
Collapsible Pushdown Automata and Recursion Schemes∗

M. Hague† A. S. Murawski‡ C.-H. L. Ong§ O. Serre¶

Abstract

Collapsible pushdown automata(CPDA) are a new kind
of higher-order pushdown automata in which every sym-
bol in the stack has a link to a stack situated somewhere
below it. In addition to the higher-order stack operations
pushi andpopi, CPDA have an important operation called
collapse, whose effect is to “collapse” a stacks to the prefix
as indicated by the link from the topmost symbol ofs. Our
first result is that CPDA are equi-expressive withrecursion
schemesas generators of (possibly infinite) ranked trees. In
one direction, we give a simple algorithm that transforms
an order-n CPDA to an order-n recursion scheme that gen-
erates the same tree, uniformly for alln ≥ 0. In the other
direction, using ideas from game semantics, we give an ef-
fective transformation of order-n recursion schemes (not as-
sumed to behomogeneously typed, and hence not necessar-
ily safe) to order-n CPDA that computetraversalsover an
abstract syntax graph of the scheme, and hence paths in the
tree generated by the scheme. Our equi-expressivity result
is the first automata-theoretic characterization of higher-
order recursion schemes. Thus CPDA are also a charac-
terization of thesimply-typed lambda calculus with recur-
sion (generated from uninterpreted 1st-order symbols) and
of (pure)innocent strategies.

An important consequence of the equi-expressivity re-
sult is that it allows us to reduce decision problems on trees
generated by recursion schemes to equivalent problems on
CPDA andvice versa. Thus we show, as a consequence of a
recent result by Ong (modal mu-calculus model-checking
of trees generated by recursion schemes isn-EXPTIME
complete), that the problem of solving parity games over
the configuration graphs of order-n CPDA isn-EXPTIME
complete, subsuming several well-known results about the
solvability of games over higher-order pushdown graphs by
(respectively) Walukiewicz, Cachat, and Knapiket al. An-

∗We direct readers to the (downloadable) long version [13] ofthis paper
in which all proofs are presented.

†Matthew.Hague@comlab.ox.ac.uk Oxford University
Computing Laboratory (OUCL)

‡Andrzej.Murawski@comlab.ox.ac.uk OUCL
§Luke.Ong@comlab.ox.ac.uk OUCL
¶Olivier.Serre@liafa.jussieu.fr LIAFA (CNRS and

Universit́e Paris Diderot – Paris 7)

other contribution of our work is a self-contained proof of
the same solvability result by generalizingstandardtech-
niques in the field. By appealing to our equi-expressivity
result, we obtain a new proof of Ong’s result.

In contrast to higher-order pushdown graphs, we show
that the monadic second-order theories of the configuration
graphs of CPDA areundecidable. It follows that – as gen-
erators of graphs – CPDA are strictly more expressive than
higher-order pushdown automata.

1 Introduction

Higher-order pushdown automata(PDA) were first in-
troduced by Maslov [18] as accepting devices for word lan-
guages. Asn varies over the natural numbers, the lan-
guages accepted by order-n pushdown automata form an
infinite hierarchy. Inop. cit.Maslov gave an equivalent def-
inition of the hierarchy in terms ofhigher-order indexed
grammars. Yet another characterization of Maslov’s hier-
archy was given by Damm and Goerdt [9, 10]: they studied
higher-order recursion schemesthat satisfy the constraint
of derived types, and showed that the word languages gen-
erated by order-n such schemes coincide with those ac-
cepted by order-n PDA. Maslov’s hierarchy offers an attrac-
tive classification of the semi-decidable languages: orders
0, 1 and 2 are respectively the regular, context-free and in-
dexed languages [2], though little is known about languages
at higher orders (see e.g. [12]).

Higher-order PDA as a generating device for (possibly
infinite) labelled ranked trees was first studied by Knapik,
Niwi ński and Urzyczyn [16]. As in the case of word lan-
guages, an infinite hierarchy of trees can be defined, accord-
ing to the order of the generating PDA; lower orders of the
hierarchy are well-known classes of trees: orders 0, 1 and 2
are respectively the regular [20], algebraic [8] and hyperal-
gebraic trees [15]. Knapiket al. considered another method
of generating such trees, namely, by higher-order (determin-
istic) recursion schemes that satisfy the constraint ofsafety.
A major result of that work is the equi-expressivity of the
two methods as tree generators. A question of fundamen-
tal importance in higher-type recursion is to find a class of
automata that characterizes the expressivity of higher-order

recursion schemes1. The results of Damm and Goerdt, and
of Knapik et al. may be viewed as attempts to answer the
question; they have both had to impose syntactic constraints
(of derived types and safety respectively, which seem some-
what unnatural) on recursion schemes in order to establish
their results. An exact correspondence with (general) recur-
sion schemes has never been proved before.

A partial answer was recently obtained by Knapik,
Niwi ński, Urzyczyn and Walukiewicz. In an ICALP’05
paper [17], they proved that order-2 homogeneously-typed
(but not necessarily safe) recursion schemes are equi-
expressive with a variant class of order-2 pushdown au-
tomata calledpanic automata. In this paper, we give a com-
plete answer to the question. We introduce a new kind of
higher-order pushdown automata (which generalizespush-
down automata with links[1], or equivalently panic au-
tomata, to all finite orders), calledcollapsible pushdown au-
tomata(CPDA), in which every symbol in the stack has a
link to a (necessarily lower-ordered) stack situated some-
where below it. In addition to the higher-order stack oper-
ationspushi andpopi, CPDA have an important operation
calledcollapse, whose effect is to “collapse” a stacks to
the prefix as indicated by the link from thetop1-symbol of
s. The main result (Theorems 4.3 and 5.1) of this paper is
that for everyn ≥ 0, order-n recursion schemes and order-n

CPDA are equi-expressive as generators of ranked trees.
Our equi-expressivity result has a number of important

consequences. It allows us to reduce decision problems on
trees generated by recursion schemes to equivalent prob-
lems on CPDA andvice versa. Chief among them is the
Modal Mu-Calculus Model-Checking Problem over ranked
trees (equivalently Alternating Parity Tree Automaton Ac-
ceptance Problem, or equivalently Monadic Second-Order
(MSO) Model-Checking Problem). We observe that all
these problems reduce to the problem of solving a parity
game played on acollapsible pushdown graphi.e. the con-
figuration graph of a corresponding collapsible pushdown
system (CPDS). Recently one of us has shown [19] that the
above decision problems for trees generated by order-n re-
cursion schemes aren-EXPTIME complete. Thanks to our
Equi-Expressivity Theorems, it follows that the same (n-
EXPTIME complete) decidability result holds for the corre-
sponding CPDS Problem, which subsumes many known re-
sults [22, 5, 17]. Moreover our approach yields techniques
that are significantly different from standard methods for
solving model-checking problems on infinite graphs gener-
ated by finite machines.

