
Game Semantics

Andrzej S. Murawski and Nikos Tzevelekos

Day 5: General references, operational games

Lift Beyond the Ground: RefML

2 / 36

Recall the types of GroundML:

θ ::= ζ | θ × θ | θ → θ

ζ ::= unit | int | ref ζ

Restriction: all references are of ground type

■ OK: letx = ref(0) in · · ·

■ OK: letx = ref(ref(0)) in · · ·

■ not OK: letx = ref(〈0, 1〉) in · · ·

■ not OK: let f = ref(λxint.x) in · · ·

Lift Beyond the Ground: RefML

2 / 36

Recall the types of GroundML:

θ ::= ζ | θ × θ | θ → θ

ζ ::= unit | int | ref ζ

Restriction: all references are of ground type

■ OK: letx = ref(0) in · · ·

■ OK: letx = ref(ref(0)) in · · ·

■ not OK: letx = ref(〈0, 1〉) in · · ·

■ not OK: let f = ref(λxint.x) in · · ·

Does this matter?

■ we can simulate letx = ref(〈0, 1〉) inM by:

let xl = ref(0) in letxr = ref(1) in ’M{〈xl, xr〉/x}’

Higher-order references, expressivity

3 / 36

But we cannot simulate let f = ref(λxint.x) inM .

Does it matter – can we express fewer programs?

Higher-order references, expressivity

3 / 36

But we cannot simulate let f = ref(λxint.x) inM .

Does it matter – can we express fewer programs?

■ ⊢ M : int

Higher-order references, expressivity

3 / 36

But we cannot simulate let f = ref(λxint.x) inM .

Does it matter – can we express fewer programs?

■ ⊢ M : int : same programs (i.e. same integers)

■ ⊢ M : int → int

Higher-order references, expressivity

3 / 36

But we cannot simulate let f = ref(λxint.x) inM .

Does it matter – can we express fewer programs?

■ ⊢ M : int : same programs (i.e. same integers)

■ ⊢ M : int → int: same programs (i.e. same terms up to equivalence)

■ but this does not hold in general!

A delay buffer

4 / 36

Example. Consider a term

⊢ dBuf : (int → int) → (int → int)

evaluating to some function f such that:

■ the first time we call f , say by executing f(f1), it returns λx
int.x;

■ the second time we call f , say by executing f(f2), it returns f1;

■ · · ·

■ the i-th time we call f , say by f(fi), it returns fi−1.

A delay buffer

4 / 36

Example. Consider a term

⊢ dBuf : (int → int) → (int → int)

evaluating to some function f such that:

■ the first time we call f , say by executing f(f1), it returns λx
int.x;

■ the second time we call f , say by executing f(f2), it returns f1;

■ · · ·

■ the i-th time we call f , say by f(fi), it returns fi−1.

We can implement it using references of type int → int:

dBuf ≡ let r = ref(λxint.x) in

λf int→int. let fold = !r in r := f ; fold

A delay buffer – not codable in GroundML

5 / 36

Example. Consider a term

⊢ dBuf : (int → int) → (int → int)

evaluating to some function f such that:

■ the first time we call f , say by executing f(f1), it returns λx
int.x;

■ thereafter, the i-th time we call f , say by f(fi), it returns fi−1.

Lemma. We cannot implement dBuf in GroundML.

A delay buffer – not codable in GroundML

5 / 36

Example. Consider a term

⊢ dBuf : (int → int) → (int → int)

evaluating to some function f such that:

■ the first time we call f , say by executing f(f1), it returns λx
int.x;

■ thereafter, the i-th time we call f , say by f(fi), it returns fi−1.

Lemma. We cannot implement dBuf in GroundML.

Proof (sketch). If we could, then JdBufK would contain plays like:

⋆ † †1 †′1 †2 †′2 42 42 · · ·
(where there are no explicit
pointers, assume the move
points to its predecessor)

OQ PA OQ PA OQ PA OQ PQ

which would break visibility.

Recall Visibility

6 / 36

In any play
s m

the move that m points to must be in the view of s

⋆ † †1 †′1 †2 †′2 42 42

OQ PA OQ PA OQ PA OQ PQ

⇓

⋆ † †1 †′1 †2 †′2 42 42

The view hides moves from suspended function calls

Higher-order references: more distinctions

7 / 36

Lemma. The following terms are equivalent in GroundML:

f : unit→unit ⊢ letn = ref(0) inλ . if !n then () elsen := 1; f() : unit→unit

f : unit→unit ⊢ letn = ref(0) inλ . if !n then () else f();n := 1 : unit→unit

Higher-order references: more distinctions

7 / 36

Lemma. The following terms are equivalent in GroundML:

f : unit→unit ⊢ letn = ref(0) inλ . if !n then () elsen := 1; f() : unit→unit

f : unit→unit ⊢ letn = ref(0) inλ . if !n then () else f();n := 1 : unit→unit

Proof. Computing the game semantics in each case, we get that it must
consist of plays of the form:

†f † ⋆ ⋆f ⋆ ⋆ · · ·
OQ PA OQ PQ OA PA

In particular, the question ⋆f must be immediately answered as, at that
point in the play, O has no other move to play (by visibility).

