
ML and Extended Branching VASS

Conrad Cotton-Barratt1, Andrzej S. Murawski2, and C.-H. Luke Ong1

1 University of Oxford
2 University of Warwick

Abstract. We prove that the observational equivalence problem for
a finitary fragment of ML is recursively equivalent to the reachabil-
ity problem for extended branching vector addition systems with states
(EBVASS). Our proof uses the fully abstract game semantics of the lan-
guage. We introduce a new class of automata, VPCMA, as a represen-
tation of the game semantics. VPCMA are a version of class memory
automata equipped with a visibly pushdown stack; they serve as a bridge
enabling interreducibility of decision problems between the game seman-
tics and EBVASS. The results of this paper complete our programme
to give an automata classification of the ML types with respect to the
observational equivalence problem for closed terms.

1 Introduction

RML is a prototypical call-by-value functional language with state [3], which may
be viewed as the canonical restriction of Standard ML to ground-type references.
This paper is about the decidability of observational equivalence of finitary RML.
Recall that two terms-in-context are observationally (or contextually) equivalent,
written Γ `M ∼= N , if they are interchangeable in all program contexts without
causing any observable difference in the computational outcome. Observational
equivalence is a compelling notion of program equality, but it is hard to reason
about because of the universal quantification over program contexts. Our ulti-
mate goal is to completely classify the decidable fragments of finitary RML, and
characterise each fragment by an appropriate class of automata. In the case of
finitary Idealized Algol [27] – the call-by-name counterpart of RML, the decid-
ability of observational equivalence depends on the type-theoretic order [21] of
the terms. By contrast, the decidability of RML terms is not neatly characterised
by order: there are undecidable fragments of terms-in-context of order as low as
2 [20], amidst interesting decidable fragments at each of orders 1 to 4. Indeed,
as we shall see, there is a pair of second-order types3 with opposite decidability
status but which differs only in the ordering of their argument types.

Let L be a collection of finitary RML terms-in-context. The observational
equivalence problem asks: given two terms-in-context (i = 1, 2)

x1 : θ1, · · · , xk : θk `Mi : θ

3 Namely, unit→ (unit→ unit)→ unit vs (unit→ unit)→ unit→ unit.

from L, are they observationally equivalent? Unsurprisingly the general prob-
lem is undecidable [20]. However decidability has been established for certain
fragments, which we present in Fig. 1 by listing for each fragment the shapes of
types allowable on the LHS and RHS of the turnstile, where β is a base type.4

Note that (the RHS type) θ of shape I ranges over all first-order types; and θ

Shape LHS Type, θi RHS Type, θ

I [9] (β → β)→ · · · → (β → β)→ β β → · · · → β

II [15] ((β → · · · → β)→ β)→ · · · → ((β → · · · → β)→ β)→ β (β → · · · → β)→ β

Fig. 1: Two decidable fragments of finitary RML

of shape II admits the simplest second-order types. Because [9] also establishes
undecidability for the second-order type θ = (unit → unit) → unit → unit and
the simplest third-order type θ = ((unit→ unit)→ unit)→ unit, as far as closed
terms are concerned, the only unclassified cases are second-order types of the
shape

β → · · · → β︸ ︷︷ ︸
m

→ (β → · · · → β︸ ︷︷ ︸
n

)→ β (1)

where m ≥ 1 and n ≥ 2. These types are the subject of this paper.
Our main contribution concerns the closed terms of types of the shape

β → (β → · · · → β)→ β (2)

and relates their observational equivalence problem to the reachability problem
for extended branching vector addition systems with states (EBVASS) [17], whose
decidability status is, to our knowledge, unknown. Our result applies not only to
closed terms but also to the fragment RMLEBVASS (Definition 4) of open terms
of type (2) in which free variables are subject to certain type constraints. Our
main result is the following

Theorem 1. Observational equivalence for the terms-in-context in RMLEBVASS

is recursively equivalent to the reachability problem for extended branching vector
addition systems.

Our second result (Theorem 23) is that the reachability problem for reset vec-
tor addition systems with states [5] is reducible to the observational equivalence
of closed terms of type β → β → (β → β)→ β. It follows that the observational
equivalence of closed terms of all of the remaining types of the shape (1), i.e.,
where m,n ≥ 2, is undecidable.

In the following, we discuss the key ideas behind the main results. Like the
earlier results [15,9], Theorem 1 and Theorem 23 are proved by appealing to

4 For the sake of clarity, we do not list types with int ref and the corresponding con-
straints. They are analogous to treating int ref as β → β.

the game semantics for RML [3,13], which is fully abstract, i.e., the equational
theory induced by the semantics coincides with observational equivalence. In
game semantics [1,16], player P takes the viewpoint of the term-in-context, and
player O takes the viewpoint of the program context or environment. Thus a
term-in-context, Γ ` M : θ with Γ = x1 : θ1, · · · , xn : θn, is interpreted as a
P-strategy JΓ `M : θK in the prearena Jθ1, · · · , θn ` θK. A play is a sequence
of moves, made alternately by O and P, such that each non-initial move has a
justification pointer to some earlier move. Thanks to the fully abstract game
semantics of RML [3,13], observational equivalence is characterised by complete
plays, i.e., Γ ` M ∼= N holds iff the respective P-strategies, JΓ `M : θK and
JΓ ` N : θK, contain the same set of complete plays. Strategies may be viewed
as highly constrained processes, and are amenable to automata-theoretic repre-
sentations. The main technical challenge, however, lies in the encoding of the
justification pointers of the plays.

In recent work [9,8], we considered finitary RML terms-in-context with types
of shape I (see Fig. 1). To represent the plays in the game semantics of such
terms, we need to encode O-pointers (i.e. justification pointers from O-moves),
which is tricky because O-moves are controlled by the environment rather than
the term. It turns out that the game semantics of these terms are representable
as nested data class memory automata (NDCMA) [10], which are a variant of
class memory automata [6] whose data values exhibit a tree structure, reflecting
the tree structure of the threads in the plays.

