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Abstract other contribution of our work is a self-contained proof of
the same solvability result by generalizistandardtech-

Collapsible pushdown automat@PDA) are a new kind  niques in the field. By appealing to our equi-expressivity
of higher-order pushdown automata in which every sym- result, we obtain a new proof of Ong’s result.
bol in the stack has a link to a stack situated somewhere In contrast to higher-order pushdown graphs, we show
below it. In addition to the higher-order stack operations that the monadic second-order theories of the configuration
push,; andpop,, CPDA have an important operation called graphs of CPDA areindecidable It follows that — as gen-
collapse, whose effect is to “collapse” a stagko the prefix erators of graphs — CPDA are strictly more expressive than
as indicated by the link from the topmost symbolsofOur higher-order pushdown automata.
first result is that CPDA are equi-expressive wigicursion
schemess generators of (possibly infinite) ranked trees. In
one direction, we give a simple algorithm that transforms 1  |ntroduction
an ordern CPDA to an orderz recursion scheme that gen-

erates the same tree, uniformly for all> 0. In the other Higher-order pushdown automa@DA) were first in-
direction, using ideas from game semantics, we give an ef-yroduced by Maslov [18] as accepting devices for word lan-
fective transformation of ordet-recursion schemes (not as- guages. Asn varies over the natural numbers, the lan-
;umed to bdnomogeneously typednd hence not necessar- guages accepted by orderpushdown automata form an
ily safg to ordern. CPDA that computéraversalsover an  infinjte hierarchy. Irop. cit. Maslov gave an equivalent def-
abstract syntax graph of the scheme, and hence paths in thgition of the hierarchy in terms ofigher-order indexed
tree generated by the scheme. Our equi-expressivity resulyrammars Yet another characterization of Maslov’s hier-
is the first automata-theoretic characterization of higher archy was given by Damm and Goerdt [9, 10]: they studied
order recursion schemes. Thus CPDA are also a charachigher-order recursion schemekat satisfy the constraint
terization of thesimply-typed lambda calculus with recur-  of derived typesand showed that the word languages gen-
sion (generated from uninterpreted 1st-order symbols) anderated by order: such schemes coincide with those ac-
of (pure)innocent strategies cepted by order: PDA. Maslov’s hierarchy offers an attrac-
An important consequence of the equi-expressivity re- tiye classification of the semi-decidable languages: srder
sultis that it allows us to reduce decision problems on treesg 1 and 2 are respectively the regular, context-free and in-
generated by recursion schemes to equivalent problems ojjexed languages [2], though little is known about languages
CPDA andvice versa Thus we show, as a consequence of a gt higher orders (see e.g. [12]).
recent result by Ong (modal mu-calculus model-checking  Higher-order PDA as a generating device for (possibly
of trees generated by recursion schemes-BEXPTIME jnfinite) labelled ranked trees was first studied by Knapik,
complete), that the problem of solving parity games over Njwinski and Urzyczyn [16]. As in the case of word lan-
the configuration graphs of orderCPDA isn-EXPTIME  gyages, an infinite hierarchy of trees can be defined, accord-
complete, subsuming several well-known results about theing to the order of the generating PDA; lower orders of the
solvability of games over higher-order pushdown graphs by hjerarchy are well-known classes of trees: orders 0, 1 and 2

(respectively) Walukiewicz, Cachat, and Knapkal. An-  gre respectively the regular [20], algebraic [8] and hypera
*We direct readers to the (downloadable) long version [18}isfpaper gebraic tre_es [15]. Knapikt al. conS|de_red another methOd_
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recursion schemésThe results of Damm and Goerdt, and parity games on collapsible pushdown graphs by generaliz-
of Knapik et al. may be viewed as attempts to answer the ing standardtechniques in the field. By appealing to our
guestion; they have both had to impose syntactic cons$raint Equi-Expressivity Theorems, we obtain new proofs for the
(of derived types and safety respectively, which seem some-decidability (and optimal complexity) of model-checking
what unnatural) on recursion schemes in order to establishproblems of trees generated by recursion schemes as stud-
their results. An exact correspondence with (general)rrecu ied in [19].

sion schemes has never been proved before. In contrast to higher-order pushdown graphs (which do
A partial answer was recently obtained by Knapik, have decidable MSO theories [6]), we show that the MSO

Niwinski, Urzyczyn and Walukiewicz. In an ICALP'05 theories of collapsible pushdown graphs are undecidable.

paper [17], they proved that order-2 homogeneously-typedHence collapsible pushdown graphs are, to our knowledge,

(but not necessarily safe) recursion schemes are equithe first example of a genefand natural class of finitely-

expressive with a variant class of order-2 pushdown au-presentable graphs that have undecidable MSO theories

tomata callegbanic automataln this paper, we give a com-  while enjoying decidable modal mu-calculus theories.