But the terms can be distinguished by a context that uses higher-order
references.

The language RefML – Definition

8 / 36

θ ::= unit | int | ref θ | θ × θ | θ → θ A =
⊎

θ Aθ

U,Γ ⊢ () : unit
i ∈ Z

U,Γ ⊢ i : int

(x : θ) ∈ Γ

U,Γ ⊢ x : θ

a ∈ U ∩ Aθ

U,Γ ⊢ a : refθ

U,Γ ⊢ M : int U,Γ ⊢ N0 : θ U,Γ ⊢ N1 : θ

U,Γ ⊢ ifM thenN1 elseN0 : θ

U,Γ ⊢ M : int

U,Γ ⊢ while(M) : unit

U,Γ ⊎ {x : θ } ⊢ M : θ′

U,Γ ⊢ λxθ.M : θ → θ′
U,Γ ⊢ M : θ → θ′ U,Γ ⊢ N : θ

U,Γ ⊢ MN : θ′

U,Γ ⊢ M : θ U,Γ ⊢ N : θ′

U,Γ ⊢ 〈M,N〉 : θ × θ′
U,Γ ⊢ M : θ1 × θ2
U,Γ ⊢ πiM : θi

i∈{1,2}

U,Γ ⊢ M : int U,Γ ⊢ N : int

U,Γ ⊢ M ⊕N : int

U,Γ ⊢ M : refθ U,Γ ⊢ N : refθ

U,Γ ⊢ M = N : int

U,Γ ⊢ M : θ

U,Γ ⊢ ref(M) : refθ

U,Γ ⊢ M : refθ

U,Γ ⊢ !M : θ

U,Γ ⊢ M : refθ U,Γ ⊢ N : θ

U,Γ ⊢ M :=N : unit

Operational semantics of RefML – remains the same

9 / 36

(i⊕ j, S) −→ (k, S) (k = i⊕ j)

((λx.M)V, S) −→ (M [V/x], S)

(π1〈V1, V2〉, S) −→ (V1, S)

(π2〈V1, V2〉, S) −→ (V2, S)

(if 0 thenM elseM ′, S) −→ (M ′, S)

(if i thenM elseM ′, S) −→ (M,S) (i > 0)

(while(M), S) −→ (ifM then while(M) else (), S)

(a = b, S) −→ (0, S) (a 6= b)

(a = a, S) −→ (1, S)

(!a, S) −→ (S(a), S)

(a :=V, S) −→ ((), S[a 7→ V])

(ref(V), S) −→ (a′, S[a′ 7→ V]) (a′ /∈ dom(S))

(M,S) −→ (M ′, S ′)

(E[M], S) −→ (E[M ′], S ′)

Example RefML terms

10 / 36

dBuf ≡ let r = ref(λxint.x) in

λf int→int. let fold = !r in r := f ; fold : (int → int) → (int → int)

Example RefML terms

10 / 36

dBuf ≡ let r = ref(λxint.x) in

λf int→int. let fold = !r in r := f ; fold : (int → int) → (int → int)

lambdaMax ≡ let r = ref(λxint.x), n = ref(1) in

λf int→int. (if !n thenn := 0; r := f

else let fold = !r in r := λxint. max(foldx, fx));

!r

: (int → int) → (int → int)

Example RefML terms

10 / 36

dBuf ≡ let r = ref(λxint.x) in

λf int→int. let fold = !r in r := f ; fold : (int → int) → (int → int)

lambdaMax ≡ let r = ref(λxint.x), n = ref(1) in

λf int→int. (if !n thenn := 0; r := f

else let fold = !r in r := λxint. max(foldx, fx));

!r

: (int → int) → (int → int)

How to distinguish:

f : unit→unit ⊢ letn = ref(0) inλ . if !n then () elsen := 1; f() : unit→unit

f : unit→unit ⊢ letn = ref(0) inλ . if !n then () else f();n := 1 : unit→unit

Games for higher-order references

11 / 36

How can we adapt the game model of GroundML to model higher-order
references? How should we change:

arenas?

moves?

plays?

strategies?