Because of the type constraints, a play (in the strategy denotation) of a
term in RMLEBVASS may be viewed as an interleaving of “visibly pushdown”
threads, subject to the global well-bracketing condition. (See Section 3 for an
explanation.) In order to model such plays, we introduce visibly pushdown class
memory automata (VPCMA), which naturally augment class memory automata
with a stack and follow a visibly pushdown discipline, but also add data values
to the stack so that matching push- and pop-moves must share the same data
value. To give a clear representation of the game semantics, we introduce a
slight variant of VPCMA with a run-time constraint on the words accepted,
called scoping VPCMA (SVPCMA). This constraint prevents data values from
being read once the stack element that was at the top of the stack when the data
value was first read in the run has been popped off the stack. Although these
two models are expressively different, they have equivalent emptiness problems.

Unlike in class memory automata (CMA), weakness5 does not affect the
hardness of the emptiness problem for VPCMA, as the stack can be used to
check the local acceptance condition. However, like CMA, weakness does help
with the closure properties of the languages recognised. The closure properties
of these automata are the same as for normal CMA [9]: weak deterministic
VPCMA are closed under union, intersection and complementation; similarly
for SVPCMA. We show that the complete plays in the game semantics of each
RMLEBVASS term-in-context are representable as a weak deterministic SVPCMA

5 Weak class memory automata [9,8] are class memory automata in which the local
acceptance condition is dropped.

(Lemma 14). Thanks to the closure property of SVPCMA, it then follows that
RMLEBVASS observational equivalence is reducible to the emptiness problem for
VPCMA (Theorem 13).

Finally and most importantly, we show (Theorem 20 and Theorem 22) that
the emptiness problem for VPCMA (equivalently for SVPCMA) is equivalent
to the reachability problem for extended branching VASS (EBVASS) [17], the
decidability of which remains an open problem. In particular, reachability in
EBVASS is a harder problem than the long-standing open problem of reach-
ability in BVASS (equivalently, provability in multiplicative exponential linear
logic) [11], which is known to be non-elementary [19].

In summary, the results complete our programme to give an automata clas-
sification of the ML types with respect to the observational equivalence problem
for closed terms of finitary RML. We tabulate our findings as follows:

Order Type Automata / Status

1 unit→ · · · → unit NDCMA / decidable [9,14]

2 (unit→ · · · → unit)→ unit VPA / decidable [15]

2 unit→ (unit→ · · · → unit)→ unit EBVASS (this paper)

2 unit→ unit→ (unit→ unit)→ unit Undecidable (this paper)

2 (unit→ unit)→ unit→ unit Undecidable [9]

3 ((unit→ unit)→ unit)→ unit Undecidable [9]

Related work. Hopkins and Murawski [14] used deterministic class memory au-
tomata to recognise the strategies of RML terms of a first-order type with certain
constraints on the types of their free variables. Building on this idea, strategies
of terms-in-context with shape-I types (Fig. 1) are shown to be representable as
NDCMA [9]. Automata over an infinite alphabet (specifically, pushdown regis-
ter automata) have also been applied to game semantics [24,25] for a different
purpose, namely, to model generation of fresh names in fragments of ML [25]
and Java [22]. When extended with name storage, observational equivalence of
terms-in-context with types in RMLEBVASS becomes undecidable [25]; in partic-
ular, this is already the case for closed terms of type unit→ unit→ unit.

Outline. In Section 2 we define the syntax and operational semantics of RML and
the fragment RMLEBVASS. In Section 3 we present the game semantics for RML.
The automata models, VPMCA and SVPCMA, are then presented in Section 4,
where we show that their emptiness problems are interreducible, and discuss
their closure properties. In Section 5 we show that the complete plays in the
game semantics of RMLEBVASS-terms are representable as weak deterministic
SVPCMA. Consequently the observational equivalence of RMLEBVASS-terms is
reducible to the emptiness problem of SVPCMA (and equivalently to that of
VPCMA). Reducibility in the opposite direction is then shown in Section 6. In
Section 7 we introduce EBVASS and show that its reachability problem and the
emptiness problem for VPCMA are interreducible. Finally, in Section 8, we show
that observational equivalence for closed terms of type unit → unit → (unit →
unit)→ unit is undecidable.

2 A stateful call-by-value functional language RML

RML is a call-by-value functional language with state [3]. Its types are gener-
ated from ground types of int and unit, which represent integers and commands
respectively, and the variable type int ref. As the int and unit types will be very
similar in their behaviour for our purposes, we will often use β to range over int
and unit. Types are then constructed from these in the normal way, using the
→ operator:

θ ::= int | unit | int ref | θ → θ.

The order of a type is given by: ord(int) = ord(unit) := 0, ord(int ref) := 1, and
ord(θ → θ′) := max(ord(θ) + 1,ord(θ′)). In order to eliminate obvious sources
of undecidability, we consider finitary RML, with finite ground types (int =
{0, · · · ,max}), and iteration instead of recursion. The syntax and typing rules of

Γ ` () : unit

i ∈ {0, · · · ,max}
Γ ` i : int Γ, x : θ ` x : θ

Γ `M : int

Γ ` succ(M) : int

Γ `M : int

Γ ` pred(M) : int

Γ `M : int Γ `M0 : θ Γ `M1 : θ

Γ ` ifM thenM1 elseM0 : θ

Γ `M : int ref

Γ ` !M : int

Γ `M : int ref Γ ` N : int

Γ `M :=N : unit

Γ `M : int

Γ ` refM : int ref

Γ `M : unit→ int Γ ` N : int→ unit

Γ `mkvar(M,N) : int ref

Γ `M : int Γ ` N : unit

Γ ` whileM doN : unit

Γ `M : θ → θ′ Γ ` N : θ

Γ `MN : θ′
Γ, x : θ `M : θ′

Γ ` λxθ.M : θ → θ′

Fig. 2: Syntax of finitary RML

RML terms are given by induction over the rules in Fig. 2. Note that although we
only include arithmetic operations succ() and pred(), other operations are easily
definable using case distinction, because we work with finite int. We will write
letx = M inN as syntactic sugar for (λx.N)M , and M ;N for letx = M inN
where x is chosen to be fresh in N .

The operational semantics of the language is presented as a “big-step” rela-
tion that uses stores [3] to capture the behaviour of variables. Let L range over a
countable set of locations, then a store is just a partial function s : L→ N≤max.