plete answer to the question. We introduce a new kind of

higher-order pushdown automata (which generalpesh- ]

down automata with link§l], or equivalently panic au- 2 Collapsible pushdown automata (CPDA)

tomata, to all finite orders), callembllapsible pushdown au-

tomata(CPDA), in which every symbol in the stack has a

link to a (necessarily lower-ordered) stack situated some-

where below it. In addition to the higher-order stack oper-

ationspush,; andpop,, CPDA have an important operation

called collapse, whose effect is to “collapse” a stasgkto

the prefix as indicated by the link from thep,-symbol of

s. The main result (Theorems 4.3 and 5.1) of this paper is

that for everyn > 0, ordern recursion schemes and order-

CPDA are equi-expressive as generators of ranked trees. the bottom-of-stacksymbol | cannot be popped from or

Our equi-expressivity result has a num_bgr of important pushed onto a stack. We defing, the emptyk-stack as:
consequences. It allows us to reduce decision problems on

X i 1o =Landlgy; =[ Lg] - When displaying:-stacks in
trees generated by recursion schemes to equivalent pmbéxamples, we shall omit the bottom-of-stack symbols and
lems on CPDA andiice versa Chief among them is the

, 1-links (i.e. links to stack symbols)\to avoid clutter (Mg
Modal Mu-Calculus Model-Checking Problem over ranked e.g.[[1[ab]] instead of [ L] [ L&]].

trees (equivalently Alternating Parity Tree Automaton Ac-
ceptance Problem, or equivalently Monadic Second-Order
(MSO) Model-Checking Problem). We observe that all
these problems reduce to the problem of solving a parity
game played on eollapsible pushdown grapite. the con-
figuration graph of a corresponding collapsible pushdown
system (CPDS). Recently one of us has shown [19] that the
above decision problems for trees generated by ouder
cursion schemes are EXPTIME complete. Thanks to our
Equi-Expressivity Theorems, it follows that the same (
EXPTIME complete) decidability result holds for the corre-
sponding CPDS Problem, which subsumes many known re-
sults [22, 5, 17]. Moreover our approach yields techniques
that are significantly different from standard methods for
solving model-checking problems on infinite graphs gener- s it i = ord(s)
ated by finite machines. top; [ s1---s101] = { ti;“l_s it < ord(s)
This transfer of techniques goes both ways. Indeed an- T Pi i1
other contribution of our work is a self-contained (and with
out recourse to game semantics) proof of the solvability of ~ 2pacenested trees 3], which are a highly constrained class atliacy
graphs with “jump edges”, as reflected in the specialized waleay of

Fix a stack alphabel' and a distinguishetbottom-of-
stack symbollL € T'. An order-0O stackis just a stack
symbol. Anorder{(n + 1) stacks is a non-null sequence
(written[ s; - - - s;] ) of ordern stacks such that every non-
1 T"-symbola that occurs irs has a link to a stack (of order
k wherek < n) situated below it ins; we call the link
a (k 4+ 1)-link. The order of a stack is written ord(s);
and we shall abbreviate orderstack ton-stack. As usual,

The setOp,, of ordern stack operationgonsists of the
following four types of operations:
1. pop, foreachl <k <n
2. collapse
3. push®* foreachl < k <nandeach € (I'\ { L})
4. push; foreach2 < j <n.

First we introduce the auxiliary operationsip,, which
takes a stacks and returns the tog: — 1)-stack of s;
and push{, which takes a stack and pushes the sym-
bol a onto the top of the top 1-stack af Precisely let
s = [s1---s141] be astack withl < i < ord(s), we
define

IHigher-order recursion schemes are essentially simplyety@ebda their logical representation.
calculus with general recursion and uninterpreted firdeofunction sym- SThus we require anorder-1 stackto be a non-null sequence
bols. [a1---a;] of I-symbols such thatforall <: <l,a; = Liff i = 1.



and defineoushy [ s1---s141] by occurrence of) a symbalin s to some(j — 1)-stack. Letsy
- < be the unique prefix of whosetop,-symbol is that occur-
rence ofa. Then there is a uniguesuch thatollapse so =

S

[ 5151 pushy s;41] if ord(s) > 1 (1) pop? so where pop? meanspop; ; - - - ; pop;. We shall
[s1- 81414 if ord(s) =1 _k,_/
We can now explain the four operations in turn. For 1 represent the occurrence efwith its link asaU*) in s.

the order-i pop operationpop;, takes a stack and returns it - Formally, asymbol-with-linkof ann-stack is writtern %),

with its top (i — 1)-stack removed. Let < i < ord(s)we  Wherea € T',1 <j <nandk > 1, such thattif j = Lthen
definepop, [ s1--- si1] by k = 1. Even though there is no link from, for technical

convenience, we assumeiif= L thenj =k = 1.
S

[51--s1] if i = ord(s) andl > 1 Exampl_e _2.2 To illustrate our numeric encoding of links,

{ (2 we revisit Example 2.1. Take the 3-stack =
[[[al]l [[1[ @]]] defined therein. Omitting the super-

We say that a stack, is aprefix of a stacks (of the same  script(1, 1) to save writing, we have

order), writtensy < s, just if sg can be obtained from by bo

a sequence of (possibly higher-ordgrp operations. pushy”s=[[[al] [[1[ ab®Y]]]