This transfer of techniques goes both ways. Indeed an-
other contribution of our work is a self-contained (and with-
out recourse to game semantics) proof of the solvability of

1Higher-order recursion schemes are essentially simply-typed lambda
calculus with general recursion and uninterpreted first-order function sym-
bols.

parity games on collapsible pushdown graphs by generaliz-
ing standardtechniques in the field. By appealing to our
Equi-Expressivity Theorems, we obtain new proofs for the
decidability (and optimal complexity) of model-checking
problems of trees generated by recursion schemes as stud-
ied in [19].

In contrast to higher-order pushdown graphs (which do
have decidable MSO theories [6]), we show that the MSO
theories of collapsible pushdown graphs are undecidable.
Hence collapsible pushdown graphs are, to our knowledge,
the first example of a general2 and natural class of finitely-
presentable graphs that have undecidable MSO theories
while enjoying decidable modal mu-calculus theories.

2 Collapsible pushdown automata (CPDA)

Fix a stack alphabetΓ and a distinguishedbottom-of-
stack symbol⊥ ∈ Γ. An order-0 stackis just a stack
symbol. Anorder-(n + 1) stacks is a non-null sequence
(written[s1 · · · sl]) of order-n stacks such that every non-
⊥ Γ-symbola that occurs ins has a link to a stack (of order
k wherek ≤ n) situated below it ins; we call the link
a (k + 1)-link. The order of a stacks is written ord(s);
and we shall abbreviate order-n stack ton-stack. As usual,
the bottom-of-stack3 symbol⊥ cannot be popped from or
pushed onto a stack. We define⊥k, theemptyk-stack, as:
⊥0 = ⊥ and⊥k+1 = [⊥k]. When displayingn-stacks in
examples, we shall omit the bottom-of-stack symbols and
1-links (i.e. links to stack symbols) to avoid clutter (writing
e.g.[[][a b]] instead of[[⊥][⊥ a b]].

The setOpn of order-n stack operationsconsists of the
following four types of operations:

1. popk for each1 ≤ k ≤ n

2. collapse

3. push
a,k
1 for each1 ≤ k ≤ n and eacha ∈ (Γ \ {⊥})

4. pushj for each2 ≤ j ≤ n.

First we introduce the auxiliary operations:topi, which
takes a stacks and returns the top(i − 1)-stack of s;
and pusha

1 , which takes a stacks and pushes the sym-
bol a onto the top of the top 1-stack ofs. Precisely let
s = [s1 · · · sl+1] be a stack with1 ≤ i ≤ ord(s), we
define

topi [s1 · · · sl+1]
︸ ︷︷ ︸

s

=

{
sl+1 if i = ord(s)
topi sl+1 if i < ord(s)

2Pacenested trees [3], which are a highly constrained class of acyclic
graphs with “jump edges”, as reflected in the specialized vocabulary of
their logical representation.

3Thus we require anorder-1 stack to be a non-null sequence
[a1 · · · al] of Γ-symbols such that for all1 ≤ i ≤ l, ai = ⊥ iff i = 1.

2

and definepusha
1 [s1 · · · sl+1]

︸ ︷︷ ︸

s

by

{
[s1 · · · sl pusha

1 sl+1] if ord(s) > 1
[s1 · · · sl+1 a] if ord(s) = 1

(1)

We can now explain the four operations in turn. Fori ≥ 1
theorder-i popoperation,popi, takes a stack and returns it
with its top(i − 1)-stack removed. Let1 ≤ i ≤ ord(s) we
definepopi [s1 · · · sl+1]

︸ ︷︷ ︸

s

by

{
[s1 · · · sl] if i = ord(s) andl ≥ 1
[s1 · · · sl popisl+1] if i < ord(s)

(2)

We say that a stacks0 is aprefix of a stacks (of the same
order), writtens0 ≤ s, just if s0 can be obtained froms by
a sequence of (possibly higher-order)pop operations.

Take ann-stacks and leti ≥ 2. To constructpush
a,i
1 s

we first attach a link from a fresh copy ofa to the(i − 1)-
stack that is immediately below the top(i − 1)-stack ofs,
and then push the symbol-with-link onto the top1-stack of
s. As for collapse, suppose thetop1-symbol of s has a
link to (a particular copy of) thek-stacku somewhere ins.
Thencollapse s causess to “collapse” to the prefixs0 of
s such thattopk+1 s0 is that copy ofu. Finally, for j ≥ 2,
the order-i pushoperation,pushj , simply takes a stacks
and duplicates the top(j − 1)-stack ofs, preserving its link
structure.

Example 2.1 Take the 3-stacks = [[[a]] [[][a]]].
We have

push
b,2
1 s = [[[a]] [[][a b]]]

collapse (push
b,2
1 s) = [[[a]] [[]]]

push
c,3
1 (push

b,2
1 s)

︸ ︷︷ ︸

θ

= [[[a]] [[][a b c]]].

Thenpush2 θ andpush3θ are respectively

[[[a]] [[][a b c][a b c]]] and

[[[a]] [[][a b c]] [[][a b c]]].

We havecollapse (push2 θ) = collapse (push3 θ) =
collapse θ = [[[a]]].

One way to define these stack operations formally is
to work with an appropriate numeric representation of the
links. Knapiket al. [17] have shown how this can be done
in the order-2 case. Here we introduce a different encoding
of links that works for all orders. The idea is simple: take
ann-stacks and suppose there is a link from (a particular

occurrence of) a symbola in s to some(j−1)-stack. Lets0

be the unique prefix ofs whosetop1-symbol is that occur-
rence ofa. Then there is a uniquek such thatcollapse s0 =
popk

j s0 wherepopk
j meanspopj ; · · · ; popj

︸ ︷︷ ︸

k

. We shall

represent the occurrence ofa with its link as a(j,k) in s.
Formally, asymbol-with-linkof ann-stack is writtena(j,k),
wherea ∈ Γ, 1 ≤ j ≤ n andk ≥ 1, such that4 if j = 1 then
k = 1. Even though there is no link from⊥, for technical
convenience, we assume ifa = ⊥ thenj = k = 1.

Example 2.2 To illustrate our numeric encoding of links,
we revisit Example 2.1. Take the 3-stacks =
[[[a]] [[][a]]] defined therein. Omitting the super-
script(1, 1) to save writing, we have

push
b,2
1 s = [[[a]] [[][a b(2,1)]]]

push
c,3
1 (push

b,2
1 s)

︸ ︷︷ ︸

θ

= [[[a]] [[][a b(2,1) c(3,1)]]].