Games for higher-order references

11 / 36

How can we adapt the game model of GroundML to model higher-order
references? How should we change:

arenas? these remain the same

moves?

plays?

strategies?

Games for higher-order references

11 / 36

How can we adapt the game model of GroundML to model higher-order
references? How should we change:

arenas? these remain the same

moves? stores need to be higher-order

plays?

strategies?

Games for higher-order references

11 / 36

How can we adapt the game model of GroundML to model higher-order
references? How should we change:

arenas? these remain the same

moves? stores need to be higher-order

plays? can break visibility

strategies?

Games for higher-order references

11 / 36

How can we adapt the game model of GroundML to model higher-order
references? How should we change:

arenas? these remain the same

moves? stores need to be higher-order

plays? can break visibility

strategies? same conditions as before

+ additional conditions for composition

Stores with higher-order values

12 / 36

What is a higher-order value?

Stores with higher-order values

12 / 36

What is a higher-order value?

It is a move opening an arena, and should contain some †.

Stores storing ground and higher-order values:

GroundML RefML

S = {(a, 0), (b, a), · · · }

S = {(a, iA), (b, iB), · · · }

A− B−

Pointers pointers everywhere

13 / 36

r : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int) → (int→int)

Aint→int −→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

a(a,†)

†(a,†)

†(a,†)

†(a,†)

42(a,†)

Pointers pointers everywhere

13 / 36

r : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int) → (int→int)

Aint→int −→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

a(a,†)

†(a,†)

†(a,†)

†(a,†)

42(a,†)

42(a,†)

Pointers pointers everywhere

13 / 36

r : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int) → (int→int)

Aint→int −→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

a(a,†)

†(a,†)

†(a,†)

†(a,†)

42(a,†)

42(a,†)

84(a,†)

84(a,†)

Pointers pointers everywhere

13 / 36

r : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int) → (int→int)

Aint→int −→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

a(a,†)

†(a,†)

†(a,†)

†(a,†)

42(a,†)

42(a,†)

42(a,†)

Pointers pointers everywhere

13 / 36

r : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int) → (int→int)

Aint→int −→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

a(a,†)

†(a,†)

†(a,†)

†(a,†)

42(a,†)

42(a,†)

42(a,†)

42(a,†)

Pointers pointers everywhere

13 / 36

r : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int) → (int→int)

Aint→int −→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

a(a,†)

†(a,†)

†(a,†)

†(a,†)

42(a,†)

Pointers pointers everywhere

13 / 36

r : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int) → (int→int)

Aint→int −→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

a(a,†)

†(a,†)

†(a,†)

†(a,†)

42(a,†)

42(a,†)

84(a,†)

84(a,†)

Plays

14 / 36

There are two kinds of modifications we make on plays:

■ There are now two kinds of pointers: to-move and to-store pointers:

a(a,†) †(a,†) †(a,†) †(a,†) 42(a,†) 42(a,†) · · ·
OQ PA OQ PA OQ PQ

■ Visibility is no longer imposed

⋆ † †1 † †2 † 42 42 · · ·
OQ PA OQ PA OQ PA OQ PQ

Composition: more copycat conditions

15 / 36

σ = Jref(λxint. x : int → int)K
τ = Jr : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int)→(int → int)K

1
σ

−−−→ Aint→int
τ

−−−→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

⋆

a(a,†)

†(a,†)

†
(a,†)
1

†(a,†)

Composition: more copycat conditions

15 / 36

σ = Jref(λxint. x : int → int)K
τ = Jr : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int)→(int → int)K

1
σ

−−−→ Aint→int
τ

−−−→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

⋆

a(a,†)

†(a,†)

†
(a,†)
1

†(a,†)

†
(a,†)
2

†(a,†)

Composition: more copycat conditions

15 / 36

σ = Jref(λxint. x : int → int)K
τ = Jr : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int)→(int → int)K

1
σ

−−−→ Aint→int
τ

−−−→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

⋆

a(a,†)

†(a,†)

†
(a,†)
1

†(a,†)

†
(a,†)
2

†(a,†)

42(a,†)

Composition: more copycat conditions

15 / 36

σ = Jref(λxint. x : int → int)K
τ = Jr : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int)→(int → int)K

1
σ

−−−→ Aint→int
τ

−−−→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

⋆

a(a,†)

†(a,†)

†
(a,†)
1

†(a,†)

†
(a,†)
2

†(a,†)

42(a,†)

42(a,†)