Take ann-stacks and leti > 2. To construcpush"’ s push$®(push??s) =[[[ a]] [[1[ ab®V 3D]]].
we first attach a link from a fresh copy ofto the (i — 1)-
stack that is immediately below the tgp— 1)-stack ofs,
and then push the symbol-with-link onto the tbjstack of ~ Thenpush, 6 andpushs6 are respectively
s. As for collapse, suppose theop,-symbol of s has a
link to (a particular copy of) thé-stacku somewhere ir. { { [ ]a} ][ {

a

Then collapse s causes to “collapse” to the prefixs of [
Henceforth we shall adopt our numeric representation

s such thattop,, , | so is that copy ofu. Finally, forj > 2,
the order< pushoperation,push;, simply takes a stack L , )

* P P pushy i of symbols-with-links. We can now give the formal defi-
nitions of collapse, push?’Z andpush; (in terms ofpop;

[ s1---s1pop;Sit+1] if i < ord(s)

0

[1[ ab@D B[ abZ2 B3D]]] and
1T ab@ 0] [[1] ab®D c®2]]].

and duplicates the tofy — 1)-stack ofs, preserving its link

structure.
and pushl{ as defined in (2) and (1) respectively). Let
Example 2.1 Take the 3-stack = [[[ a] ] [[]1[ a] 1] . 1 <i<ord(s)and2 < j < ord(s) we define
We have ; )
collapses = popl s wheretop, s =a'®
push?®s = [[[al] [[1T ab]]] b, 1
b,2 pushy" s = push] s
collapse (pushy”s) = [[[al] [[1]]
d definepush,; [ s1---s;41] by
. TS an j +
pushy®(pushi?s) = [[[ a1 [[1T abe]]]. —
0 ,
: [ 518141 81@1] if j = ord(s)
Thenpush, 8 andpushs6 are respectively { [s1--- s push;sia] if j < ord(s)
[[[al]l[[1] abd][ abc]]] and where©%) is the operation of replacing every superscript

(4, kj) (for somek;) occurring in the stacl® by (j,k; +
— N 1); note that in casg = ord(s), the link structure o,
[[0all [T abe]] [T11 abe]]]. is preserved by the copy (as representeds};&) that is

We havecollapse (pushy 0) = collapse (pushs 0) = pushed on top o by push;.

collapse® =[[[ a]]1]. Definition 2.3 Fix an alphabe®. A word-language gen-

erating n-CPDA s a 5-tupled = (Q,%,T,q0 € Q,A C
Q x ¥ x Q x Op, ) whereT" is a stack alphabet) is a
finite state-set, andg, is the initial state.Configurationsof
ann-CPDA are pairs of the forniq, s) whereq € @ and

One way to define these stack operations formally is
to work with an appropriate numeric representation of the
links. Knapiket al.[17] have shown how this can be done
in the order-2 case. Here we introduce a different encoding
of links that works for all orders. The idea is simple: take  41nys 1-jinks are invariant — they always point to the prenggiymbol
ann-stacks and suppose there is a link from (a particular and no stack operation will change that.




s is ann-stack ovel’; we call (g0, L) theinitial config-
uration. The transition relatiom\ inducesaa labelled tran-
sition relation over configurations(q,s) > (¢, 0(s)) if
(¢,a,q',0) € A. We say thati; - - - a; € X* is acceptedhy
Ajustif we have(qo, L) = (q1.51) > - > (¢, L)
for someq’ € (). Standardly the languagecognizedoy A
is the set of words it accepts. (AnRPDA s just ann-CPDA
in which collapse is nota stack operation.)

Example 2.4 [1] We define the languagdé (for Urzyczyn)
over the alphabef (,), * } as follows. AU-word is com-
posed of 3 segments:

e Segmentd is a prefix of a well-bracketed word that
ends in(, and the openind is not matched in the
(whole) word.

e SegmentB is a well-bracketed word.

e Segment” has length equal to the number (oin A,
whether matched or unmatched.

Note that eachU-word has a unique decomposition.
E.g.(O)(O)(())* = xand((")" ( ™ == areinU (their

(f+9)

O. (fiq1,* »qar(p);s) > (ai,s) foreachl <i <
ar(f).

A computation pathof an n-CPDA A is a finite or
P .. N
infinite transition sequence of the form = ~, >

0 0
7 > 74 > --- where~, is the initial configura-
tion. Every computation path is uniquely determined by
the associatedhbel sequencenamely, o1 ls---. Ob-

serve that such label sequences satisfy the regular expres-
sion (I* PO)¥ + (I* P O)* I* if the sequence is infinite,

and (I* PO)* I*(¢ + P + P O) if the sequence is finite.
The X-projectionof p is the subsequendg, ¢,, ¢, --- of
labels of the shapéf,:) (in which casear(f) > 1) or of

the shapgf; <) (in which casear(f) = 0, and the label
marks the end of th&-projection). We say the CPDA
generateghe Y-labelled tree just in case théranch lan-
guagé of ¢ coincides with thé-projection of computation
paths ofA.