For l ∈ L and i ∈ {0, · · · ,max}, we write s[l 7→ i] for the store obtained from s by
making l map to i, and for a store s we write dom(s) for the value in L on which
s is defined. The reduction rules are defined inductively on pairs (s,M) where
s is a store, by the rules presented in Fig. 3. We assume max +1 = max and
0−1 = 0. These reductions reduce terms to canonical forms, V , which can be the
empty command (), a constant integer i, a location l, a lambda-abstraction term
λx.M , or a bad-variable construct using canonical forms inside, mkvar(V1, V2).

s, V ⇓ s, V
s,M ⇓ s′, i

s, succ(M) ⇓ s′, i+ 1

s,M ⇓ s′, i
s,pred(M) ⇓ s′, i− 1

s,M ⇓ s′, 0 s′, N1 ⇓ s′′, V
s, ifM thenN0 elseN1 ⇓ s′′, V

s,M ⇓ s′, n+ 1 s′, N0 ⇓ s′′, V
s, ifM thenN0 elseN1 ⇓ s′′, V

s,M ⇓ s′, n
s, refM ⇓ s′[l 7→ n], l

l /∈ dom(s)
s,M ⇓ s′, l

s, !M ⇓ s′, s′(l)

s,M ⇓ s′, l s′, N ⇓ s′′, n
s,M :=N ⇓ s′′[l 7→ n], ()

s,M ⇓ s′,mkvar(V0, V1) s′, V0() ⇓ s′′, V
s, !M ⇓ s′′, V

s,M ⇓ s′,mkvar(V0, V1) s′, N ⇓ s′′, n s′′, V1n ⇓ s′′′, V
s,M :=N ⇓ s′′′, V

s,M ⇓ s′, V1 s′, N ⇓ s′′, V2

s,mkvar(M,N) ⇓ s′′,mkvar(V1, V2)

s,M ⇓ s′, 0
s,whileM doN ⇓ s′, ()

s,M ⇓ s′, n s′, N ⇓ s′′, () s′′,whileM doN ⇓ s′′′, ()
s,whileM doN ⇓ s′′′, ()

n 6= 0

s,M ⇓ s′, λx.M ′ s′, N ⇓ s′′, V s′′,M ′[V/x] ⇓ s′′′, V ′

s,MN ⇓ s′′′, V ′

Fig. 3: Operational semantics of RML

Observational equivalence (OE), also known as contextual equivalence, is the
problem of whether two program-fragments are interchangeable without causing
any changes to the observable computational outcome. We give a formal def-
inition in Definition 2. OE is a natural notion of program equivalence, a key
problem in verification [12].

Definition 2. Given an RML term M , we write M⇓ if there exist s and V such
that ∅,M ⇓ s, V (where ∅ is the empty store).

We say two terms Γ `M : θ and Γ ` N : θ are observationally equivalent if
for all contexts C[−] such that Γ ` C[M], C[N] : unit, C[M] ⇓ iff C[N] ⇓.

Remark 3. RML is similar to Reduced ML [26], the restriction of Standard ML
to ground-type references, but is augmented with a “bad-variable” constructor
in the sense of Reynolds [27] (in the absence of the constructor, the equality test
is definable). In the presence of int ref, RML is generally more discriminating
then Reduced ML. However observational equivalence of RML coincides with
that of Reduced ML on types in which all occurrences (if any) of int ref are
positive. The semantics of int ref-types in Reduced ML is much subtler, though,
and its analysis requires one to use carefully tailored store annotations in the
corresponding game semantics [23].

Definition 4. The fragment RMLEBVASS consists of finitary RML terms-in-
context of the form, x1 : θ3, . . . , xn : θ3 `M : θ0 → θ2, where

θ0 ::= unit | int θ1 ::= θ0 | θ0 → θ1 | int ref
θ2 ::= θ0 | θ1 → θ0 | int ref θ3 ::= θ0 | θ2 → θ3 | int ref

Example 5. The following term `M : int→ (int→ int)→ int is in RMLEBVASS.

λxint. let m = ref (0)
in λf int→int. assert (even (!m)) ; i f even (x) then m := 1 ;

let y=f (x) in m := x ; y

We write assert(M) for if M then () elseΩ, where Ω is the divergent term
while 1 do (). When applied to an integer x, the term yields a function of type
(int → int) → int, which will apply its argument (a function f : int → int)
to x. However, owing to the assertion and the side effects, the behaviour of
M x is quite different from λf int→int.f x. If x is even then only sequential (non-
overlapping) uses of the function will be allowed. Thus, let g = M 0 in (let a =
g(λxint.0) in g(λyint.0)) terminates, whereas let g = M 0 in g(λxint.g(λyint.0)) di-
verges. In contrast, when x is odd, M x can only be called in a nested way and
new calls become forbidden as soon as the first call returns. Thus, a typical
usage pattern consists of a series of nested calls (of arbitrary depth) followed
by the same number of returns. Consequently, let g = M 1 in g(λxint.g(λyint.0))
terminates, whereas let g = M 1 in (let a = g(λxint.0) in g(λyint.0)) diverges.

3 Game semantics of RML

We use a presentation of call-by-value game semantics in the style of Honda and
Yoshida [13], as opposed to Abramsky and McCusker’s isomorphic model [3], as
Honda and Yoshida’s more concrete constructions lend themselves more easily
to recognition by automata. We recall the following presentation of the game
semantics for RML from [15].

An arena A is a triple (MA,`A, λA) where MA is a set of moves where IA ⊆
MA consists of initial moves, `A ⊆MA×(MA\IA) is called the enabling relation,

and λA : MA → {O,P} × {Q,A} a labelling function such that for all iA ∈ IA
we have λA(iA) = (P,A), and if m `A m′ then (π1 ◦ λA)(m) 6= (π1 ◦ λA)(m′)
and (π2 ◦ λA)(m′) = A ⇒ (π2 ◦ λA)(m) = Q. The function λA labels moves as
belonging to either Opponent or Proponent and as being either a Question or an
Answer. Note that answers are always enabled by questions, but questions can
be enabled by either a question or an answer. We will use arenas to model types.
However, the actual games will be played over prearenas, which are defined in
the same way except that initial moves are O-questions.