Composition: more copycat conditions

15 / 36

σ = Jref(λxint. x : int → int)K
τ = Jr : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int)→(int → int)K

1
σ

−−−→ Aint→int
τ

−−−→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

⋆

a(a,†)

†(a,†)

†
(a,†)
1

†(a,†)

†
(a,†)
2

†(a,†)

42(a,†)

42(a,†)

42(a,†)

Composition: more copycat conditions

15 / 36

σ = Jref(λxint. x : int → int)K
τ = Jr : ref(int→int) ⊢ λf int→int. let fold = !r in r := f ; fold : (int→int)→(int → int)K

1
σ

−−−→ Aint→int
τ

−−−→ (Z ⇒ Z) ⇒ (Z ⇒ Z)

⋆

a(a,†)

†(a,†)

†
(a,†)
1

†(a,†)

†
(a,†)
2

†(a,†)

42(a,†)

42(a,†)

42(a,†)

42(a,†)

Results

16 / 36

■ the game model for RefML if fully abstract

comp(JMK) = comp(JNK) ⇐⇒ M ∼= N

(and we also have correctness and adequacy)

■ conceptually:

Higher-order references ⇐⇒ Loosen visibility

Something different: operational games

17 / 36

We started from informal dialogues and moved to formal games via:

• defining the rules of the games (arenas, moves, plays, etc.)

• defining the translation of basic terms (e.g. constant, variables, etc.)

• defining composition and other syntactic constructs

• combine the above to produce the semantics of terms

Something different: operational games

17 / 36

We started from informal dialogues and moved to formal games via:

• defining the rules of the games (arenas, moves, plays, etc.)

• defining the translation of basic terms (e.g. constant, variables, etc.)

• defining composition and other syntactic constructs

• combine the above to produce the semantics of terms

An alternative idea is:

just execute terms operationally to produce their plays

• reduce the term internally via its operational semantics

• when an external function needs to be called, play a move

• and take it on from there

Example

18 / 36

⊢ λyint. 2 ∗ y + 1 : int → int :

◦ what is the result?

• it is a function m

Example

18 / 36

⊢ λyint. 2 ∗ y + 1 : int → int :

◦ what is the result?

• it is a function m

◦ what is the result of m on 42?

• (...) it is 85

Example

18 / 36

⊢ λyint. 2 ∗ y + 1 : int → int :

◦ what is the result?

• it is a function m

◦ what is the result of m on 42?

• (...) it is 85

◦ what is the result of m on 22?

• (...) it is 45

Example

18 / 36

⊢ λyint. 2 ∗ y + 1 : int → int :

◦ what is the result?

• it is a function m

◦ what is the result of m on 42?

• (...) it is 85

◦ what is the result of m on 22?

• (...) it is 45

...

An operational reading of the game semantics is:

call () ret (m) callm(42) retm(85) callm(22) retm(25) · · ·

m here is a function name (think of it as a method name)

Example II

19 / 36

f : int → int ⊢ λxint. fx+ 1 : int → int :

◦ given m (for f), what is the result?

• it is a function m′

Example II

19 / 36

f : int → int ⊢ λxint. fx+ 1 : int → int :

◦ given m (for f), what is the result?

• it is a function m′

◦ what is the result of m′ on 42?

• what is the result of m on 42?

◦ it is 85

Example II

19 / 36

f : int → int ⊢ λxint. fx+ 1 : int → int :

◦ given m (for f), what is the result?

• it is a function m′

◦ what is the result of m′ on 42?

• what is the result of m on 42?

◦ it is 85

• (...) it is 86

Example II

19 / 36

f : int → int ⊢ λxint. fx+ 1 : int → int :

◦ given m (for f), what is the result?

• it is a function m′

◦ what is the result of m′ on 42?

• what is the result of m on 42?

◦ it is 85

• (...) it is 86

◦ what is the result of m′ on 22?

• what is the result of m on 22?

◦ it is 25

Example II

19 / 36

f : int → int ⊢ λxint. fx+ 1 : int → int :

◦ given m (for f), what is the result?

• it is a function m′

◦ what is the result of m′ on 42?

• what is the result of m on 42?

◦ it is 85

• (...) it is 86

◦ what is the result of m′ on 22?

• what is the result of m on 22?

◦ it is 25

• (...) it is 26

Example II

19 / 36

f : int → int ⊢ λxint. fx+ 1 : int → int :

◦ given m (for f), what is the result?

• it is a function m′

◦ what is the result of m′ on 42?

• what is the result of m on 42?

◦ it is 85

• (...) it is 86

◦ what is the result of m′ on 22?

• what is the result of m on 22?