Remark 2.6 Are n-CPDA strictly more expressive than
PDAZ? (It follows from the definition that they are at least as
expressive ag-PDA.) When viewed as generators of word

respective B-segments are underlined and empty). The languages, the answer is™for n = 2 but conjectured to

languagel is not context free (by applying theubwzy”

be yes forn > 2. When viewed as tree generators, the

Lemma to the preceding example) but recognizable by aconjecture is yes for alh (this is equivalent to th&afety

non-deterministi-PDA. Surprisingly,U is recognizable

by adeterministi2-CPDA defined (informally) as follows:

- on reading do push, ;push‘f"2

- on reading do pop,

- on reading the firsk do collapse, and on reading any
subsequent do pop,.

This illustrates the power of collapse. We conjecture that

is notrecognizable by angieterministi2-PDA (because of

the need to guess the transition from segmétd B).

Definition 2.5 A tree-generatingn-CPDA is a 5-tuple
(%,T,Q,6,q ) whereX is a ranked alphabet (i.e. eakEh
symbol f has anarity ar(f) > 0) andé : Q@ x I' —
(Q X OPn + {(f7Q17 aQar(f)) : f €X,q € Q}) is
the transition function. Ayeneralized configuratiofranged
over by~, ~;, etc.) is either a configuration or a triple of the

L .
form (f;q1,- -, qar(s); 8)- We define>, a labelled transi-
tion relation over generalized configuration by clauses, on

for each of the three typesf labels ¢ that annotateﬁ ,
namely,/, P andO:
]
l. (q,s) (q>) (¢',s") if for somed € Op, we have
d(q, topy s) = (¢',0) ands’ = 0(s)
(59 .
P. (qa S) > (f7QI7 ,.q.ar(f);s) if 5((]7 topl S) -
(f7 qi,- - 7Qar(f))1 writingq = ¢, - - - y Qar(f)

5T for internal or hidden Player-move for Player-move, and for
Opponent-move.

Conjecturg16] in view of Sections 4 and 5). When viewed
as generators of directed graphs, the answer is yes far all
— see Section 6.

3 Recursion schemes

Typesare generated from the base typesing the ar-
row constructor—. Every typeA can be written uniquely
asA; — --- — A, — o (arrows associate to the right),
for somen > 0 which is called itsarity; we shall of-
ten write A simply as(A44,---,A,,0). We define the
order of a type byord(o) = 0 andord(A — B) =
max(ord(A) + 1, ord(B)). LetX be aranked alphabet
i.e. eachX-symbol f has an arityar(f) > 0 which deter-
mines its type(o, - - - ,0,0). Further we shall assume that

N——

ar(f)
each symbolf € ¥ is assigned a finite s&ir(f) of ar(f)

directions and we defin®ir(X) = .y, Dir(f). LetD be
a set of directions; @&-treeis just a prefix-closed subset of
D*, the free monoid oD. A Y-labelled treeis a function
t : Dom(t) — ¥ such thatDom(t) is aDir(X)-tree, and

6Thebranch languageof ¢ : Dom(t) — X consists of infinite words
(f1,d1)(f2,dz2) - justiffor 0 < i < n,we havet(d; ---d;) = fit1;
and of finite word(f1,d1) - - - (fn,dn)ajustif for 0 < ¢ < n, we have
t(dl s di) = fit1 andt(d1 s dn) = a.

7As language generators, 2-CPDA are equi-expressive with-
deterministic2-PDA (see [1]).



for every noden € Dom(t), the X-symbol¢(«) has arity
k if and only if o has exactlyk children and the set of its
children is{«i : i € Dir(t(a)) } (i-e. t is arankedtree).
We shall assume that the ranked alphabebntains a dis-
tinguished nullary symbal which will be used exclusively
to label “undefined” nodes.

Note We write [m] as a shorthand fof 1,--- ,m }.
Henceforth we fix a ranked alphabgtfor the rest of the
paper, and setDir(f) [ar(f)] for eachf € X; thus
Dir(¥) = [ar(X)], writing ar(X) to meanmax{ ar(f) :
fex}

For each typed, we assume an infinite collectiovizr*
of variables of typeA, and write Var to be the union of
Var® as A ranges over types; we write : A to mean
that the expressioh has typeA. A (deterministic)recur-
sion schemeis a tupleG = (X, N,R,S) whereX is
a ranked alphabet derminals A is a set of typechon-
terminals S € N is a distinguishedtart symbobf typeo;
R is a finite set of rewrite rules — one for each non-terminal
F: (A, -+ ,A,,0)—oftheformF¢& --- &, — ewhere
each¢; isin Var®, ande € T (SUN U {&,--- .6, )
i.e. e is anapplicative termof type o generated from ele-
ments of S UN U {&1,---, &, +. Theorder of a recursion

G 4 (wheren > 0) such that4 and G 4 define the same
Y-labelled tree (Theorem 4.3). We begin by introducing a
method to represent orderstacks and configurations by
applicative terms constructed from non-terminals of order
n. Our approach simplifies somewhat the (order-2) transla-
tion in [17] and generalizes it to all finite orders.