Thenpush2 θ andpush3θ are respectively

[[[a]] [[][a b(2,1) c(3,1)][a b(2,2) c(3,1)]]] and
[[[a]] [[][a b(2,1) c(3,1)]] [[][a b(2,1) c(3,2)]]].

Henceforth we shall adopt our numeric representation
of symbols-with-links. We can now give the formal defi-
nitions of collapse, push

b,i
1 andpushj (in terms ofpopj

and pushb
1 as defined in (2) and (1) respectively). Let

1 ≤ i ≤ ord(s) and2 ≤ j ≤ ord(s) we define

collapse s = popf
e s wheretop1 s = a(e,f)

push
b,i
1 s = pushb(i,1)

1 s

and definepushj [s1 · · · sl+1]
︸ ︷︷ ︸

s

by

{

[s1 · · · sl+1 s
〈j〉
l+1] if j = ord(s)

[s1 · · · sl pushjsl+1] if j < ord(s)

whereΘ〈j〉 is the operation of replacing every superscript
(j, kj) (for somekj) occurring in the stackΘ by (j, kj +
1); note that in casej = ord(s), the link structure ofsl+1

is preserved by the copy (as represented bys
〈 j 〉
l+1) that is

pushed on top ofs by pushj .

Definition 2.3 Fix an alphabetΣ. A word-language gen-
erating n-CPDA is a 5-tupleA = 〈Q,Σ,Γ, q0 ∈ Q,∆ ⊆
Q × Σ × Q × Opn 〉 whereΓ is a stack alphabet,Q is a
finite state-set, andq0 is the initial state.Configurationsof
an n-CPDA are pairs of the form(q, s) whereq ∈ Q and

4Thus 1-links are invariant – they always point to the preceding symbol
and no stack operation will change that.

3

s is ann-stack overΓ; we call (q0,⊥n) the initial config-
uration. The transition relation∆ induces a labelled tran-
sition relation over configurations:(q, s)

a
> (q′, θ(s)) if

(q, a, q′, θ) ∈ ∆. We say thata1 · · · al ∈ Σ∗ is acceptedby

A just if we have(q0,⊥n)
a1

> (q1, s1)
a2

> · · ·
al

> (q′,⊥n)
for someq′ ∈ Q. Standardly the languagerecognizedbyA
is the set of words it accepts. (Ann-PDA is just ann-CPDA
in whichcollapse is not a stack operation.)

Example 2.4 [1] We define the languageU (for Urzyczyn)
over the alphabet{ (,), ∗ } as follows. AU -word is com-
posed of 3 segments:

(· · · (· · · (
︸ ︷︷ ︸

A

(· · ·) · · · (· · ·)
︸ ︷︷ ︸

B

∗ · · · ∗
︸ ︷︷ ︸

C

• SegmentA is a prefix of a well-bracketed word that
ends in (, and the opening(is not matched in the
(whole) word.

• SegmentB is a well-bracketed word.
• SegmentC has length equal to the number of(in A,

whether matched or unmatched.
Note that eachU -word has a unique decomposition.
E.g. (() (() (()) ∗ ∗ ∗ and((n)n (∗n ∗ ∗ are inU (their
respectiveB-segments are underlined and empty). The
languageU is not context free (by applying the “uvwxy”
Lemma to the preceding example) but recognizable by a
non-deterministic2-PDA. Surprisingly,U is recognizable
by adeterministic2-CPDA defined (informally) as follows:
- on reading(dopush2 ; push

a,2
1

- on reading) dopop1

- on reading the first∗ do collapse, and on reading any
subsequent∗ dopop2.

This illustrates the power of collapse. We conjecture thatU

is not recognizable by anydeterministic2-PDA (because of
the need to guess the transition from segmentA to B).

Definition 2.5 A tree-generatingn-CPDA is a 5-tuple
〈Σ,Γ, Q, δ, q0 〉 whereΣ is a ranked alphabet (i.e. eachΣ-
symbolf has anarity ar(f) ≥ 0) andδ : Q × Γ −→
(Q × Opn + { (f ; q1, · · · , qar(f)) : f ∈ Σ, qi ∈ Q }) is
the transition function. Ageneralized configuration(ranged
over byγ, γi, etc.) is either a configuration or a triple of the

form (f ; q1, · · · , qar(f); s). We define
`
> , a labelled transi-

tion relation over generalized configuration by clauses, one

for each of the three types5 of labels ` that annotate
`
> ,

namely,I, P andO:

I. (q, s)
(q′,θ)
> (q′, s′) if for some θ ∈ Opn we have

δ(q, top1 s) = (q′, θ) ands′ = θ(s)

P. (q, s)
(f ;q)
> (f ; q1, · · · , qar(f); s) if δ(q, top1 s) =

(f ; q1, · · · , qar(f)), writing q = q1, · · · , qar(f)

5I for internal or hidden Player-move,P for Player-move, andO for
Opponent-move.

O. (f ; q1, · · · , qar(f); s)
(f,i)
> (qi, s) for each1 ≤ i ≤

ar(f).

A computation pathof an n-CPDA A is a finite or

infinite transition sequence of the formρ = γ0

`0
>

γ1

`1
> γ2

`2
> · · · where γ0 is the initial configura-

tion. Every computation path is uniquely determined by
the associatedlabel sequence, namely, `0 `1 `2 · · · . Ob-
serve that such label sequences satisfy the regular expres-
sion (I∗ P O)ω + (I∗ P O)∗ Iω if the sequence is infinite,
and (I∗ P O)∗ I∗(ε + P + P O) if the sequence is finite.
TheΣ-projectionof ρ is the subsequencèr1

`r2
`r3

· · · of
labels of the shape(f, i) (in which casear(f) ≥ 1) or of
the shape(f ; ε) (in which casear(f) = 0, and the label
marks the end of theΣ-projection). We say the CPDAA
generatestheΣ-labelled treet just in case thebranch lan-
guage6 of t coincides with theΣ-projection of computation
paths ofA.

Remark 2.6 Are n-CPDA strictly more expressive thann-
PDA?(It follows from the definition that they are at least as
expressive asn-PDA.) When viewed as generators of word
languages, the answer is no7 for n = 2 but conjectured to
be yes forn > 2. When viewed as tree generators, the
conjecture is yes for alln (this is equivalent to theSafety
Conjecture[16] in view of Sections 4 and 5). When viewed
as generators of directed graphs, the answer is yes for alln

– see Section 6.