◦ it is 25

• (...) it is 26

call (m) ret (m′) callm′(42) callm(42) retm(85) retm′(86) · · ·

How to obtain the games operationally

20 / 36

■ For ⊢ λyint. 2 ∗ y + 1 : int → int. Start with initial move:

(⊢ λyint. 2 ∗ y + 1 : int → int)
call ()
−−−−→ (λyint. 2 ∗ y + 1, S0, R0)

where S0 an empty store, and R0 an empty repository (stores method
names and their definitions)

How to obtain the games operationally

20 / 36

■ For ⊢ λyint. 2 ∗ y + 1 : int → int. Start with initial move:

(⊢ λyint. 2 ∗ y + 1 : int → int)
call ()
−−−−→ (λyint. 2 ∗ y + 1, S0, R0)

where S0 an empty store, and R0 an empty repository (stores method
names and their definitions)

■ proceed to evaluation, producing a name for the function:

(λyint. 2 ∗ y + 1, S0, R0) −→ (m,S0, {m 7→ λy.2 ∗ y + 1})

How to obtain the games operationally

20 / 36

■ For ⊢ λyint. 2 ∗ y + 1 : int → int. Start with initial move:

(⊢ λyint. 2 ∗ y + 1 : int → int)
call ()
−−−−→ (λyint. 2 ∗ y + 1, S0, R0)

where S0 an empty store, and R0 an empty repository (stores method
names and their definitions)

■ proceed to evaluation, producing a name for the function:

(λyint. 2 ∗ y + 1, S0, R0) −→ (m,S0, {m 7→ λy.2 ∗ y + 1})

■ return the function name:

(m,S0, {m 7→ λy.2 ∗ y + 1})
ret (m)
−−−−−→ (◦, S0, {m 7→ λy.2 ∗ y + 1})

How to obtain the games operationally

20 / 36

■ For ⊢ λyint. 2 ∗ y + 1 : int → int. Start with initial move:

(⊢ λyint. 2 ∗ y + 1 : int → int)
call ()
−−−−→ (λyint. 2 ∗ y + 1, S0, R0)

where S0 an empty store, and R0 an empty repository (stores method
names and their definitions)

■ proceed to evaluation, producing a name for the function:

(λyint. 2 ∗ y + 1, S0, R0) −→ (m,S0, {m 7→ λy.2 ∗ y + 1})

■ return the function name:

(m,S0, {m 7→ λy.2 ∗ y + 1})
ret (m)
−−−−−→ (◦, S0, {m 7→ λy.2 ∗ y + 1})

■ now it is Opponent’s turn:

(◦, S0, {m 7→ λy.2 ∗ y + 1})
callm(42)
−−−−−−→ (m 42, S0, {m 7→ λy.2 ∗ y + 1})

How to obtain the games operationally

20 / 36

■ For ⊢ λyint. 2 ∗ y + 1 : int → int. Start with initial move:

(⊢ λyint. 2 ∗ y + 1 : int → int)
call ()
−−−−→ (λyint. 2 ∗ y + 1, S0, R0)

where S0 an empty store, and R0 an empty repository (stores method
names and their definitions)

■ proceed to evaluation, producing a name for the function:

(λyint. 2 ∗ y + 1, S0, R0) −→ (m,S0, {m 7→ λy.2 ∗ y + 1})

■ return the function name:

(m,S0, {m 7→ λy.2 ∗ y + 1})
ret (m)
−−−−−→ (◦, S0, {m 7→ λy.2 ∗ y + 1})

■ now it is Opponent’s turn:

(◦, S0, {m 7→ λy.2 ∗ y + 1})
callm(42)
−−−−−−→ (m 42, S0, {m 7→ λy.2 ∗ y + 1})

■ compute and return:

(m 42, S0, {m 7→ λy.2∗y+1}) −→ (2∗42+1, ...) −→ (85, ...)
retm(85)
−−−−−−→ (◦, ...)

In short

21 / 36

(⊢ λyint. 2 ∗ y + 1 : int → int)

call ()
−−−−→ (λyint. 2 ∗ y + 1, S0, R0)

−→ (m,S0, R1) R1 = {m 7→ λy.2 ∗ y + 1}

ret (m)
−−−−−→ (◦, S0, R1)

callm(42)
−−−−−−→ (m 42, S0, R1)

−→ (2 ∗ 42 + 1, S0, R1) −→ (85, S0, R1)
retm(85)
−−−−−−→ (◦, S0, R1)

callm(22)
−−−−−−→ (m 22, S0, R1)