Three basic arenas are 0 (the empty arena), 1 (the arena containing a single
initial move •), and Z (has integers as moves, all of which are initial P-answers).
In all cases, the enabling relation is empty. The constructions on arenas are
defined in Fig. 4 and Fig. 5, where the lines represent enabling. Here we use IA
as an abbreviation forMA\IA, and λA for the O/P-complement of λA. Intuitively
A⊗B is the union of the arenas A and B, but with the initial moves combined
pairwise. A ⇒ B is slightly more complex. First we add a new initial move, •.
We take the O/P-complement of A, change the initial moves into questions, and
set them to now be justified by •. Finally, we take B and set its initial moves
to be justified by A’s initial moves. The final construction, A → B, takes two
arenas A and B and produces a prearena, as shown below. This is essentially
the same as A⇒ B without the initial move •.

MA⇒B = {•}]MA]MB MA⊗B = IA × IB] IA] IB
IA⇒B = {•} IA⊗B = IA × IB

λA⇒B = m 7→

PA if m = •
OQ if m ∈ IA
λA(m) if m ∈ IA
λB(m) if m ∈MB

λA⊗B = m 7→

PA if m ∈ IA × IB
λA(m) if m ∈ IA
λB(m) if m ∈ IB

`A⇒B = {(•, iA)|iA ∈ IA} `A⊗B = {((iA, iB),m)|iA ∈ IA ∧ iB ∈ IB
∪{(iA, iB)|iA ∈ IA, iB ∈ IB} ∧(iA `A m ∨ iB `B m)}
∪ `A ∪ `B ∪(`A ∩(IA × IA))

∪(`B ∩(IB × IB))

MA→B = MA]MB λA→B(m) =

OQ if m ∈ IA
λA(m) if m ∈ IA
λB(m) if m ∈MB

IA→B = IA `A→B = {(iA, iB)|iA ∈ IA, iB ∈ IB}∪ `A ∪ `B

Fig. 4: Arena and prearena constructions: definitions

We intend arenas to represent types, in particular JunitK = 1, JintK = Z
(or a finite subset of Z for RMLf), Jint refK = Junit→ intK ⊗ Jint→ unitK and
Jθ1 → θ2K = Jθ1K ⇒ Jθ2K. A term-in-context x1 : θ1, . . . , xn : θn ` M : θ will be
represented by a strategy for the prearena Jθ1K⊗ . . .⊗ JθnK→ JθK.

A justified sequence in a prearena A is a sequence of moves from A in which
the first move is initial and all other moves m are equipped with a pointer to

an earlier move m′, such that m′ `A m. A play s is a justified sequence which
additionally satisfies the standard conditions of Alternation, Well-Bracketing,
and Visibility [3]. A strategy σ for prearena A is a non-empty, even-prefix-closed

A⊗B

IA × IB

A B

A⇒ B

•

IOQ
A

A
IB

B

A→ B

IOQ
A

A
IB

B

Fig. 5: Arena and prearena constructions, pictorially

set of plays from A, satisfying the determinism condition: if sm1, sm2 ∈ σ then
sm1 = sm2. We can think of a strategy as being a playbook telling P how
to respond by mapping odd-length plays to moves. A play is complete if all
questions have been answered. Note that (unlike in the call-by-name case) a
complete play is not necessarily maximal. We denote the set of complete plays
in strategy σ by comp(σ).

In the game model of RML, a term-in-context x1 : θ1, . . . , xn : θn `M : θ is
interpreted by a strategy of the prearena Jθ1K⊗ . . .⊗JθnK→ JθK. These strategies
are defined by recursion over the syntax of the term. Free identifiers x : θ ` x : θ
are interpreted as copy-cat strategies where P always copies O’s move into the
other copy of JθK, λx.M allows multiple copies of JMK to be run, application MN
requires a form of parallel composition plus hiding and the other constructions
can be interpreted using special strategies. The game-semantic model is fully
abstract in the following sense.

Theorem 6 (Abramsky and McCusker [2,3]). If Γ `M : θ and Γ ` N : θ
are RML terms then Γ `M ∼= N iff comp(JMK) = comp(JNK).

To represent the game semantics for the fragment RMLEBVASS, we need an
automaton over an infinite alphabet which is equipped with a visibly pushdown
stack. The shape of the prearenas for terms-in-context in this fragment is shown
in Fig. 6.

Remark 7. We describe the intuitive meaning of various moves from the Figure.
q0 starts the evaluation of the term. a0 stands for successful evaluation. q1 invokes
the resultant function with a base-type argument, while a1 means that a value
of type (β → · · · → β) → β was generated. q2 then corresponds to calling the

q0

a0

q1

a1

q2

a2 q1∗

a1∗

...

qm−1
∗

am−1
∗

q1

a1

...

qn

an

θ1

θn

Fig. 6: Shape of prearena for θ1 → · · · → θn → β ` β → (β1 → · · · → βm)→ β

value on a function argument, q1
∗, a

1
∗, .., qm−1

∗ , am−1
∗ represent interaction with

that argument, while a2 means that the call has returned.

Next we analyse the shape of non-empty complete plays in such arenas. At the
beginning, each such play will contain a segment q0 s a0 where s contains moves
originating from the left-hand side of the arena. The unique occurrence of a0 can
be used to justify subsequent occurrences of q1, each of which will have to be
answered with a1. Note that, due to the visibility condition, the moves between
q1 and the corresponding a1 can only come from the left-hand side of the arena.

It will be useful to think of each q1 a1 -pair as defining a thread of play (moves
made between q1 and a1 can then be said to occur in that thread).