Fix a tree-generating-CPDA A. W.l.o.g. we assume
that the state-set od is [m] wherem > 1. Let O be the base
type. Inductively, forn > 0, we define the type + 1 =
n™ — nwheren™ =nx---xn. Thusn +1 =n" —

H—/
m times
(n—1)" — .-+ — 0™ — 0. For each stack symbal,
eachl < e < n and each state < p < m, we introduce a
non-terminal

(n—

that represents the symbal with a link of ordere (in
statep). Note that the type ofF)© is not homogeneous
in the sense of Knapilet al. [16]. In addition, for each
0 <i < n -1, weintroduce a non-termin&l; : 7, and fix
a start symbob : 0. Let N4 be the set of all non-terminals.
We shall use the following shorthand: LE{7) be a term

e)'rn N (n _ 1>m e Om — O

ae
Fp

scheme is the highest order of the types of its non-terminals With an occurrence of; we write (P(i) | 7) as a shorthand

We use recursion schemes as generators-tg#belled
trees. Thevalue treeof (or the treegeneratedby) a re-
cursion schemé&, denoted G |, is a possibly infinite ap-
plicative term, but viewed as¥8-labelled treeconstructed
from the terminals inZ, that is obtained by unfolding the
rewrite rules ofG ad infinitum replacing formal by actual
parameters each time, starting from the start synsh&ee
e.g. [16] for a formal definition.

Example 3.1 Let G be the order-2insafe(in the sense of
[16]) recursion scheme with rewrite rules where o and

¢ : (0,0):

a/g\
S — Ha _
Hz — F(gz2) “

Fo — ¢(p(Fh)

g
h

where the arities of the terminalg h,a are 2,1,0 re-
spectively.  The value tred G] (as shown on the
right) is the X-labelled tree defined by the infinite term
ga(ga(h(h(h---)))). The only infinitepathin the tree
is the node-sequenee 2 - 22 - 221 - 2211 - - -.

4 From CPDA to recursion schemes

In this section we show that there is an effective trans-
lation from orderr CPDA A to ordern recursion schemes

for the m-tuple ( P(1),--- , P(m)). E.g.(F;"|i) means
ff’ev"' 7‘7:grie> : ((n_e)m - n)m'

Aterm M : n — j where0 < j < nis said to behead
normalif its head symbol is a non-terminal of the fodfg ¢
i.e. M has the shap&:-¢ L M,,_; - -- M, _;, for somea, e
andp and for some vectors of termis M,,_1, - - - s M
of the appropriate types; we shall caf-* the head non-
terminal of M. Let0 < j <n,1 < p < mand lets be a
j-stack, a pair of the forn(p, s) is called aj-configuration
(thus a configuration is an-configuration). We shall use
head-normal terms of type — j, which has the general
shape]—‘gﬁan,l s My n — j, to represeny-
configurations; equivalently we use-tuples of the form

=gy

to representj-stacks. Suppose the configuratign s) is
represented by-";jve LM,_1---My : 0. The idea is that
for 1 < k <n, we have(p, top,, s) is represented by

(Fre T3 i)

f;’ean_l cee Mnf(kfl) tn— (k‘ - 1),

(p, popy, s) is represented b/, , My, ——1--- My : 0,
and (p, collapse s) is represented by, M,, .1 --- My :
0. In particular the 0-configuratiofp, top, s) — where the
top,-symbol of s is a with a link to the(e — 1)-stack that
is represented by the-tuple L : (n — e)™ — is represented
by Fo¢ L : n.
What does it mean for a term to represent a configura-
tion? To give a precise answer, we first consider labelled



rewrite rules of the general form, withranging over states  and two types of rewrite rules (according to the type of their

andd over Op,,: label), namely] and P:
(@.6) I. For each(q,f0) € d(p,a) andl < e < n, there is an
Fpe®dW, 1 ¥, —  Eg I-type rewrite rule
where for each0 < j < n — 1, we haveV; = = (a0 _
Uity o Wi is a vector of variables, with each;; : j; Fpt@Wp1-- Wy — Eg)
similarly & = ®,,---,®,, is a vector of variables, with

whereZ, 4 is as given in Table 1.
P. For eacr(f;Qla o 7qa7“(f)) € 6(p7 Cl) and1 <e<n,
we have aP-type rule:

each®; : n — e. The shape oE, 4y depends on the pair

(¢,0) as shown in Table 1, whege< j <nandl < e, k <

n: The labelled rewrite rules induce a family of labelled

outermostransition relations™% ¢ TO(\4) x TO(N.4). Foem UD FFOCE) - (Fre 5
E — TE) . =)

Informally we defineM 2% a7 just if M’ is obtained “ dorth)

from M by replacing thehead (equivalently outermost) | hare= is a shorthand fob U, ;- -- Uy We Write— C

non-terminalF’ by the right-hand side of the corresponding TO(SUNL) x TO(SUN4) for the one-step reduction rela-

rewrite rule in which all formal parameters are in turn re- ;8 petween ground-type applicative terms, defined to be

placed by th(eig)respective actual parameters; sinc? e@?Ch bithe substitutive and contextual closure of the rewritesule
nary relation>= is a partial function, we shall writ&/ ==

to mean)’. We shall write—- to mean the set of all tran- A ground-type termR is called aredexif for some

p - o

sitions M % 017 that preserves the stateof M. Let term.R we h? velt — It'ls asfubstftutwemstance of a

o = 6,36, be a (composite) sequence of stack op- rewrite rule_—«>, and the redex is said to Ué—type_or 1-

erations. We write®> C T°(N,4) x T°(N4) to be the type accordmgzto the type of; by abuse of notation, we

sequential composition of the partial functiéhs, - - - , 2 shall write R — R’. A ground-type term is eithefmead