−→ (2 ∗ 22 + 1, S0, R1) −→ (45, S0, R1)
retm(45)
−−−−−−→ (◦, S0, R1)

· · ·

Example II

22 / 36

(f : int → int ⊢ λxint. fx+ 1 : int → int)

call (m)
−−−−−→ (λxint.mx+ 1, S0, R0)

−→ (m′, S0, R1) R1 = {m′ 7→ λxint.mx+ 1}

ret (m′)
−−−−−→ (◦, S0, R1)

callm′(42)
−−−−−−→ (m′ 42, S0, R1) −→ (m 42 + 1, S0, R1)

callm(42)
−−−−−−→ (•+ 1, S0, R1)

retm(85)
−−−−−→ (85 + 1, S0, R1) −→ (86, S0, R1)

retm′(86)
−−−−−−→ (◦, S0, R1)

· · ·

Plays vs traces

23 / 36

To distinguish them from plays we call these sequences of calls and
returns traces.

There is a correspondence between plays and traces:

† † 42 42 84 86 · · ·

⇓

call (m) ret (m′) callm′(42) callm(42) retm(85) retm′(86) · · ·

Traces more formally

24 / 36

Traces are based on configurations:

(M, E , S, R,P) or (◦, E , S, R,P)

Traces more formally

24 / 36

Traces are based on configurations:

(M, E , S, R,P) or (◦, E , S, R,P)

these are P and O configurations respectively
and:

■ M is a term

■ E is a stack of evaluation contexts and method names (we’ll see why)

■ S is a store

■ R is a repository

■ P is a map of public names: names of P that have been made public,
or names revealed by O

Example formally

25 / 36

(⊢ λyint. 2 ∗ y + 1 : int → int)

call ()
−−−−→ (λyint. 2 ∗ y + 1, ǫ, ∅, ∅, ∅)

−→ (m, ǫ, ∅, R1, ∅) R1 = {m 7→ λy.2 ∗ y + 1}

ret (m)
−−−−−→ (◦, ǫ, ∅, R1,P1) P1 = {m 7→ P}

callm(42)
−−−−−−→ (m 42,m, ∅, , R1,P1)

−→ (2 ∗ 42 + 1, · · ·) −→ (85, · · ·)
retm(85)
−−−−−−→ (◦, ǫ, ∅, R1,P1)

callm(22)
−−−−−−→ (m 22,m, ∅, R1,P1)

−→ (2 ∗ 22 + 1, · · ·) −→ (45, · · ·)
retm(45)
−−−−−−→ (◦, ǫ, ∅, R1,P1)

· · ·

Example II formally

26 / 36

(f : int → int ⊢ λxint. fx+ 1 : int → int)

call (m)
−−−−−→ (λxint.mx+ 1, ǫ, ∅, ∅,P1) P1 = {m 7→ O}

−→ (m′, ǫ, ∅, R1,P1) R1 = {m′ 7→ λxint.mx+ 1}

ret (m′)
−−−−−→ (◦, ǫ, ∅, R1,P2) P2 = P1[m

′ 7→ P]

callm′(42)
−−−−−−→ (m′ 42,m′, ∅, R1,P2) −→ (m 42 + 1,m′, ∅, R1,P2)

callm(42)
−−−−−−→ (◦, (m, •+ 1) :: m′, ∅, R1,P2)

retm(85)
−−−−−→ (85 + 1,m′, ∅, R1,P2) −→ (86,m′, ∅, R1,P2)

retm′(86)
−−−−−−→ (◦, ǫ, ∅, R1,P2)

· · ·

Example III

27 / 36

The evaluation stack is needed in order to stack method calls:

(x : int ⊢ λf int→int. fx+ 1 : (int → int) → int)

call (42)
−−−−−→ (λf int→int. f 42 + 1, ǫ, ∅, ∅, ∅)

−→ (m, ǫ, ∅, R1, ∅) R1 = {m 7→ λf.f42 + 1}

ret (m)
−−−−−→ (◦, ǫ, ∅, R1,P1) P1 = {m 7→ P}

callm(m1)
−−−−−−−→ (mm1,m, ∅, R1,P1)

−→ (m142 + 1,m, ∅, R1,P1)

callm1(42)
−−−−−−−→ (◦, (m1, •+ 1) :: m, ∅, R1,P1)

Example III

27 / 36

The evaluation stack is needed in order to stack method calls:

(x : int ⊢ λf int→int. fx+ 1 : (int → int) → int)

call (42)
−−−−−→ (λf int→int. f 42 + 1, ǫ, ∅, ∅, ∅)