Further, each a1 can be used to justify subsequent occurrences of q2, which we

may think of as starting a subthread of the corresponding thread q1 a1 . Note
that in this case the justification pointer from q2 is crucial in linking the q2-

subthread to the corresponding thread determined by q1 a1 . We give a sample
play below, which represents the interaction of the term λxunit.λfunit→unit.fx with
context let g = [] in let f1 = g() in let f2 = g() in f1(λxunit.let f3 = g() in ()).

q0 a0 q1 a1 q1 a1 q2 q1
∗ q1 a1 a1

∗ a2

Observe that due to the well-bracketing condition and the availability of qi∗
moves, each thread can have a pushdown character. Thus, a play becomes an
interleaving of pushdown threads subject to the global well-bracketing condition.
This interleaving may switch between threads after any a1, a2, or qi∗-move. Where

a qi∗-move is made, the corresponding q2-subthread can only be returned to
subject to the stack discipline. Furthermore, whenever O has the opportunity
to start a new thread – after an a1, a2, or qi∗-move, it can also create a new q2-
subthread by pointing at a visible occurrence of a1. Later on we shall introduce
an automata-theoretic model over infinite alphabets, called VPCMA, to capture
such scenarios. The preceding play will correspond to the following data word

(q0, n0)(a0, n0)(q1, n1)(a1, n1)(q1, n2)(a1, n2)(q2, n1)(q1∗, n1)(q1, n3)(a1, n3)(a1∗, n1)(a2, n1)

where n1, n2, n3 are elements of the infinite alphabet playing the rôle of thread
identifiers (technically, they represent pointers from q2).

There is one more complication due to the visibility condition. Note that
once a2 is played, it will remove the third q1a1 segment from the O-view and
will effectively prevent the thread from generating future q2-subthreads. Thus,
the visibility condition restricts the way in which threads can be revisited to be
compatible with the stack discipline. This constraint will motivate a variant of
VPCMA, called scoping VPCMA.

4 Visibly pushdown class memory automata

In this section we introduce visibly pushdown class memory automata (VPCMA),
which will be a convenient mechanism for capturing the game-semantic scenarios
discussed at the end of the previous section.

VPCMA are a formalism over data words, i.e., elements of (Σ×D)∗ where Σ
is a finite alphabet of data tags and D is an infinite set of data values. VPCMA
combine ideas from class memory automata (CMA) [7] and visibly pushdown
automata (VPA) [4]. As with CMA, our VPCMA will have a class memory
function that, for each data value seen in the run, will remember the state in
which the data value was last seen. Following VPA, the input alphabet Σ will
be partitioned into Σpush, Σpop, and Σnoop, which determine the kind of stack
action that is performed once letters from Σ × D are being read. Stack actions
will use elements of Γ ×D, where Γ is a finite stack alphabet. The only subtlety
in how these two kinds of automata are combined is in the contents of the stack:
whenever an element of D will be involved in a push or pop, we shall require
that it be equal to the element of D that is currently read by the machine. Thus,
matching push- and pop-moves will always read the same data value. The data
values on the stack can only be used in enforcing that the same data value that
pushed an element to the stack is used to pop it off the stack.

Definition 8 (VPCMA). Let Σ = Σpush + Σpop + Σnoop be finite and Q⊥ =
Q+{⊥}. Fix an infinite dataset D. A visibly pushdown class memory automaton
is a tuple 〈Q,Σ, Γ,∆, q0, FG, FL 〉, where Q is a finite set of states, q0 ∈ Q is
the initial state, FG ⊆ FL ⊆ Q are sets of globally and locally accepting states
respectively, Γ a finite stack alphabet and ∆ is the transition relation, where:

∆ ⊆
(
Q×Q⊥ × (Σpush ∪Σpop)× Γ ×Q

)
∪
(
Q×Q⊥ ×Σnoop ×Q

)
.

We explain the workings of a VPCMA below. A configuration is a triple (q, f, S)
where q ∈ Q is the current state, f : D → Q⊥ is a class memory function, and
S ∈ (D×Γ)∗ is the stack. The initial configuration is (q0, f0, ε) where f0 maps all
data values to ⊥. A configuration (q, f, S) is accepting if q ∈ FG, f(d) ∈ FL∪{⊥}
for all d ∈ D, and S = ε. On reading an input letter (a, d) ∈ Σ × D whilst in
configuration (q, f, S) the automaton can follow transitions as follows:

– if a ∈ Σpush the automaton can follow a transition (q, f(d), a, γ, q′) to con-
figuration (q′, f [d 7→ q′], S · (d, γ)).

– if a ∈ Σpop and S = S′ · (d, γ) the automaton can follow a transition
(q, f(d), a, γ, q′) to configuration (q′, f [d 7→ q′], S′).

– if a ∈ Σnoop the automaton can follow a transition (q, f(d), a, q′) to configu-
ration (q′, f [d 7→ q′], S).

Acceptance of words is then defined in the normal way, with a word being ac-
cepted just if there is a run of the word from the initial configuration to an
accepting configuration. Determinism is also defined in the normal way. That is,
a VPCMA is deterministic just if the following conditions all hold:

(i) (q, s, apush, γ, p), (q, s, apush, γ
′, p′) ∈ ∆ ⇒ γ = γ′, p = p′;

(ii) (q, s, apop, γ, p), (q, s, apop, γ, p
′) ∈ ∆ ⇒ p = p′; and

(iii) (q, s, anoop, p), (q, s, anoop, p
′) ∈ ∆ ⇒ p = p′.

In our translation from RML, we shall rely on weak VPCMA, in which all
states are locally accepting, i.e. FL = Q. Then a configuration is final if a global
accepting state has been reached and the stack is empty. Although for class
memory automata (CMA), there is a significant gap between the complexity
of normal CMA and weak CMA emptiness (corresponding essentially to the
difference between reachability and coverability in vector addition systems) [10],
there is no similar gap for VPCMA. The emptiness problem for VPCMA can be
easily reduced to that for weak VPCMA by constructing, for a given VPCMA,
a weak VPCMA which will at the very beginning guess all the data values to be
used in an accepting run, push them on the stack one by one and, at the very
end, verify the local acceptance conditions for each data value during pops.

Proposition 9. Emptiness of VPCMA can be reduced to emptiness of weak
VPCMA.

Using standard product constructions, in the same way as for weak CMA [10],
one can show that weak VPCMA are closed under union and intersection. De-
terministic weak VPCMA are also closed under complementation (by reversing
accepting states) but the complement needs to be taken with respect to the set
of “well-bracketed” words generated by the grammar

W ::= ε | (anoop, d) ·W | (apush, d) ·W · (apop, d) ·W

where d ranges over D, and apush, apop, and anoop range over Σpush, Σpop, and
Σnoop respectively. The closure properties make it possible to reduce determin-
istic VPCMA inclusion and equivalence to VPCMA emptiness.