(in this order). terminal (i.e. of the shapef N; --- Ng.(5)) or head non-
The position of a given stack symbol in anstack s terminal (i.e. the head symbol is a non-terminal). A head

can be described by a sequence of (possibly higher-orderyion-terminal ground term is either atomic (iseor §2) or
pop operations that can “collapse” the stack up to the point itis head normali.e. the head symbol is of the forsj <),
where that position becomes the, -symbol. For example,  in which case, it is ad-type or P-type redex. In order to
the position ofb in the 2-stac [ aa] [aba] [ ada] [ ] ] prove the Theorem (Equi-Expressivity 1), we define by rule
is pop3 5 pop;. In general such sequences are not unique, induction a binary relatios’ over pairs of the forn{ £, R)
though they can be normalized to one in which the respec-where/ ranges ovel-, P- andO-labels (as defined in Def-
tive orders of thepop operations form a non-increasing se- inition 2.5), E ranges oveactive contexfs and R over re-
quence. We shall call a normalized sequence for a givendexes and head-terminal ground-type terms, as follows:
stacks an s-probe We say that a ground-type terid

representsa configuration(p, s) if for every s-probeq, if tisI-or Ptype R _’D R
the top,-symbol ofa s is a9"¥), then the head non-terminal J
a . . o POPE a - coll (E7 R) = (Ea R/)
of M— is F7; further (M —)— = (M—)—,
and it represents the configuratign collapse(a s)). Note L= (f,i)is O-type

that 751 Q1 Q1 - Q,—; : n — j represents thg-

configuration(p, L,,—;). The following Theorem confirms
that our notion of representation is the right one. Thus, supposéE, R) £ (E',R'); it follows from def-
Theorem 4.1 (Correctness)Let M be a ground-type term, ~ inition that if ¢ is I- or P-type, thenE[R] — E[R’]
(p, s) be a configuration, and be a stack operation. Sup- (i.e. B = E’); otherwise/ is O-type andE[R] = E'[R].

1l o
poseM representsp, s). If M % M’ thenM’ represents ~ S€tEo = [JandRo = F17 Q1 Q-1 -+~ o (nOte that
the configuration(p,  s). S — Ey[Ryp]). Thanks to Theorem 4.1, we can now prove

the following lemma (from which the Equi-Expressivity

(E,fN)= (E[f Ni-- Ny [] Nig1 - ““Nar(py); Ni)

Definition 4.1 Fix a tree-generating order-CPDA A = Theorem 1 follows):
(%,T,Q,6,q0 ) with @ = [m] for somemn > 1, andgy = 1. - - _
The ordern recursion scheme determined by, written When defining— and the tree generated ?y the recursion scheme
G 4, consists of atart rule G 4, we ignore the labeléthat annotate the rules—.
11 _ 9An active contexis just an ground-type applicative term that contains
S—F7 Q1 Q1 - Qo a ground-typed hole, into which a term may be inserted.
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Table 1. Definition of =, )

Uy

Lemma 4.2 There is a 1-1 correspondence between (finite o, occurs ing. E.g. the long transform of the scheme from

0 14
or infinite) computation path ofl of form~q > Y >
L2

Example 3.1 is

Yo > . and =-reduction sequence@y, Ro) 4 S = A@H(M\a)
(E1,R1) & (Es,Ry) 2 - such that for every > 0, H = A2.@F(Ay.g(A2) (Ay))
if R; is head-normal, the®; representsy;. Fo= A0 A9 (A@F (Az-h (X.x)))).
Theorem 4.3 (Equi-Expressivity 1) Let A be a tree- Given G, we fur- A
generating CPDA. The recursion scheifig (as defined  ther define a labelled Vi
in Definition 4.1) generates the sarfelabelled tree as the ~ directed graphGr(G), " @ <
CPDAA. which will serve as e 5
a Dblueprint for the 1 Y1
5 From recursion schemes to CPDA E\éeg/ilj(aGl) d(tarfl?tlggoxf o @\1& “
_ _ _ corresponding to G. 4)]:01 ):ﬂ
The previous section shows that orderrecursion 15 onstruct Gr(@), A
schemes are at least as expressive as ordeRDA. In we first take the for- - Vi N
this section we shall sketch a proof of the converse. Hencegg; consisting of all - A A A
CPDA and recursion schemes are equi-expressive. We havgyntactic trees of the' V1 1 12!
already mentioned related results by Damm and Goerdt andright—hand sides of7. ‘ fl z y
by Knapiket al. Note that in both these cases, correspon- \ne  orient the edges A
dence is established with recursion schemes that are $ubjeGqyyards the leaves and Sy
to highly non-trivial syntactic constraints; further thars- enumerate the outgoing @ -
lation techniques depend on the constraints in a crucial way edges of any node N g
Our translation from recursion schemes to CPDA is novel, from 1 to ar(f), where vi
it is based on (innocent) game semantics [14] and, in partic-f is the node label, h
glar, the notions ofong transformandtraversalintroduced except that edges from Xl
in [19]. . nodes labelled by @ are y1
Let G be an order recursion scheme. The long trans- .\ mbered fromn. Let x