3 Recursion schemes

Typesare generated from the base typeo using the ar-
row constructor→. Every typeA can be written uniquely
asA1 → · · · → An → o (arrows associate to the right),
for somen ≥ 0 which is called itsarity; we shall of-
ten write A simply as (A1, · · · , An, o). We define the
order of a type byord(o) = 0 and ord(A → B) =
max(ord(A) + 1, ord(B)). Let Σ be aranked alphabet
i.e. eachΣ-symbolf has an arityar(f) ≥ 0 which deter-
mines its type(o, · · · , o

︸ ︷︷ ︸

ar(f)

, o). Further we shall assume that

each symbolf ∈ Σ is assigned a finite setDir(f) of ar(f)
directions, and we defineDir(Σ) =

⋃

f∈Σ Dir(f). LetD be
a set of directions; aD-tree is just a prefix-closed subset of
D∗, the free monoid ofD. A Σ-labelled treeis a function
t : Dom(t) −→ Σ such thatDom(t) is aDir(Σ)-tree, and

6Thebranch languageof t : Dom(t) −→ Σ consists of infinite words
(f1, d1)(f2, d2) · · · just if for 0 ≤ i < n, we havet(d1 · · · di) = fi+1;
and of finite words(f1, d1) · · · (fn, dn)a just if for 0 ≤ i < n, we have
t(d1 · · · di) = fi+1 andt(d1 · · · dn) = a.

7As language generators, 2-CPDA are equi-expressive withnon-
deterministic2-PDA (see [1]).

4

for every nodeα ∈ Dom(t), theΣ-symbol t(α) has arity
k if and only if α has exactlyk children and the set of its
children is{α i : i ∈ Dir(t(α)) } (i.e. t is a rankedtree).
We shall assume that the ranked alphabetΣ contains a dis-
tinguished nullary symbol⊥ which will be used exclusively
to label “undefined” nodes.

Note. We write [m] as a shorthand for{ 1, · · · ,m }.
Henceforth we fix a ranked alphabetΣ for the rest of the
paper, and setDir(f) = [ar(f)] for eachf ∈ Σ; thus
Dir(Σ) = [ar(Σ)], writing ar(Σ) to meanmax{ ar(f) :
f ∈ Σ }.

For each typeA, we assume an infinite collectionVarA

of variables of typeA, and writeVar to be the union of
VarA as A ranges over types; we writet : A to mean
that the expressiont has typeA. A (deterministic)recur-
sion schemeis a tupleG = 〈Σ,N ,R, S 〉 where Σ is
a ranked alphabet ofterminals; N is a set of typednon-
terminals; S ∈ N is a distinguishedstart symbolof typeo;
R is a finite set of rewrite rules – one for each non-terminal
F : (A1, · · · , An, o) – of the formF ξ1 · · · ξn → e where
eachξi is in VarAi , ande ∈ T o(Σ ∪ N ∪ { ξ1, · · · , ξn })
i.e. e is anapplicative termof type o generated from ele-
ments ofΣ ∪ N ∪ { ξ1, · · · , ξn }. Theorder of a recursion
scheme is the highest order of the types of its non-terminals.

We use recursion schemes as generators ofΣ-labelled
trees. Thevalue treeof (or the treegeneratedby) a re-
cursion schemeG, denoted[[G]], is a possibly infinite ap-
plicative term, but viewed as aΣ-labelled tree,constructed
from the terminals inΣ, that is obtained by unfolding the
rewrite rules ofG ad infinitum, replacing formal by actual
parameters each time, starting from the start symbolS. See
e.g. [16] for a formal definition.

Example 3.1 Let G be the order-2unsafe(in the sense of
[16]) recursion scheme with rewrite rules wherez : o and
ϕ : (o, o):

S → H a

H z → F (g z)
F ϕ → ϕ (ϕ (F h))

g
nn

nn
n

PP
PP

P

a g
nn

nn
n

PP
PP

P

a h

h

...

where the arities of the terminalsg, h, a are 2, 1, 0 re-
spectively. The value tree[[G]] (as shown on the
right) is the Σ-labelled tree defined by the infinite term
g a (g a (h (h (h · · ·)))). The only infinitepath in the tree
is the node-sequenceε · 2 · 22 · 221 · 2211 · · · .

4 From CPDA to recursion schemes

In this section we show that there is an effective trans-
lation from order-n CPDAA to order-n recursion schemes

GA (wheren ≥ 0) such thatA andGA define the same
Σ-labelled tree (Theorem 4.3). We begin by introducing a
method to represent order-n stacks and configurations by
applicative terms constructed from non-terminals of order
n. Our approach simplifies somewhat the (order-2) transla-
tion in [17] and generalizes it to all finite orders.

Fix a tree-generatingn-CPDA A. W.l.o.g. we assume
that the state-set ofA is [m] wherem ≥ 1. Let 0 be the base
type. Inductively, forn ≥ 0, we define the typen + 1 =
nm → n wherenm = n × · · · × n

︸ ︷︷ ︸

m times

. Thusn + 1 = nm →

(n − 1)
m → · · · → 0m → 0. For each stack symbola,

each1 ≤ e ≤ n and each state1 ≤ p ≤ m, we introduce a
non-terminal

Fa,e
p : (n − e)m → (n − 1)m → · · · → 0m → 0

that represents the symbola with a link of order e (in
statep). Note that the type ofFa,e

p is not homogeneous
in the sense of Knapiket al. [16]. In addition, for each
0 ≤ i ≤ n − 1, we introduce a non-terminalΩi : i, and fix
a start symbolS : 0. LetNA be the set of all non-terminals.
We shall use the following shorthand: LetP (i) be a term
with an occurrence ofi; we write 〈P (i) | i〉 as a shorthand
for them-tuple 〈P (1), · · · , P (m) 〉. E.g.〈Fa,e

i | i〉 means
〈Fa,e

1 , · · · ,Fa,e
m 〉 : ((n − e)m → n)m.