We wrap this section up with the introduction of a special kind of VPCMA,
called scoping VPCMA (SVPCMA). This variant is meant to reflect the shape of
plays analysed at the end of Section 3 particularly well. Its definition is identical
to that of VPCMA. The difference is in how the runs are defined, and as a
result in the languages recognised. For SVPCMA, a configuration keeps track
not just of the current state, class memory function, and stack, but also of a set
of “visible” data values. The idea is that when a data value is first read after a
push-move but before that move’s corresponding pop-move, this data value will
only be usable until that pop-move – preventing the data value from “leaking”
into other parts of the run. Consequently, a tree hierarchy is imposed on the use
of data values. Although this may seem a substantial restriction at first, scoping
VPCMA turn out to have identical algorithmic properties to normal VPCMA.

Definition 10. A scoping VPCMA (SVPCMA) is a tuple 〈Q,Σ, Γ,∆, q0, FG, FL 〉
of the same construction as a VPCMA.

In contrast to VPCMA configuration, an SVPCMA configuration is a tuple
(q, f, V, S) where q and f are states and class memory functions as before,
V ⊂fin D is the set of visible data values, and S ∈ (D × Γ × Pfin(D))∗. The
initial configuration is (q0, f0, ∅, ε), and a configuration is accepting just in the
conditions set for normal VPCMA (i.e. no restrictions on V). On reading an
input letter (a, d) whilst in configuration (q, f, V, S), if f(d) = ⊥ or d ∈ V the
automaton can follow transitions as follows:

– if a ∈ Σpush the automaton can follow a transition (q, f(d), a, γ, q′) to con-
figuration (q′, f [d 7→ q′], V ∪ {d}, S · (d, γ, V ∪ {d})).

– if a ∈ Σpop and S = S′ · (d, γ, V ′) the automaton can follow a transition
(q, f(d), a, γ, q′) to configuration (q′, f [d 7→ q′], V ′, S′).

– if a ∈ Σnoop the automaton can follow a transition (q, f(d), a, q′) to configu-
ration (q′, f [d 7→ q′], V ∪ {d}, S).

Note that if f(d) 6= ⊥ and d /∈ V , the automaton cannot transition!
Weakness and determinism for SVPCMA are defined in the usual way. And

we can obtain the same result collapsing weakness as for normal VPCMA:

Proposition 11. Emptiness of SVPCMA can be reduced to emptiness of weak
SVPCMA.

Proof (Sketch). The idea for this construction is similar to that for VPCMA, but
this time we cannot just read all of the data values at the start of the run, and
check them at the end. Instead, whenever a new data value would be introduced
we first introduce it with a push-move; and when that value is popped, we check
that it is in a locally accepting state, and prevent it from being used again.

Similarly, all of the closure constructions that work for VPCMA also work for
SVPCMA (though this time closure is with respect to well-bracketed words
that are consistent with the SVPCMA restriction). In any case, the equivalence
problem for deterministic SVPCMA can also be reduced to SVPCMA emptiness.

Next we discuss why the emptiness problems for VPCMA and SVPCMA
are interreducible. Owing to the defining restriction for SVPCMA, not all lan-
guages recognisable by VPCMA are recognisable by SVPCMA, and vice versa.
Hence, there cannot be effective translations between VPCMA and SVPCMA
that preserve recognisability. However, we have

Proposition 12. VPCMA and SVPCMA emptiness problems are interreducible.

Proof. To reduce emptiness of VPCMA to that of SVPCMA we employ a similar
trick to that used to reduce VPCMA to weak VPCMA: we begin by having the
automaton read all of the data values that are going to be used in the run, then
running the automaton as normal, with calls for fresh data values replaced with
calls for data values seen at the start of the run.

To reduce emptiness of SVPCMA to that of VPCMA we employ a similar
trick to that used to reduce SVPCMA to weak SVPCMA: whenever a data value
is first read we insert a dummy push-move, which must be popped before any
containing push-move is popped. When the dummy push-move is popped, we
prevent that data value from being read again.

In Section 7 we show that VPCMA (SVPCMA) emptiness is recursively equiv-
alent to reachability in extended branching VASS [17]. In the next section, we
use SVPCMA to represent the game semantics of RMLEBVASS.

5 RMLEBVASS to VPCMA

In this section we prove

Theorem 13. Observational equivalence of RMLEBVASS-terms is reducible to
the emptiness problem for VPCMA.

The result, in conjunction with results of Section 7 will imply the left-to-right
implication in Theorem 1. To establish Theorem 13, we rely on the following
crucial lemma.

Lemma 14. For any RMLEBVASS-term Γ `M , there exists a weak determinis-
tic SVPCMA AM whose language is a faithful representation of comp(JΓ `MK).

As discussed in Section 4, SVPCMA equivalence can be reduced to VPCMA
emptiness, so the Lemma implies Theorem 13. We shall prove the Lemma by
induction for terms in canonical form.

Definition 15. An RML term is in canonical form if it is generated by the
following grammar:

C ::= () | i | xβ | succ(xβ) | pred(xβ) | if xβ thenC elseC |
xint ref := yint | !xint ref | letx = ref 0 inC | mkvar(λuunit.C, λvint.C) |
whileCdoC | λxθ.C | letxβ = C inC | letx = z yβ inC |
letx = z (λxθ.C) inC | letx = z mkvar(λuunit.C, λvint.C) inC

It can be shown [14] that, for any RML term Γ ` M : θ there is a term Γ `
N : θ in canonical form, effectively constructible from M , such that JΓ `MK =
JΓ ` NK (for the most part, the conversions involve let-commutations and β-
reduction).

Next we explain how justification pointers from games will be handled.
Pointers from answers need not be represented explicitly, because they can be
reconstructed uniquely from the underlying sequences of moves via the Well-
Bracketing condition. Pointers from questions may need to be represented, but
sometimes they too are uniquely recoverable thanks to the Visibility condition,
when at most one justifier is guaranteed to occur in the relevant view. For O-
questions, this was always the case in the fragment considered in [15], called
the O-strict fragment. RMLEBVASS is an extension of that fragment and some
O-pointers will need to be represented explicitly, but fortunately these are only
pointers from moves marked q2 in Figure 6. As already hinted at the end of
Section 3, we shall use data values to handle the issue as follows.