form of G, written G, is another recursion scheme (of or-
der 0) obtained frondr by a series of syntactic transforma-
tions. First we replace the right-hand sidesf all G-rules
by theirn-long formg® "e7. Then explicit application sym-
bols are introduced: Each ground-type subtdte - - - e,,,
where F' is a non-terminal, is replaced by @'¢e;---¢,
for a suitable typed. Finally, to arrive aiG, we curry each
of the transformed rulest¢; --- &, — ¢’ is replaced by
F — X ---&,.¢/. By renaming we can ensure that for
each variable namg; there is a unique nod®y such that

10Giventsy - - sm : (A1, -+, An,0), we defin€ ts1 -5, 7 =
APL Pt Ts1 T Ty 1Ty 1o T .

us writev = E;(u) iff (u,v) is an edge enumerated by
Next, for any non-terminal’, we identify (“glue together”)
the rootrtr of the syntactic tree of the right-hand side of
the rule forF" with all nodes labelled” (which were leaves

in the forest). The nodetg, whereS is the start symbol

of G, will be called the root ofGr(G). The graphGr(G)

for the order-2 recursion scheme in Example 3.1 is given
on the right.

We are now ready to describePDA(G). The set
of nodes ofGr(G) will become the stack alphabet of
CPDA(G). The initial configuration will be the:-stack
push?“l L., whereuwy is the root ofGr(G). For ease of



explanation, we define the transition mams a function
that takes a node € Gr(G) to a sequence of stack opera-
tions, by a case analysis of the labgbf «. Whenl,, is not

a variable, the action is jugtush?"*, wherev is an appro-
priate successor of the node More preciselyy is defined
to be Ey(u) (if 1, = @), E1(u) (if I, = Ap) or E;(u) (if

l, € ¥ andi is the direction that the automaton is to ex-
plore in the generated tree). Finally, supphsis a variable
@; and its binder is a lambda nodes which is in turn a
j-child. Then, assuming is of order! > 1, the action will
bed(u) which is defined to be

1 E;(top,),n—I+1
push, ;.1 3 poprJr ; push (topy).m
if 7 =0, and

E; n—l+1
push, ;.1 5 pop} ;5 collapse 5 push; (top,),n—i+
otherwise, whereyush!’ (71
erations +— pughlE’i(t‘)pl )ik o
der 0 we usepop? ™

is defined to be the op-

If the variable has or-
T pushfi(mpl)’l if j 0, and

pop 5 collapse ; push otherwise. It can be

¢ € Q x Op,, which is a family of binary relations over

’

configurations, as follows(q, s) (q>’9) (¢, ') iff we have
(q,topy s,¢’,0) € A ands’ = 6(s). The initial config-
uration is(qo, L, ). We can now define theonfiguration
graph of A: vertices are just the (reachable) configura-

. L .l .
tions, and the edge relation is the relation restricted to
the reachable configurations.

Example 6.1 Take the 2-CPD% with state-sef 0,1,2},
stack alphabef a, b, 1 } and transition relation given by

(Oa_71at)7 (1,—,0,&), (17_72717)? (2aTa2a 1)5 (27T7070)

where— means any symbol; means any non- symbol,
andt,a,b,0 and1 are shorthand for the stack operations
pushs, push?’Q, pushl{’2, collapse andpop, respectively.
We present its configuration graph (with edges labelled by
stack operations only) in Table 2.

Let G = (V, E) denote the configuration graph df, let
Qe U QA be a partition of@ and letQ2 : Q — C ¢ N
be a colouring function. Altogether they define a partition

E;(top,y),1
1

shown that runs offPDA(G) are in 1-1 correspondence VgUV, of V whereby a vertex belongs G iff its control

with traversals, as defined in [19]. Since traversals are sim state belongs t@)g, and a colouring functiof : V — C

ply uncoveringgin the sense of [14]) of paths in the value where a vertex is assigned the colour of its control state. Th

tree[ G | we have the following theorem:

Theorem 5.1 (Equi-Expressivity 2) For any ordern re-
cursion schemé;, the CPDA determined by iEPDA(G),
generates the value trde7|.

Remark 5.1 The proof of the preceding Theorem is effec-
tive. W. Blum [4] has constructed a tool (iA+#) called
HOG (Higher-Order Grammar), downloadable from his
homepage, which implements (among other things) the al-
gorithm that transforms an orderrecursion schemé&' to

the ordern CPDA, CPDA(G), that generatefG |.

