_0) \longrightarrow (m, S_0, \{m \mapsto \lambda y. 2 * y + 1\})$$

return the function name:

$$(m, S_0, \{m \mapsto \lambda y.2 * y + 1\}) \xrightarrow{\mathsf{ret}\,(m)} (\circ, S_0, \{m \mapsto \lambda y.2 * y + 1\})$$

now it is Opponent's turn:

$$(\circ, S_0, \{m \mapsto \lambda y.2 * y + 1\}) \xrightarrow{\mathsf{call}\, m(42)} (m\,42, S_0, \{m \mapsto \lambda y.2 * y + 1\})$$

■ For $\vdash \lambda y^{\text{int}} \cdot 2 * y + 1 : \text{int} \rightarrow \text{int}$. Start with initial move:

$$(\vdash \lambda y^{\mathsf{int}}.\ 2*y+1: \mathsf{int} \to \mathsf{int}) \xrightarrow{\mathsf{call}\,()} (\lambda y^{\mathsf{int}}.\ 2*y+1, S_0, R_0)$$

where S_0 an empty store, and R_0 an empty repository (stores method names and their definitions)

proceed to evaluation, producing a name for the function:

$$(\lambda y^{\text{int}}. 2 * y + 1, S_0, R_0) \longrightarrow (m, S_0, \{m \mapsto \lambda y. 2 * y + 1\})$$

return the function name:

$$(m, S_0, \{m \mapsto \lambda y.2 * y + 1\}) \xrightarrow{\mathsf{ret}\,(m)} (\circ, S_0, \{m \mapsto \lambda y.2 * y + 1\})$$

now it is Opponent's turn:

$$(\circ, S_0, \{m \mapsto \lambda y.2 * y + 1\}) \xrightarrow{\mathsf{call}\, m(42)} (m\,42, S_0, \{m \mapsto \lambda y.2 * y + 1\})$$

compute and return:

$$(m 42, S_0, \{m \mapsto \lambda y.2*y+1\}) \longrightarrow (2*42+1, \dots) \longrightarrow (85, \dots) \xrightarrow{\mathsf{ret}\, m(85)} (\circ, \dots)$$

In short

$$(\vdash \lambda y^{\mathsf{int}}.\ 2*y+1: \mathsf{int} \to \mathsf{int})$$

$$\xrightarrow{\mathsf{call}\,()} (\lambda y^{\mathsf{int}}.\ 2*y+1, S_0, R_0)$$

$$\longrightarrow (m, S_0, R_1) \qquad R_1 = \{m \mapsto \lambda y.2*y+1\}$$

$$\xrightarrow{\mathsf{ret}\,(m)} (\circ, S_0, R_1)$$

$$\xrightarrow{\mathsf{call}\,m(42)} (m\,42, S_0, R_1)$$

$$\longrightarrow (2*42+1, S_0, R_1) \longrightarrow (85, S_0, R_1) \xrightarrow{\mathsf{ret}\,m(85)} (\circ, S_0, R_1)$$

$$\xrightarrow{\mathsf{call}\,m(22)} (m\,22, S_0, R_1)$$

$$\longrightarrow (2*22+1, S_0, R_1) \longrightarrow (45, S_0, R_1) \xrightarrow{\mathsf{ret}\,m(45)} (\circ, S_0, R_1)$$

$$\begin{split} &(f: \mathsf{int} \to \mathsf{int} \vdash \lambda x^{\mathsf{int}}.\, fx + 1: \mathsf{int} \to \mathsf{int}) \\ &\xrightarrow{\mathsf{call}\,(m)} (\lambda x^{\mathsf{int}}.\, mx + 1, S_0, R_0) \\ &\longrightarrow (m', S_0, R_1) \qquad R_1 = \{m' \mapsto \lambda x^{\mathsf{int}}.\, mx + 1\} \\ &\xrightarrow{\mathsf{ret}\,(m')} (\circ, S_0, R_1) \\ &\xrightarrow{\mathsf{call}\,m'(42)} (m'\,42, S_0, R_1) \longrightarrow (m\,42 + 1, S_0, R_1) \\ &\xrightarrow{\mathsf{call}\,m(42)} (\bullet + 1, S_0, R_1) \\ &\xrightarrow{\mathsf{ret}\,m(85)} (85 + 1, S_0, R_1) \longrightarrow (86, S_0, R_1) \\ &\xrightarrow{\mathsf{ret}\,m'(86)} (\circ, S_0, R_1) \end{split}$$

• •

Plays vs traces

To distinguish them from plays we call these sequences of calls and returns **traces**.