A term M : n − j where0 ≤ j ≤ n is said to behead
normal if its head symbol is a non-terminal of the formFa,e

p

i.e. M has the shapeFa,e
p LMn−1 · · ·Mn−j , for somea, e

andp and for some vectors of termsL,Mn−1, · · · ,Mn−j

of the appropriate types; we shall callFa,e
p the head non-

terminal of M . Let 0 ≤ j ≤ n, 1 ≤ p ≤ m and lets be a
j-stack, a pair of the form(p, s) is called aj-configuration
(thus a configuration is ann-configuration). We shall use
head-normal terms of typen − j, which has the general
shapeFa,e

p LMn−1 · · ·Mn−j : n − j, to representj-
configurations; equivalently we usem-tuples of the form

〈Fa,e
i LMn−1 · · ·Mn−j | i〉 : (n − j)m

to representj-stacks. Suppose the configuration(p, s) is
represented byFa,e

p LMn−1 · · ·M0 : 0. The idea is that
for 1 ≤ k ≤ n, we have(p, topk s) is represented by

Fa,e
p LMn−1 · · ·Mn−(k−1) : n − (k − 1),

(p, popk s) is represented byMn−k,p Mn−k−1 · · ·M0 : 0,
and(p, collapse s) is represented byLp Mn−e−1 · · ·M0 :
0. In particular the 0-configuration(p, top1 s) – where the
top1-symbol ofs is a with a link to the(e − 1)-stack that
is represented by them-tupleL : (n− e)m – is represented
by Fa,e

p L : n.
What does it mean for a term to represent a configura-

tion? To give a precise answer, we first consider labelled

5

rewrite rules of the general form, withq ranging over states
andθ overOpn:

Fa,e
p Φ Ψn−1 · · ·Ψ0

(q,θ)
−_ Ξ(q,θ)

where for each0 ≤ j ≤ n − 1, we haveΨj =
Ψj1, · · · ,Ψjm is a vector of variables, with eachΨji : j;
similarly Φ = Φ1, · · · ,Φm is a vector of variables, with
eachΦi : n − e. The shape ofΞ(q,θ) depends on the pair
(q, θ) as shown in Table 1, where2 ≤ j ≤ n and1 ≤ e, k ≤
n: The labelled rewrite rules induce a family of labelled

outermosttransition relations
(q,θ)
−→ ⊆ T 0(NA)×T 0(NA).

Informally we defineM
(q,θ)
−→ M ′ just if M ′ is obtained

from M by replacing thehead (equivalently outermost)
non-terminalF by the right-hand side of the corresponding
rewrite rule in which all formal parameters are in turn re-
placed by their respective actual parameters; since each bi-

nary relation
(q,θ)
−→ is a partial function, we shall writeM

(q,θ)
−→

to meanM ′. We shall write
θ

−→ to mean the set of all tran-
sitions M

(q,θ)
−→ M ′ that preserves the stateq of M . Let

α = θ1 ; · · · ; θl be a (composite) sequence of stack op-
erations. We write

α
−→ ⊆ T 0(NA) × T 0(NA) to be the

sequential composition of the partial function
θ1−→, · · · ,

θl−→
(in this order).

The position of a given stack symbol in ann-stacks

can be described by a sequence of (possibly higher-order)
pop operations that can “collapse” the stack up to the point
where that position becomes thetop1-symbol. For example,
the position ofb in the 2-stack[[a a][a b a][a a][a]]
is pop2

2 ; pop1. In general such sequences are not unique,
though they can be normalized to one in which the respec-
tive orders of thepop operations form a non-increasing se-
quence. We shall call a normalized sequence for a given
stacks an s-probe. We say that a ground-type termM
representsa configuration(p, s) if for every s-probeα, if
thetop1-symbol ofα s is a(j,k), then the head non-terminal

of M
α

−→ is Fa,j
p ; further (M

α
−→)

popk
j

−→ = (M
α

−→)
coll.
−→,

and it represents the configuration(p, collapse(α s)). Note
that F⊥,1

p Ωn−1 Ωn−1 · · ·Ωn−j : n − j represents thej-
configuration(p,⊥n−j). The following Theorem confirms
that our notion of representation is the right one.

Theorem 4.1 (Correctness)LetM be a ground-type term,
(p, s) be a configuration, andθ be a stack operation. Sup-

poseM represents(p, s). If M
θ

−→ M ′ thenM ′ represents
the configuration(p, θ s).

Definition 4.1 Fix a tree-generating order-n CPDA A =
〈Σ,Γ, Q, δ, q0 〉with Q = [m] for somem ≥ 1, andq0 = 1.
The order-n recursion scheme determined byA, written
GA, consists of astart rule:

S −_ F⊥,1
1 Ωn−1 Ωn−1 · · ·Ω0

and two types of rewrite rules (according to the type of their
label), namely,I andP :

I. For each(q, θ) ∈ δ(p, a) and1 ≤ e ≤ n, there is an
I-type rewrite rule

Fa,e
p ΦΨn−1 · · ·Ψ0

(q,θ)
−_ Ξ(q,θ)

whereΞ(q,θ) is as given in Table 1.
P. For each(f ; q1, · · · , qar(f)) ∈ δ(p, a) and1 ≤ e ≤ n,

we have aP -type rule:

Fa,e
p Ξ

(f ;q)
−_ f (Fa,e

q1
Ξ) · · · (Fa,e

qar(f)
Ξ).

whereΞ is a shorthand forΦ Ψn−1 · · ·Ψ0. We write−→⊆
T 0(Σ∪NA)×T 0(Σ∪NA) for the one-step reduction rela-
tion8 between ground-type applicative terms, defined to be
the substitutive and contextual closure of the rewrite rules.

A ground-type termR is called aredex if for some
term R′ we haveR −→ R′ is a substitutiveinstance of a

rewrite rule
`

−_, and the redex is said to beP -typeor I-
typeaccording to the type of̀; by abuse of notation, we

shall writeR
`

−_ R′. A ground-type term is eitherhead
terminal (i.e. of the shapef N1 · · ·Nar(f)) or head non-
terminal (i.e. the head symbol is a non-terminal). A head
non-terminal ground term is either atomic (i.e.S or Ω0) or
it is head normal(i.e. the head symbol is of the formFa,e

p),
in which case, it is anI-type orP -type redex. In order to
prove the Theorem (Equi-Expressivity 1), we define by rule

induction a binary relation
`
⇒ over pairs of the form(E,R)

where` ranges overI-, P - andO-labels (as defined in Def-
inition 2.5),E ranges overactive contexts9, andR over re-
dexes and head-terminal ground-type terms, as follows:

` is I- or P -type R
`

−_ R′

(E,R)
`
⇒ (E,R′)

` = (f, i) is O-type

(E, f N)
`
⇒ (E[f N1 · · ·Ni−1 [-]Ni+1 · · ·Nar(f)], Ni)

Thus, suppose(E,R)
`
⇒ (E′, R′); it follows from def-

inition that if ` is I- or P -type, thenE[R] −→ E[R′]
(i.e. E = E′); otherwise` is O-type andE[R] = E′[R′].
SetE0 = [] andR0 = F⊥,1

1 Ωn−1 Ωn−1 · · ·Ω0 (note that
S −→ E0[R0]). Thanks to Theorem 4.1, we can now prove
the following lemma (from which the Equi-Expressivity
Theorem 1 follows):

8When defining−→ and the tree generated by the recursion scheme

GA, we ignore the labels̀ that annotate the rules
`

−_.
9An active contextis just an ground-type applicative term that contains

a ground-typed hole, into which a term may be inserted.