6 Games over collapsible pushdown graphs

We are interested in solving parity games over collapsi-
ble pushdown graphs i.e. we want to know whether we can
decide, for any position in such a game[:_lb'rse has a win-
ning strategy from it, and if so, determine its complexity.
An order- collapsible pushdown systé (n-CPDS) is
given by a quadrupled = (T, Q, A, g0 ) whereT is the
stack alphabety is afinite state-sefy C Q@ xI'x@QxOp,
is the transition relation, ang), is the initial state.Config-
urations of ann-CPDS are pairs of the forrfy, s) where
g € @ ands is ann-stack oved’. We define a one-step la-

l
belled transition relation of the CPD&, written > where

11we use collapsible pushdowgstenias opposed tautomatojwhen-
ever the device is used to generate a graph.

structureG = (G, Vg, Va ) is ann-CPDS game graptand
the pairG = (G, Q) is an-CPDS parity game A play in

G from the initial vertexvy = (go, L) works as follows:
the player who controlsg (EIoTse ifvg € Vg or Abelard
otherwise) moves a token fromy to some neighbour,
(we assume here thét has no dead-end), then the player
that controls the token moves it to a neighbogiof v, and

so on. A play is therefore an infinite pathv; - -- and is
won by Elaise iff lim inf (Q(v;) : i > 0) is even. Finally,
vp IS winning for some player if he has a winning strategy
from it. See [21, 24, 23] for more details.

In this section we consider the problem:

(P,) Given ann-CPDS parity game decide iloise has a
winning strategy from the initial configuration.

The Problem P,) is closely related to the following:
problems:

(P2) Given ann-CPDS graphG, and a mu-calculus for-
mula, doesy hold at the initial configuration of=?

(P3) Given an alternating parity tree automaton amd
CPDS graph’7, does it accept the unravelling 6f?

(P4) Given an MSO formulg and ann-CPDS graphG,
doesy hold at the root of the unravelling @¥?

From the well-known techniques of [11], it follows that
Problem P,) is polynomially equivalent to Problem#®¢)
and P3); and Problem®,) is equivalent to Problemi,)

— the reduction from®,) to (P,) is polynomial, but non-
elementary in the other direction.

12This is inspired by an example in [7].
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Table 2. Configuration graph of a 2-CPDS

A useful fact is that the unravelling of anCPDS graph  not the case in [17] where the special case= 2 was
is actually generated by anCPDA (one mainly has to note  considered).
that putting labels on the edges makes #h€PDS graph
deterministicand hence its unravelling as desired). Thus an Theorem 6.3 The problem of solving an-CPDS parity
important consequence of the Equi-Expressivity Theoremsgame isi-EXPTIME complete and it can be achieved with-

is the following. out reference to the decidability result in [19]. Furtheren
can build ann-CPDA with output that realizes a winning
Theorem 6.1 Let ¢ be a tree generated by an orderre- strategy for the winning player.
cursion scheme. Consider the following problems:
(P5) Givent and a modal mu-calculus formula, doesy Remark 6.2 This result can easily be generalized to the
hold at the root of? case where the game has an arbitraryegular winning
(P%) Givent and an alternating parity tree automaton, condition, and is played on theclosure of the configura-
does the automaton accef tion graph of am-CPDS graph. Consequently parity games
(P}) Givent and an MSO formula, doesy hold at the on Caucal graphs [6, 5] are a special case of this problem.
root of t?
Then problemP;) is polynomially equivalent to problem The Caucal graphs have decidable MSO theories [6]. Do
(P}) for everyi = 2,3, 4. the configuration graphs of CPDS also have decidable MSO
theories?

Since the Modal Mu-Calculus Model Checking Problem
for trees generated by (higher-order) recursion schemes isTheorem 6.4 (Undecidability) MSO theories of configu-
decidable [19], we obtain the following as an immediate ration graphs of CPDS are undecidable. Hence the class
consequence. of e-closure of configuration graphs of CPDS strictly con-
tains the Caucal graphs.
Theorem 6.2 Problemg P, ), (P2), (P3) and(P,) are de-

cidable with complexity.-EXPTIME complete. For a proof, recall that MSO in- . 4 . A

o — 0 —>

the Equi- terpretation preserves MSO decid-| , |
ability. Now consider the following o 4 ¢ -4

MSO interpretatior of the config- ¢B
uration graph of the 2-CPDS in Ex- o« A

mple 6.1:

Another remarkable consequence of
Expressivity Theorems is that they give totally new
techniques for model-checking or solving games played
on infinite structures generated by automata. In particular
they lead to new proofs / optimal algorithms for the special a
cases that have been considered previously [22, 5, 17]. c R
Conversely, as the Equi-Expressivity Theorems work in In(zy) = v —yha—y
both directions, we note that a solution of Probl€¢Ry ) Ig(z,y) = =« 1, y
would give a new proof of the decidability of Problems
(P), (P%) and (P}), and would give a new approach to with C =T batb1* andR = 0ta0 vV 10ta01. Note
problems on recursion schemes. Actually, the techniquesthat for theA-edges, the constraiit requires that the tar-
of [22, 17] can be generalized to solveCPDS parity get vertex should be in the next column to the right, while
games without reference to [19]. Further they give effectiv. R specifies the correct row. Observe tli& image is the
winning strategies for the winning player (which was “infinite half-grid” which has an undecidable MSO theory.
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