There is a correspondence between plays and traces:

 $\operatorname{call}(m) \operatorname{ret}(m') \operatorname{call} m'(42) \operatorname{call} m(42) \operatorname{ret} m(85) \operatorname{ret} m'(86) \cdots$

Traces more formally

Traces are based on **configurations**:

$$(M, \mathcal{E}, S, R, \mathcal{P})$$
 or $(\circ, \mathcal{E}, S, R, \mathcal{P})$

Traces more formally

Traces are based on **configurations**:

$$(M, \mathcal{E}, S, R, \mathcal{P})$$
 or $(\circ, \mathcal{E}, S, R, \mathcal{P})$

these are P and O configurations respectively and:

- lacksquare M is a term
- \blacksquare \mathcal{E} is a stack of evaluation contexts and method names (we'll see why)
- \blacksquare S is a store
- lacksquare R is a repository
- lacktriangledown \mathcal{P} is a map of *public* names: names of P that have been made public, or names revealed by O

Example formally

$$(\vdash \lambda y^{\mathsf{int}}. \ 2 * y + 1 : \mathsf{int} \to \mathsf{int})$$

$$\xrightarrow{\mathsf{call}\,()} (\lambda y^{\mathsf{int}}. \ 2 * y + 1, \epsilon, \emptyset, \emptyset, \emptyset)$$

$$\longrightarrow (m, \epsilon, \emptyset, R_1, \emptyset) \qquad R_1 = \{m \mapsto \lambda y. 2 * y + 1\}$$

$$\xrightarrow{\mathsf{ret}\,(m)} (\circ, \epsilon, \emptyset, R_1, \mathcal{P}_1) \qquad \mathcal{P}_1 = \{m \mapsto P\}$$

$$\xrightarrow{\mathsf{call}\,m(42)} (m \ 42, m, \emptyset, R_1, \mathcal{P}_1)$$

$$\longrightarrow (2 * 42 + 1, \cdots) \longrightarrow (85, \cdots) \xrightarrow{\mathsf{ret}\,m(85)} (\circ, \epsilon, \emptyset, R_1, \mathcal{P}_1)$$

$$\xrightarrow{\mathsf{call}\,m(22)} (m \ 22, m, \emptyset, R_1, \mathcal{P}_1)$$

$$\longrightarrow (2 * 22 + 1, \cdots) \longrightarrow (45, \cdots) \xrightarrow{\mathsf{ret}\,m(45)} (\circ, \epsilon, \emptyset, R_1, \mathcal{P}_1)$$

$$\cdots$$

Example II formally

$$(f: \mathsf{int} \to \mathsf{int} \vdash \lambda x^{\mathsf{int}}. \, fx + 1: \mathsf{int} \to \mathsf{int}))$$

$$\xrightarrow{\operatorname{call}(m)} (\lambda x^{\mathsf{int}}. \, mx + 1, \epsilon, \emptyset, \emptyset, \mathcal{P}_1) \qquad \mathcal{P}_1 = \{m \mapsto O\}$$

$$\longrightarrow (m', \epsilon, \emptyset, R_1, \mathcal{P}_1) \qquad R_1 = \{m' \mapsto \lambda x^{\mathsf{int}}. \, mx + 1\}$$

$$\xrightarrow{\operatorname{ret}(m')} (\circ, \epsilon, \emptyset, R_1, \mathcal{P}_2) \qquad \mathcal{P}_2 = \mathcal{P}_1[m' \mapsto P]$$

$$\xrightarrow{\operatorname{call}(m'(42))} (m' \, 42, m', \emptyset, R_1, \mathcal{P}_2) \longrightarrow (m \, 42 + 1, m', \emptyset, R_1, \mathcal{P}_2)$$

$$\xrightarrow{\operatorname{call}(m(42))} (\circ, (m, \bullet + 1) :: m', \emptyset, R_1, \mathcal{P}_2)$$

$$\xrightarrow{\operatorname{ret}(m(85))} (85 + 1, m', \emptyset, R_1, \mathcal{P}_2) \longrightarrow (86, m', \emptyset, R_1, \mathcal{P}_2)$$

$$\xrightarrow{\operatorname{ret}(m'(86))} (\circ, \epsilon, \emptyset, R_1, \mathcal{P}_2)$$