−→
ret (m)
−−−−−→ (◦, ǫ, ∅, R1,P1) R1 = {m 7→ λf.f42 + 1}

callm(m1)
−−−−−−−→ (mm1,m, ∅, R1,P1)

−→
callm1(42)
−−−−−−−→ (◦, (m1, •+ 1) :: m, ∅, R1,P1)

Example III

27 / 36

The evaluation stack is needed in order to stack method calls:

(x : int ⊢ λf int→int. fx+ 1 : (int → int) → int)

call (42)
−−−−−→ (λf int→int. f 42 + 1, ǫ, ∅, ∅, ∅)

−→
ret (m)
−−−−−→ (◦, ǫ, ∅, R1,P1) R1 = {m 7→ λf.f42 + 1}

callm(m1)
−−−−−−−→ (mm1,m, ∅, R1,P1)

−→
callm1(42)
−−−−−−−→ (◦, (m1, •+ 1) :: m, ∅, R1,P1)

retm1(85)
−−−−−−−→ (85 + 1,m, ∅, R1,P1) −→ · · ·

Example III

27 / 36

The evaluation stack is needed in order to stack method calls:

(x : int ⊢ λf int→int. fx+ 1 : (int → int) → int)

call (42)
−−−−−→ (λf int→int. f 42 + 1, ǫ, ∅, ∅, ∅)

−→
ret (m)
−−−−−→ (◦, ǫ, ∅, R1,P1) R1 = {m 7→ λf.f42 + 1}

callm(m1)
−−−−−−−→ (mm1,m, ∅, R1,P1)

−→
callm1(42)
−−−−−−−→ (◦, (m1, •+ 1) :: m, ∅, R1,P1)

callm(m2)
−−−−−−−→ (mm2,m :: (m1, •+ 1) :: m, ∅, R1,P1)

−→ (m2 42 + 1,m :: (m1, •+ 1) :: m, ∅, R1,P1)

callm2(42)
−−−−−−−→ (◦, (m2, •+ 1) :: m :: (m1, •+ 1) :: m, ∅, R1,P1)

· · ·

Formalising the trace rules

28 / 36

The language we examine is RefML.

First, we modify the operational semantics to include method names:

V ::= () | i | a | 〈V, V 〉 | m

and modify the operational semantics by adding repositories:

Formalising the trace rules

28 / 36

The language we examine is RefML.

First, we modify the operational semantics to include method names:

V ::= () | i | a | 〈V, V 〉 | m

and modify the operational semantics by adding repositories:

(i⊕ j, R, S) −→ (k,R, S) (k = i⊕ j)

(πi〈V1, V2〉, R, S) −→ (Vi, R, S)

(if 0 thenM elseM ′, R, S) −→ (M ′, R, S)

(if i thenM elseM ′, R, S) −→ (M,R, S) (i > 0)

(while(M), R, S) −→ (ifM then while(M) else (), R, S)

(a = b, R, S) −→ (0, R, S) (a 6= b)

(a = a,R, S) −→ (1, R, S)

(!a,R, S) −→ (S(a), R, S)

(a :=V,R, S) −→ ((), R, S[a 7→ V])

(ref(V), R, S) −→ (a′, R, S[a′ 7→ V]) (a′ /∈ dom(S))

Formalising the trace rules

28 / 36

The language we examine is RefML.

First, we modify the operational semantics to include method names:

V ::= () | i | a | 〈V, V 〉 | m

and modify the operational semantics by adding repositories:

((λx.M)V,R, S) −→ (m,R[m 7→ λx.M], S) (a /∈ dom(R))

(m,R, S) −→ (M [V/x], R, S) (R(m) = λx.M)

(M,R, S) −→ (M ′, R, S′)

(E[M], R, S) −→ (E[M ′], R, S′)

Trace rules – internal

29 / 36

(M,R, S) −→ (M ′, R′, S ′)

(M, E , R, S,P) −→ (M ′, E , R′, S ′,P)

so long all fresh names created are fresh for E ,P as well.