6

Cases of(q, θ) CorrespondingΞ(q,θ)

(q, push
b,k
1) Fb,k

q Ψn−k 〈F
a,e
i Φ Ψn−1 | i〉Ψn−2 · · · Ψ0

(q, pushj) Fa,e
q Φ Ψn−1 · · ·Ψn−(j−1)〈F

a,e
i Φ Ψn−1 · · ·Ψn−j | i〉Ψn−(j+1) · · ·Ψ0

(q, popk) Ψn−k,q Ψn−k−1 · · ·Ψ0

(q, coll.) Φq Ψn−e−1 · · ·Ψ0

Table 1. Definition of Ξ(q,θ)

Lemma 4.2 There is a 1-1 correspondence between (finite

or infinite) computation path ofA of formγ0

`0
> γ1

`1
>

γ2

`2
> · · · and

`
⇒-reduction sequences(E0, R0)

`0⇒

(E1, R1)
`1⇒ (E2, R2)

`2⇒ · · · such that for everyi ≥ 0,
if Ri is head-normal, thenRi representsγi.

Theorem 4.3 (Equi-Expressivity 1) Let A be a tree-
generating CPDA. The recursion schemeGA (as defined
in Definition 4.1) generates the sameΣ-labelled tree as the
CPDAA.

5 From recursion schemes to CPDA

The previous section shows that order-n recursion
schemes are at least as expressive as order-n CPDA. In
this section we shall sketch a proof of the converse. Hence
CPDA and recursion schemes are equi-expressive. We have
already mentioned related results by Damm and Goerdt and
by Knapik et al. Note that in both these cases, correspon-
dence is established with recursion schemes that are subject
to highly non-trivial syntactic constraints; further the trans-
lation techniques depend on the constraints in a crucial way.
Our translation from recursion schemes to CPDA is novel;
it is based on (innocent) game semantics [14] and, in partic-
ular, the notions oflong transformandtraversalintroduced
in [19].

Let G be an order-n recursion scheme. The long trans-
form of G, written G, is another recursion scheme (of or-
der 0) obtained fromG by a series of syntactic transforma-
tions. First we replace the right-hand sidese of all G-rules
by theirη-long forms10

peq. Then explicit application sym-
bols are introduced: Each ground-type subtermFe1 · · · en,
whereF is a non-terminal, is replaced by @AFe1 · · · en

for a suitable typeA. Finally, to arrive atG, wecurry each
of the transformed rules:Fξ1 · · · ξn → e′ is replaced by
F → λξ1 · · · ξn.e′. By renaming we can ensure that for
each variable nameϕi there is a unique nodeλϕ such that

10Given†s1 · · · sm : (A1, · · · , An, o), we definep† s1 · · · smq =
λϕ1 · · ·ϕn.† ps1q · · · psmqpϕ1q · · · pϕnq.

ϕi occurs inϕ. E.g. the long transform of the scheme from
Example 3.1 is

S = λ.@H (λ.a)
H = λz.@F (λy.g (λ.z) (λ.y))
F = λϕ.ϕ (λ.ϕ (λ.@F (λx.h (λ.x)))).

λ

1��
@

0
tt

yytt 1

II

$$II

λz
1��

λ

1��
@

0
tt

zztt 1
JJ

$$JJ

a

λϕ
1��

λy
1��

ϕ

1��
g

1
ss

yyss 2
II

$$II

λ

1��
λ

1��
λ

1��
ϕ

1��
z y

λ

1��
@

0

>>

1
KK

%%KK

λx
1��

h
1��

λ
1��

x

Given G, we fur-
ther define a labelled
directed graphGr(G),
which will serve as
a blueprint for the
eventual definition of
CPDA(G), the CPDA
corresponding to G.
To construct Gr(G),
we first take the for-
est consisting of all
syntactic trees of the
right-hand sides ofG.
We orient the edges
towards the leaves and
enumerate the outgoing
edges of any node
from 1 to ar(f), where
f is the node label,
except that edges from
nodes labelled by @ are
numbered from0. Let
us writev = Ei(u) iff (u, v) is an edge enumerated byi.
Next, for any non-terminalF , we identify (“glue together”)
the rootrtF of the syntactic tree of the right-hand side of
the rule forF with all nodes labelledF (which were leaves
in the forest). The nodertS , whereS is the start symbol
of G, will be called the root ofGr(G). The graphGr(G)
for the order-2 recursion scheme in Example 3.1 is given
on the right.

We are now ready to describeCPDA(G). The set
of nodes of Gr(G) will become the stack alphabet of
CPDA(G). The initial configuration will be then-stack
push

v0,1
1 ⊥n, wherev0 is the root ofGr(G). For ease of

7

explanation, we define the transition mapδ as a function
that takes a nodeu ∈ Gr(G) to a sequence of stack opera-
tions, by a case analysis of the labellu of u. Whenlu is not
a variable, the action is justpush

v,1
1 , wherev is an appro-

priate successor of the nodeu. More precisely,v is defined
to beE0(u) (if lu = @), E1(u) (if lu = λϕ) or Ei(u) (if
lu ∈ Σ and i is the direction that the automaton is to ex-
plore in the generated tree). Finally, supposelu is a variable
ϕi and its binder is a lambda nodeλϕ which is in turn a
j-child. Then, assumingϕ is of orderl ≥ 1, the action will
beδ(u) which is defined to be

pushn−l+1 ; pop
p+1
1 ; push

Ei(top1),n−l+1
1

if j = 0, and

pushn−l+1 ; pop
p
1 ; collapse ; push

Ei(top1),n−l+1
1

otherwise, wherepush
Ei(top1),k
1 is defined to be the op-

eration s 7→ push
Ei(top1 s),k
1 s. If the variable has or-

der 0 we usepop
p+1
1 ; push

Ei(top1),1
1 if j = 0, and

pop
p
1 ; collapse ; push

Ei(top1),1
1 otherwise. It can be

shown that runs ofCPDA(G) are in 1-1 correspondence
with traversals, as defined in [19]. Since traversals are sim-
ply uncoverings(in the sense of [14]) of paths in the value
tree[[G]] we have the following theorem:

Theorem 5.1 (Equi-Expressivity 2) For any order-n re-
cursion schemeG, the CPDA determined by it,CPDA(G),
generates the value tree[[G]].

Remark 5.1 The proof of the preceding Theorem is effec-
tive. W. Blum [4] has constructed a tool (inF#) called
HOG (Higher-Order Grammar), downloadable from his
homepage, which implements (among other things) the al-
gorithm that transforms an order-n recursion schemeG to
the order-n CPDA,CPDA(G), that generates[[G]].