26 / 36

The evaluation stack is needed in order to stack method calls:

$$(x: \mathsf{int} \vdash \lambda f^{\mathsf{int} \to \mathsf{int}}. \, fx + 1: (\mathsf{int} \to \mathsf{int}) \to \mathsf{int}) \\ \xrightarrow{\mathsf{call}\,(42)} (\lambda f^{\mathsf{int} \to \mathsf{int}}. \, f\, 42 + 1, \epsilon, \emptyset, \emptyset, \emptyset) \\ \longrightarrow (m, \epsilon, \emptyset, R_1, \emptyset) \qquad \qquad R_1 = \{m \mapsto \lambda f. f42 + 1\} \\ \xrightarrow{\mathsf{ret}\,(m)} (\circ, \epsilon, \emptyset, R_1, \mathcal{P}_1) \qquad \qquad \mathcal{P}_1 = \{m \mapsto P\} \\ \xrightarrow{\mathsf{call}\,m(m_1)} (m\, m_1, m, \emptyset, R_1, \mathcal{P}_1) \\ \longrightarrow (m_1 42 + 1, m, \emptyset, R_1, \mathcal{P}_1) \\ \xrightarrow{\mathsf{call}\,m_1(42)} (\circ, (m_1, \bullet + 1) :: m, \emptyset, R_1, \mathcal{P}_1)$$

The evaluation stack is needed in order to stack method calls:

$$(x: \mathsf{int} \vdash \lambda f^{\mathsf{int} \to \mathsf{int}}. \, fx + 1: (\mathsf{int} \to \mathsf{int}) \to \mathsf{int})$$

$$\xrightarrow{\mathsf{call}\,(42)} (\lambda f^{\mathsf{int} \to \mathsf{int}}. \, f42 + 1, \epsilon, \emptyset, \emptyset, \emptyset)$$

$$\xrightarrow{\mathsf{ret}\,(m)} (\circ, \epsilon, \emptyset, R_1, \mathcal{P}_1) \qquad R_1 = \{m \mapsto \lambda f. f42 + 1\}$$

$$\xrightarrow{\mathsf{call}\,m(m_1)} (m \, m_1, m, \emptyset, R_1, \mathcal{P}_1)$$

$$\xrightarrow{\mathsf{call}\,m_1(42)} (\circ, (m_1, \bullet + 1) :: m, \emptyset, R_1, \mathcal{P}_1)$$

The evaluation stack is needed in order to stack method calls:

$$(x: \mathsf{int} \vdash \lambda f^{\mathsf{int} \to \mathsf{int}}. \, fx + 1: (\mathsf{int} \to \mathsf{int}) \to \mathsf{int})$$

$$\xrightarrow{\mathsf{call}\,(42)} (\lambda f^{\mathsf{int} \to \mathsf{int}}. \, f\, 42 + 1, \epsilon, \emptyset, \emptyset, \emptyset)$$

$$\xrightarrow{\mathsf{ret}\,(m)} (\circ, \epsilon, \emptyset, R_1, \mathcal{P}_1) \qquad R_1 = \{m \mapsto \lambda f. f42 + 1\}$$

$$\xrightarrow{\mathsf{call}\,m(m_1)} (m\, m_1, m, \emptyset, R_1, \mathcal{P}_1)$$

$$\xrightarrow{\mathsf{call}\,m_1(42)} (\circ, (m_1, \bullet + 1) :: m, \emptyset, R_1, \mathcal{P}_1)$$

$$\xrightarrow{\mathsf{ret}\,m_1(85)} (85 + 1, m, \emptyset, R_1, \mathcal{P}_1) \to \cdots$$

The evaluation stack is needed in order to stack method calls:

$$(x: \mathsf{int} \vdash \lambda f^{\mathsf{int} \to \mathsf{int}}. \, fx + 1: (\mathsf{int} \to \mathsf{int}) \to \mathsf{int})$$

$$\xrightarrow{\mathsf{call}\,(42)} (\lambda f^{\mathsf{int} \to \mathsf{int}}. \, f\, 42 + 1, \epsilon, \emptyset, \emptyset, \emptyset)$$

$$\xrightarrow{\mathsf{ret}\,(m)} (\circ, \epsilon, \emptyset, R_1, \mathcal{P}_1) \qquad R_1 = \{m \mapsto \lambda f. f42 + 1\}$$