Trace rules – PQ

30 / 36

(E[mv], E , R, S,P)
callm(v′)S

′

−−−−−−→ (◦, (m,E) :: E , R⊎R′, S,P⊎P ′)

where P(m) = O and:

■ if v not a method name, then v′ = v

■ if v = m, then v′ = m′ (fresh) and:

◆ in R′ we include {m′ 7→ λx.mx}

◆ in P ′ we include {m′ 7→ P}

■ S ′ is S restricted to public reference names (i.e. those on P), with
method names refreshed as above

Trace rules – OA

31 / 36

(◦, (m,E) :: E , R, S,P)
retm(v)S

′

−−−−−−→ (E[v], E , R, S[S ′],P ⊎P ′)

■ if v = m then it must be fresh and:

◆ in P ′ we include {m′ 7→ O}

■ S ′ can differ from S only for public reference names (i.e. those on P),
with any method names being refresh as above

Trace rules – OQ

32 / 36

(◦, E , R, S,P)
callm(v)S

′

−−−−−−→ (mv,m :: E , R, S[S ′],P ⊎ P ′)

where P(m) = P and:

■ if v = m then it must be fresh and:

◆ in P ′ we include {m′ 7→ O}

■ S ′ can differ from S only for public reference names (i.e. those on P),
with any method names being refresh as above

Trace rules – PA

33 / 36

(v,m :: E , R, S,P)
retm(v′)S

′

−−−−−−→ (◦,m :: E , R ⊎R′, S,P ⊎ P ′)

■ if v not a method name, then v′ = v

■ if v = m, then v′ = m′ (fresh) and:

◆ in R′ we include {m′ 7→ λx.mx}

◆ in P ′ we include {m′ 7→ P}

■ S ′ is S restricted to public reference names (i.e. those on P), with
method names refreshed as above

Results

34 / 36

We define:

JU,Γ ⊢ M : θK′ = { t | (U,Γ ⊢ M : θ)
t
−→ (◦, E , R, S,P) }

Results

34 / 36

We define:

JU,Γ ⊢ M : θK′ = { t | (U,Γ ⊢ M : θ)
t
−→ (◦, E , R, S,P) }

What we can show:

■ Correctness and adequacy (by construction)

■ Soundness: if comp(JMK′) = comp(JNK′) then M ∼= N

◆ problem: the model is not compositional, so we cannot relate
JC[M]K′ with JMK′ and JCK′

◆ we actually need to prove it is compositional (hard)

■ Full abstraction (via definability and compositionality)

Further game models (operationally)

35 / 36

We can capture more paradigms:

■ Objects: Cell : {get : unit → int, set : int → unit}

Jx : Cell ⊢ x.set(2 ∗ x.get()) : voidK =

a call a.get() ret a.get(42) call a.set(84) ret a.set() ⋆

Further game models (operationally)

35 / 36

We can capture more paradigms:

■ Objects: Cell : {get : unit → int, set : int → unit}

Jx : Cell ⊢ x.set(2 ∗ x.get()) : voidK =

a call a.get() ret a.get(42) call a.set(84) ret a.set() ⋆

■ Exceptions:

J⊢ λxint. if x then 1/x else raise(DivZero) : int → ratioK =

call () ret (m) callm(5) retm(1/5) callm(0) retm(e!)(e:DivZero) · · ·

Further game models (operationally)

35 / 36

We can capture more paradigms:

■ Objects: Cell : {get : unit → int, set : int → unit}

Jx : Cell ⊢ x.set(2 ∗ x.get()) : voidK =

a call a.get() ret a.get(42) call a.set(84) ret a.set() ⋆

■ Exceptions:

J⊢ λxint. if x then 1/x else raise(DivZero) : int → ratioK =

call () ret (m) callm(5) retm(1/5) callm(0) retm(e!)(e:DivZero) · · ·

■ Polymorphism:

J⊢ ΛX.λxX . x : ∀X.X → XK =

call () ret (m) callm(α) retm(m′)(m
′:α→α) callm′(p)··· ,(p:α) retm′(p)···

Overview

36 / 36

We presented a general framework for constructing accurate models of
programming languages:

■ produces (in many cases the only) fully abstract models for a range of
languages

■ geared towards higher-order (realistic) languages: we saw up to
RefML, but we can also model objects, exceptions, polymorphism,
non-determinism, probability, etc.

■ combines traditional denotational (based on strategy composition)
with operational (based on traces) presentations

	Lift Beyond the Ground: RefML
	Higher-order references, expressivity
	A delay buffer
	A delay buffer – not codable in GroundML
	Recall Visibility
	Higher-order references: more distinctions
	The language RefML – Definition
	Operational semantics of RefML – remains the same
	Example RefML terms
	Games for higher-order references
	Stores with higher-order values
	Pointers pointers everywhere
	Plays
	Composition: more copycat conditions
	Results
	Something different: operational games
	Example
	Example II
	How to obtain the games operationally
	In short
	Example II
	Plays vs traces
	Traces more formally
	Example formally
	Example II formally
	Example III
	Formalising the trace rules
	Trace rules – internal
	Trace rules – PQ
	Trace rules – OA
	Trace rules – OQ
	Trace rules – PA
	Results
	Further game models (operationally)
	Overview