– The unique q0-move, and each q1-move will take a fresh data value.
– All ai-moves will take the same data value as their justifying qi-move.
– Each q2-move, and all hereditarily justified moves, will take the same data

value as their justifying a1-move.
– Each move corresponding to the types of free variables in the term will take

the same data value as the preceding move.

Because q2-moves are labelled with the same data value as their justifiers, the
problematic O-pointers are clearly represented by the above scheme. As concerns
P-pointers, there are also cases in which pointers from P-moves have to be rep-
resented explicitly, because there may be two potential justifiers in the relevant
P-view. Fortunately, the problems are of the same kind as those for the O-strict
fragment and can be handled using the marking technique used in [15,18].

Next we discuss the automata constructions, focussing on the new cases with
respect to [15], i.e. when the term is of type β → (β → · · · → β) → β. In
other cases, i.e. (), i, xβ , succ(xβ), pred(xβ), if xβ thenC elseC, xint ref := yint,
!xint ref , and mkvar(λxunit.C, λyint.C), whileCdoC we can rely on the construc-
tions from [15], as they produce visibly pushdown automata, which can be easily
be upgraded to SVPCMA by annotating each move with a dummy data value.

λx.M The most important case is that of λ-abstraction. In the case where
λx.M is not of type β → (β → · · · → β) → β, this has already been covered
by the VPA constructions. We therefore can assume this is the final lambda
abstraction in the term, and so x is of type β ∈ {int, unit} and M ’s type is of
the shape (β → · · · → β)→ β.

Then the key idea of this construction is that the strategy for λx.M , after
the unique a0-move, is an interleaving of multiple strategies for M . Since we can
handle M with a VPA [15], each q1-move corresponds to starting a new VPA
running. SVPCMA allow us to simulate multiple VPAs, each identified by its
own data value. The well-bracketing constraint on plays is enforced by the single

stack discipline of the SVPCMA, while the visibility condition on O-pointers is
checked by the scoping restriction on SVPCMA.

Before we give the formal definition of the SVPCMA for λx.M , we analyse
the plays in Jλx.MK in more detail. O starts by playing an initial move γ, to
which P plays the unique response a0. O then starts a q1-thread with a move ix
corresponding to the value of x. Play then in that thread continues as in JMK
with initial move (γ, ix). However, at any point after P has played an a1, qj∗,
or a2 move, O may switch to another thread (new or existing), subject to that

thread (i.e. the q1 a1 moves of that thread) being visible.
For the construction, we know that there is a family of VPA, (AMi), whereAMi

recognises the complete plays from JMK that start with initial move i (the move i
is omitted). We note that these initial moves have an x-component, as x is a free
variable of ground type in M , hence we can think of the initial moves as having
the form (γ, ix), where ix is the part that corresponds to x. We make a further
assumption on the (AMi), that the states reachable by following a transition with

a Σ-label corresponding to a a1, qj∗, or a2 move can only be reached by following
transitions with those Σ-labels. We write Ni for these states. (Note that it is
straightforward to convert a VPA without this property to one with it.) Further
we note that these states, due to the plays possible, will only have no-op and
pop transitions from them.

Hence we construct the automata (Aλx.Mγ) as follows.

– The set of states of Aλx.Mγ is formed of two new states, (1) and (2) together

with the disjoint union of the states from each AM(γ,ix) (for each possible value

ix).
– The initial state is the new state (1).
– The set of globally accepting states is the union of the sets of accepting

states from each AM(γ,ix) together with the new state (2).
– The transitions are defined as follows:

• There is a (no-op) transition (1)
a0,⊥−−−→ (2)

• For each ix there is a (no-op) transition (2)
ix,⊥−−−→ qix where qix is the

initial state of AM(γ,ix)

• For each AM(γ,ix):

∗ For each no-op transition q1
m−→ q2 inside AM(γ,ix), there is a (no-op)

transition q1
m,q1−−−→ q2

∗ For each push/pop transition q1
m,σ−−→ q2 inside AM(γ,ix), there is a

(push/pop resp.) transition q1
m,q1,σ−−−−→ q2

• For each state q1, q2 in
⋃
ix
N(γ,ix) and each no-op transition q2

m−→ q3 in

the constituent automaton there is a transition q1
m,q2−−−→ q3. Similarly for

each pop transition q2
a,σ−−→ q3 we have the transition q1

a,q2,σ−−−−→ q3. This
allows for changing between threads at the appropriate points.

The remaining cases concern letx = . . . inM and adaptations of the corre-
sponding cases in the O-strict constructions in the O-strict case [15,14]. Crucially,

whilst these constructions all allow the “interruption” of JMK to make plays cor-
responding to x, the strategy for x can be recognised by a normal VPA and so
the interruptions do not disturb the data value being used. Hence the adapta-
tions from the O-strict case are straightforward. We discuss two of the cases in
more detail.

letx = ref 0 inM The states of Alet x=ref 0 inM
γ is equal to the states of AMγ

crossed with the finitary fragment of N being used. We refer to the new finitary
fragment as the x-component of the state. The new initial state is the old initial
state with x-component 0. Transitions are generally preserved, without altering
the x-component, except writex(i)-transitions now change the x-component to
i, and answers to readx-transitions must match the current x-component (other
answer transitions are removed). For every (maximal) sequence of x-transitions
out of a state, we now replace that sequence with a silent transition, which we
then eliminate (and alter the required signature of the data value accordingly).
Since the data value being read cannot change in sequences of x-transitions, this
is a straightforward operation.

letxβ = N inM Jletxβ = N inMK first evaluates N , i.e. runs as JNK until a
value is returned for x, then begins running as JMK in which that value of x was
provided in the first move.