$$\xrightarrow{\mathsf{call}\,m(m_1)} (m\, m_1, m, \emptyset, R_1, \mathcal{P}_1)$$

$$\xrightarrow{\mathsf{call}\,m(m_2)} (\circ, (m_1, \bullet + 1) :: m, \emptyset, R_1, \mathcal{P}_1)$$

$$\xrightarrow{\mathsf{call}\,m(m_2)} (m\, m_2, m :: (m_1, \bullet + 1) :: m, \emptyset, R_1, \mathcal{P}_1)$$

$$\xrightarrow{\mathsf{call}\,m_2(42)} (\circ, (m_2, \bullet + 1) :: m :: (m_1, \bullet + 1) :: m, \emptyset, R_1, \mathcal{P}_1)$$

27 / 36

Formalising the trace rules

The language we examine is RefML.

First, we modify the operational semantics to include method names:

$$V ::= () \mid i \mid a \mid \langle V, V \rangle \mid m$$

and modify the operational semantics by adding repositories:

Formalising the trace rules

The language we examine is RefML.

First, we modify the operational semantics to include method names:

$$V ::= () \mid i \mid a \mid \langle V, V \rangle \mid m$$

and modify the operational semantics by adding repositories:

Formalising the trace rules

The language we examine is RefML.

First, we modify the operational semantics to include method names:

$$V ::= () \mid i \mid a \mid \langle V, V \rangle \mid m$$

and modify the operational semantics by adding repositories:

$$((\lambda x.M)V, R, S) \longrightarrow (m, R[m \mapsto \lambda x.M], S) \qquad (a \notin \text{dom}(R))$$

$$(m, R, S) \longrightarrow (M[V/x], R, S) \qquad (R(m) = \lambda x.M)$$

$$\frac{(M, R, S) \longrightarrow (M', R, S')}{(E[M], R, S) \longrightarrow (E[M'], R, S')}$$

Trace rules - internal

$$\frac{(M,R,S) \longrightarrow (M',R',S')}{(M,\mathcal{E},R,S,\mathcal{P}) \longrightarrow (M',\mathcal{E},R',S',\mathcal{P})}$$

so long all fresh names created are fresh for \mathcal{E},\mathcal{P} as well.

Trace rules - PQ

$$(E[mv], \mathcal{E}, R, S, \mathcal{P}) \xrightarrow{\operatorname{call} m(v')^{S'}} (\circ, (m, E) :: \mathcal{E}, R \uplus R', S, \mathcal{P} \uplus \mathcal{P}')$$

where $\mathcal{P}(m) = O$ and:

- \blacksquare if v not a method name, then v'=v
- \blacksquare if v=m, then v'=m' (fresh) and:
 - lacktriangle in R' we include $\{m' \mapsto \lambda x.mx\}$
 - lacktriangle in \mathcal{P}' we include $\{m' \mapsto P\}$
- S' is S restricted to public reference names (i.e. those on P), with method names refreshed as above

Trace rules - OA

$$(\circ, (m, E) :: \mathcal{E}, R, S, \mathcal{P}) \xrightarrow{\operatorname{ret} m(v)^{S'}} (E[v], \mathcal{E}, R, S[S'], \mathcal{P} \uplus \mathcal{P}')$$

- \blacksquare if v=m then it must be fresh and:
 - lacktriangle in \mathcal{P}' we include $\{m' \mapsto O\}$
- \blacksquare S' can differ from S only for public reference names (i.e. those on P), with any method names being refresh as above

Trace rules - OQ

$$(\circ, \mathcal{E}, R, S, \mathcal{P}) \xrightarrow{\operatorname{call} m(v)^{S'}} (mv, m :: \mathcal{E}, R, S[S'], \mathcal{P} \uplus \mathcal{P}')$$

where $\mathcal{P}(m) = P$ and:

- \blacksquare if v=m then it must be fresh and:
 - lacktriangle in \mathcal{P}' we include $\{m' \mapsto O\}$
- \blacksquare S' can differ from S only for public reference names (i.e. those on P), with any method names being refresh as above

Trace rules – PA

$$(v, m :: \mathcal{E}, R, S, \mathcal{P}) \xrightarrow{\operatorname{ret} m(v')^{S'}} (\circ, m :: \mathcal{E}, R \uplus R', S, \mathcal{P} \uplus \mathcal{P}')$$