6 Games over collapsible pushdown graphs

We are interested in solving parity games over collapsi-
ble pushdown graphs i.e. we want to know whether we can
decide, for any position in such a game, ifÉlöıse has a win-
ning strategy from it, and if so, determine its complexity.
An order-n collapsible pushdown system11 (n-CPDS) is
given by a quadrupleA = 〈Γ, Q,∆, q0 〉 whereΓ is the
stack alphabet,Q is a finite state-set,∆ ⊆ Q×Γ×Q×Opn

is the transition relation, andq0 is the initial state.Config-
urationsof an n-CPDS are pairs of the form(q, s) where
q ∈ Q ands is ann-stack overΓ. We define a one-step la-

belled transition relation of the CPDSA, written
`
> where

11We use collapsible pushdownsystem(as opposed toautomaton) when-
ever the device is used to generate a graph.

` ∈ Q × Opn, which is a family of binary relations over

configurations, as follows:(q, s)
(q′,θ)
> (q′, s′) iff we have

(q, top1 s, q′, θ) ∈ ∆ and s′ = θ(s). The initial config-
uration is(q0,⊥n). We can now define theconfiguration
graph of A: vertices are just the (reachable) configura-

tions, and the edge relation is the relation
`
> restricted to

the reachable configurations.

Example 6.1 Take the 2-CPDS12 with state-set{ 0, 1, 2 },
stack alphabet{ a, b,⊥} and transition relation given by

(0,−, 1, t), (1,−, 0, a), (1,−, 2, b), (2, †, 2, 1), (2, †, 0, 0)

where− means any symbol,† means any non-⊥ symbol,
and t, a, b, 0 and 1 are shorthand for the stack operations
push2, push

a,2
1 , push

b,2
1 , collapse andpop1 respectively.

We present its configuration graph (with edges labelled by
stack operations only) in Table 2.

Let G = 〈V,E 〉 denote the configuration graph ofA, let
QE ∪ QA be a partition ofQ and letΩ : Q → C ⊂ N

be a colouring function. Altogether they define a partition
VE∪VA of V whereby a vertex belongs toVE iff its control
state belongs toQE, and a colouring functionΩ : V → C

where a vertex is assigned the colour of its control state. The
structureG = 〈G,VE, VA 〉 is ann-CPDS game graphand
the pairG = 〈 G,Ω 〉 is an-CPDS parity game. A play in
G from the initial vertexv0 = (q0,⊥n) works as follows:
the player who controlsv0 (Élöıse if v0 ∈ VE or Abelard
otherwise) moves a token fromv0 to some neighbourv1

(we assume here thatG has no dead-end), then the player
that controls the token moves it to a neighbourv2 of v1 and
so on. A play is therefore an infinite pathv0v1 · · · and is
won by Élöıse iff lim inf〈Ω(vi) : i ≥ 0 〉 is even. Finally,
v0 is winning for some player if he has a winning strategy
from it. See [21, 24, 23] for more details.

In this section we consider the problem:
(P1) Given ann-CPDS parity game decide if́Elöıse has a

winning strategy from the initial configuration.
The Problem (P1) is closely related to the following:

problems:
(P2) Given ann-CPDS graphG, and a mu-calculus for-

mulaϕ, doesϕ hold at the initial configuration ofG?
(P3) Given an alternating parity tree automaton andn-

CPDS graphG, does it accept the unravelling ofG?
(P4) Given an MSO formulaϕ and ann-CPDS graphG,

doesϕ hold at the root of the unravelling ofG?
From the well-known techniques of [11], it follows that

Problem (P1) is polynomially equivalent to Problems (P2)
and (P3); and Problem (P1) is equivalent to Problem (P4)
– the reduction from (P1) to (P4) is polynomial, but non-
elementary in the other direction.

12This is inspired by an example in [7].

8

0[[]]
t // 1[[][]]

a //

b��

0[[][a]]
t // 1[[][a][a]]

a //

b��

0[[][a][a a]]
t // 1[[][a][a a][a a]] · · ·

b��
2[[][b]]

1��

0

ggOOOOOO

2[[][a][a b]]

1��

0

iiSSSSSSSS

2[[][a][a a][a a b]] · · ·

1��

0

kkWWWWWWWWWWW

2[[][]] 2[[][a][a]]

1��

0

kkVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

2[[][a][a a][a a]] · · ·

1��

0

llYY

2[[][a][]] 2[[][a][a a][a]] · · ·

1��

0

llXXX

2[[][a][a a][]]

Table 2. Configuration graph of a 2-CPDS

A useful fact is that the unravelling of ann-CPDS graph
is actually generated by ann-CPDA (one mainly has to note
that putting labels on the edges makes then-CPDS graph
deterministicand hence its unravelling as desired). Thus an
important consequence of the Equi-Expressivity Theorems
is the following.

Theorem 6.1 Let t be a tree generated by an order-n re-
cursion scheme. Consider the following problems:
(P′

2) Givent and a modal mu-calculus formulaϕ, doesϕ
hold at the root oft?

(P′
3) Given t and an alternating parity tree automaton,

does the automaton acceptt?
(P′

4) Given t and an MSO formulaϕ, doesϕ hold at the
root of t?

Then problem(Pi) is polynomially equivalent to problem
(P′

i) for everyi = 2, 3, 4.

Since the Modal Mu-Calculus Model Checking Problem
for trees generated by (higher-order) recursion schemes is
decidable [19], we obtain the following as an immediate
consequence.

Theorem 6.2 Problems(P1), (P2), (P3) and(P4) are de-
cidable with complexityn-EXPTIME complete.

Another remarkable consequence of the Equi-
Expressivity Theorems is that they give totally new
techniques for model-checking or solving games played
on infinite structures generated by automata. In particular
they lead to new proofs / optimal algorithms for the special
cases that have been considered previously [22, 5, 17].
Conversely, as the Equi-Expressivity Theorems work in
both directions, we note that a solution of Problem(P1)
would give a new proof of the decidability of Problems
(P′

2), (P′
3) and (P′

4), and would give a new approach to
problems on recursion schemes. Actually, the techniques
of [22, 17] can be generalized to solven-CPDS parity
games without reference to [19]. Further they give effective
winning strategies for the winning player (which was

not the case in [17] where the special casen = 2 was
considered).

Theorem 6.3 The problem of solving ann-CPDS parity
game isn-EXPTIME complete and it can be achieved with-
out reference to the decidability result in [19]. Further one
can build ann-CPDA with output that realizes a winning
strategy for the winning player.

Remark 6.2 This result can easily be generalized to the
case where the game has an arbitraryω-regular winning
condition, and is played on theε-closure of the configura-
tion graph of ann-CPDS graph. Consequently parity games
on Caucal graphs [6, 5] are a special case of this problem.