- \blacksquare if v not a method name, then v'=v
- \blacksquare if v=m, then v'=m' (fresh) and:
 - lacktriangle in R' we include $\{m' \mapsto \lambda x.mx\}$
 - lacktriangle in \mathcal{P}' we include $\{m' \mapsto P\}$
- S' is S restricted to public reference names (i.e. those on P), with method names refreshed as above

Results

We define:

$$\llbracket \mathbf{U}, \Gamma \vdash M : \theta \rrbracket' = \{ t \mid (\mathbf{U}, \Gamma \vdash M : \theta) \xrightarrow{t} (\circ, \mathcal{E}, R, S, \mathcal{P}) \}$$

Results

We define:

$$\llbracket \mathbf{U}, \Gamma \vdash M : \theta \rrbracket' = \{ t \mid (\mathbf{U}, \Gamma \vdash M : \theta) \xrightarrow{t} (\circ, \mathcal{E}, R, S, \mathcal{P}) \}$$

What we can show:

- Correctness and adequacy (by construction)
- Soundness: if $comp(\llbracket M \rrbracket') = comp(\llbracket N \rrbracket')$ then $M \cong N$
 - lacktriangle problem: the model is not compositional, so we cannot relate $[\![C[M]]\!]'$ with $[\![M]\!]'$ and $[\![C]\!]'$
 - we actually need to prove it is compositional (hard)
- Full abstraction (via definability and compositionality)

Further game models (operationally)

We can capture more paradigms:

■ Objects: Cell : {get : unit \rightarrow int, set : int \rightarrow unit} $[x : \mathsf{Cell} \vdash x.\mathsf{set}(2 * x.\mathsf{get}()) : \mathsf{void}] =$

 $a \operatorname{\mathsf{call}} a.\operatorname{\mathsf{get}}() \operatorname{\mathsf{ret}} a.\operatorname{\mathsf{get}}(42) \operatorname{\mathsf{call}} a.\operatorname{\mathsf{set}}(84) \operatorname{\mathsf{ret}} a.\operatorname{\mathsf{set}}() \star$

Further game models (operationally)

We can capture more paradigms:

■ Objects: Cell : $\{get : unit \rightarrow int, set : int \rightarrow unit\}$

■ Exceptions:

```
\llbracket \vdash \lambda x^{\mathsf{int}} \text{. if } x \text{ then } 1/x \text{ else raise}(\mathsf{DivZero}) : \mathsf{int} \to \mathsf{ratio} \rrbracket = \mathsf{call}\,() \ \mathsf{ret}\,(m) \ \mathsf{call}\,m(5) \ \mathsf{ret}\,m(1/5) \ \mathsf{call}\,m(0) \ \mathsf{ret}\,m(e!)^{(e:\mathsf{DivZero})} \cdots
```

Further game models (operationally)

We can capture more paradigms:

■ Objects: Cell : $\{get : unit \rightarrow int, set : int \rightarrow unit\}$

■ Exceptions:

$$\llbracket \vdash \lambda x^{\mathsf{int}} \text{. if } x \text{ then } 1/x \text{ else raise}(\mathsf{DivZero}) : \mathsf{int} \to \mathsf{ratio} \rrbracket = \mathsf{call}\,() \ \mathsf{ret}\,(m) \ \mathsf{call}\,m(5) \ \mathsf{ret}\,m(1/5) \ \mathsf{call}\,m(0) \ \mathsf{ret}\,m(e!)^{(e:\mathsf{DivZero})} \cdots$$

■ Polymorphism:

$$\llbracket \vdash \Lambda X.\lambda x^X.\,x: \forall X.X \to X \rrbracket =$$

$$\mathsf{call}\,() \ \mathsf{ret}\,(m) \ \mathsf{call}\,m(\alpha) \ \mathsf{ret}\,m(m')^{(m':\alpha\to\alpha)} \ \mathsf{call}\,m'(p)^{\cdots,(p:\alpha)} \ \mathsf{ret}\,m'(p)^{\cdots}$$

Overview

We presented a general framework for constructing accurate models of programming languages:

- produces (in many cases the only) fully abstract models for a range of languages
- geared towards higher-order (realistic) languages: we saw up to RefML, but we can also model objects, exceptions, polymorphism, non-determinism, probability, etc.
- combines traditional denotational (based on strategy composition)
 with operational (based on traces) presentations