The Caucal graphs have decidable MSO theories [6]. Do
the configuration graphs of CPDS also have decidable MSO
theories?

Theorem 6.4 (Undecidability) MSO theories of configu-
ration graphs of CPDS are undecidable. Hence the class
of ε-closure of configuration graphs of CPDS strictly con-
tains the Caucal graphs.

•
A //

B��

•
A //

B��

•
A //

B��

· · ·

•
A // •

A //

B��

•
A //

B��

· · ·

•
A // •

A //

B��

· · ·

•
A // · · ·

For a proof, recall that MSO in-
terpretation preserves MSO decid-
ability. Now consider the following
MSO interpretationI of the config-
uration graph of the 2-CPDS in Ex-
ample 6.1:

IA(x, y) = x
C
−→ y ∧ x

R
−→ y

IB(x, y) = x
1

−→ y

with C = 1
∗
b a t b 1∗ andR = 0 t a 0 ∨ 1 0 t a 0 1. Note

that for theA-edges, the constraintC requires that the tar-
get vertex should be in the next column to the right, while
R specifies the correct row. Observe thatI ’s image is the
“infinite half-grid” which has an undecidable MSO theory.

9

7 Conclusions and further directions

In this paper, we introducecollapsible pushdown au-
tomataand prove that they are equi-expressive with (gen-
eral) recursion schemes for generating trees. This is the
first automata-theoretic characterization of higher-order re-
cursions schemes. We think that the equi-expressivity re-
sult is significant because it acts as a bridge, enabling inter-
translation between model-checking problems about trees
generated by recursion schemes on the one hand, and solv-
ability of games on collapsible pushdown graphs on the
other. We show (Theorem 6.4) that order-n CPDS are
strictly more expressive than order-n pushdown systems for
generating graphs.

There are a number offurther directions :
(i) The most pressing open problem is whether order-n

CPDA are equi-expressive with order-n PDA for generating
trees(see Remark 2.6). The conjecture is that the former
are strictly more expressive. Specifically theUrzyczyn tree
is definable by a 2-CPDA [1] but we conjecture that it is not
definable by ann-PDA for anyn ≥ 2.

(ii) Is it possible to give a finite description of the set of
winning positions of ann-CPDS parity game? Overgen-
eralizedconfiguration graphs (whose vertices areall con-
figurations, not just the reachable), we believe that the set
of winning positions of ann-CPDS parity game is repre-
sentable by a finite automaton that reads a stack with links
from bottom to top, and that, when processing a link, has
access to the state it was in after reading the stack pointed
to.

(iii) Is there aǹa la Caucal definition for theε-closure of
CPDS graphs? As trees generated byn-CPDA are exactly
those obtained by unravelling ann-CPDS graph, is there a
class of transformationsT from trees to graphs such that
every (n + 1)-CPDS graph is obtained by applying aT -
transformation to some tree generated by ann-CPDA? Note
that aT -transformation may in general not preserve MSO
decidability, but should preserve mu-calculus decidability
of trees generated byn-CPDA.

(iv) The algorithm that transforms recursion schemes to
CPDA (briefly sketched in Section 5) uses ideas in game
semantics. It would be an interesting (and challenging) to
obtain a translation based on first principles.

References

[1] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not
a restriction at level 2 for string languages. InProc. FOS-
SACS’05, LNCS 3411, 2005, pp. 490-501.

[2] A. Aho. Indexed grammars - an extension of context-free
grammars. J. ACM 15:647-671, 1968.

[3] R. Alur and P. Madhusudan. Languages of nested trees. In
Proc. CAV’06, 2006.

[4] W. Blum. A tool for constructing structures gener-
ated by higher-order recursion schemes and collapsible
pushdown automata.web.comlab.ox.ac.uk/oucl/
work/william.blum/, 2007.

[5] T. Cachat. Higher order pushdown automata, the Caucal
hierarchy of graphs and parity games. InProc. ICALP’03,
LNCS 2719, pp. 556-569, 2003.

[6] D. Caucal. On infinite terms having a decidable monadic
theory. InProc. MFCS’02, LNCS 2420, pp. 165-176, 2002.

[7] D. Caucal and S. Hassen. Higher-order recursive schemes.
Private communication, 28 pages, July 2006.

[8] B. Courcelle. The monadic second-order logic of graphs IX:
machines and their behaviours.TCS151:125-162, 1995.

[9] W. Damm. The IO- and OI-hierarchy.TCS20:95-207, 1982.

[10] W. Damm and A. Goerdt. An automata-theoretical character-
ization of the OI-hierarchy.Info. & Control 71:1-32, 1986.

[11] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus
and determinacy. InProc. FOCS’91, pp. 368-377, 1991.

[12] J. Engelfriet. Interated stack automata and complexity
classes.Info. & Comp.95:21-75, 1991.

[13] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre.
Collapsible pushdown automata and recursion schemes.
2007. 56 pages, downloadable from
users.comlab.ox.ac.uk/luke.ong/
publications/cpda-long.pdf.

[14] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for
PCF: I. Models, observables and the full abstraction prob-
lem, II. Dialogue games and innocent strategies, III. A fully
abstract and universal game model.Info. & Comp. 163:285-
408, 2000.

[15] T. Knapik, D. Niwiński, and P. Urzyczyn. Deciding monadic
theories of hyperalgebraic trees. InProc. TLCA’01, LNCS
2044, pp. 253-267, 2001.

[16] T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order
pushdown trees are easy. InProc. FOSSACS’02, LNCS
2303, pp. 205-222, 2002.

[17] T. Knapik, D. Niwiński, P. Urzyczyn, and I. Walukiewicz.
Unsafe grammars and panic automata. InProc. ICALP’05,
LNCS 3580, pp. 1450-1461, 2005.

[18] A. N. Maslov. Multilevel stack automata.Problems of Infor-
mation Transmission, 12:38-43, 1976.

[19] C.-H. L. Ong. On model-checking trees generated by higher-
order recursion schemes. InProc. LICS’06, pp. 81-90, 2006.

[20] M. O. Rabin. Decidability of second-order theories and au-
tomata on infinite trees.Trans. AMS141:1-35, 1969.

[21] W. Thomas. On the synthesis of strategies in infinite games.
In Proc. STACS’95, LNCS 900, pp. 1-13, 1995.

[22] I. Walukiewicz. Pushdown processes: games and model-
checking.Info. & Comp.157:234-263, 2001.

[23] I. Walukiewicz. A landscape with games in the backgroung.
In Proc. LICS’04, pp. 356-366, 2004.

[24] W. Zielonka. Infinite games on finitely coloured graphs with
applications to automata on infinite trees.TCS200(1-2):135-
183, 1998.

10