Since N is of type β, there are VPA (ANγ) representing JΓ ` NK. Further since
x is free in M the initial moves in M have an x-component, so we have a family
of SVPCMA (AM(γ,ix)). The automata construction for the term is then a fairly
straightforward concatenation of the the automata for N and M , with which
copy of AM used being determined by the outcome of AN . The only difficulty
is adding the data values to the automaton for N , but this is straightforward as
only one data value is used for the entire run of N .

6 VPCMA to RMLEBVASS

So far we have shown that observational equivalence of terms in RMLEBVASS is
reducible to emptiness of SVPCMA. In this section we show that the converse
is also true.

To reduce SVPCMA emptiness to observational equivalence of RMLEBVASS-
terms, we will first alter the given SVPCMA to make the reduction to RML-terms
easier. We already saw, in Section 4, that given an SVPCMA it is possible to
construct a weak SVPCMA with equivalent emptiness problem.

Now, given a weak SVPCMA A, by doubling the states and stack alphabet,
it is straightforward to construct another weak SVPCMA, A′, recognising the
same languages as A such that whether or not the stack is empty is stored in
the state of the automaton. Hence, the emptiness of A′ is determined just by
whether or not a globally accepting state is reachable.

How then, do we construct the RML terms from A′? We shall represent each

data value by a single q1 a1 -thread. Hence, a transition reading a new data

value will be represented by O playing q1 and P responding with a1. The class
memory function’s value for this data value will then be stored in a local variable
with suitable scope. Noop-moves not taking a fresh data value can then be made

by playing q2 a2 -moves justified by the q1 a1 corresponding to the data value.
When the q2-move is played, the term can update the class memory function as
required.

Push-moves will be represented by q2 q∗ -moves, with the stack letter stored

locally. If the push-move introduces a fresh data value, the q1 a1 -thread must

be created first, and then immediately followed by the q2 q∗ -moves. Pop-moves
will be represented by a∗a2 pairs. Note that the Well-Bracketing condition will
enforce the stack discipline during the simulation. Furthermore, as we saw in the
previous section, the visibility condition of the plays will correspond precisely
to the scoping condition of SVPCMA, that restricts use of data values first seen
inside pushes.

In the term, we will need O to choose which transition is fired next. We will
do this by alternating O’s plays between those that correspond to transitions of
the SVPCMA as described already, and a simple q1-move that provides as int-
input, which transition will be fired next. The term, using a global variable, can
keep track of whether the next O-move should be providing input, or simulating
a transition.

Using these ideas, we prove that the representation scheme can be imple-
mented using RMLEBVASS-terms.

Proposition 16. Given a weak SVPCMA such that the automaton can only
arrive at a final state with an empty stack, there are RMLEBVASS-terms

`M,N : int→ (unit→ unit)→ unit

such that the language recognised by the automaton is non-empty iff M and N
are not observationally equivalent.

The only difference between M and N above is that one of them will diverge on
reaching the final state whereas the other will carry on simulating the last step. In
the above we have used an int-type, to make it easy for P to ask the environment
(O) which transition should be fired next. We note that we could have used
only unit-types, using a different scheme for O-choices. For example, at the very

beginning we could introduce as many q1 a1 segments as there are transitions

and O-choice could be represented by playing a q2 a2 justified by one of the a1

(so O-choice would be represented by the choice of a justifer, one of the special
a1’s). Thus, the result can also be shown to hold for unit→ (unit→ unit)→ unit.

Thus we have shown that RMLEBVASS observational equivalence and VPCMA
emptiness are recursively equivalent.

7 VPCMA and EBVASS

In this section we show that VPCMA emptiness and EBVASS reachability are
interreducible. We first review extended branching VASS (EBVASS), which were

introduced in [17] to analyse a two-variable fragment of first-order logic over data
trees, and shown to be equivalent to a form of data tree automaton.

EBVASS are slightly more powerful than branching VASS (BVASS) [11],
whose reachability problem is not known to be decidable. Thus, we begin our
review with BVASS, which extend VASS where, in addition to the standard tran-
sitions affecting the counter values and the state, there are “split” transitions,
which split the current counter values into two copies of the current VASS, each
copy then transitioning to a pre-given state. These copies must then complete
their runs independently. Formally:

Definition 17 (BVASS). A (top-down) branching vector addition system with
states (BVASS) is a tuple (Q, q0, L, k,∆u, ∆s) where Q is a finite set of states,
q0 ∈ Q is the initial (root) state, L ⊆ Q is the set of target (leaf) states, k ∈ N
is the number of counters (dimension of the BVASS), and ∆u and ∆s are the
unary and split transition relations respectively. The unary and split relations
are of the forms:

∆u ⊆ (Q× Nk)× (Q× Nk) ∆s ⊆ (Q× Nk)× (Q× Nk)× (Q× Nk)

We may write unary transitions, (q1, v̄1, q2, v̄2) ∈ ∆u, and split transitions,
(q1, v̄1, q2, v̄2, q3, v̄3) ∈ ∆s, in the following ways:

(unary)
q1, v̄ + v̄1

q2, v̄ + v̄2

(split)
q1, v̄ + v̄′ + v̄1

q2, v̄ + v̄2 q3, v̄
′ + v̄3

These representations reflect the runs of BVASS, which we now define. A config-
uration of a BVASS is a pair (q, v̄) where q ∈ Q and v̄ ∈ Nk. A run of a BVASS
is a (finite) tree labelled with configurations, such that each node has at most
two children, with the following conditions:

– if a node labelled with (q, v̄) has precisely one child node, then there is a
transition (q, ū1, q

′, ū2) ∈ ∆u such that v̄ − ū1 ∈ Nk and the child node is
labelled with (q′, v̄ − ū1 + ū2).

– if a node labelled with (q, v̄) has two child nodes, then there is a transition
(q, ū1, q

′, ū2, q
′′, ū3) ∈ ∆s such that there exist v̄1, v̄2 ∈ Nk such that v̄ =

v̄1 + v̄2 + ū1 and the left child node is labelled (q′, v̄1 + ū2) and the right
child node is labelled (q′′, v̄2 + ū3).

A run is accepting just if every leaf node’s label is (q, 0̄) for some q ∈ L. The
reachability problem asks whether there is an accepting run of the BVASS with
root configuration (q0, 0̄).

We note that this is a strong form of BVASS, where several operations may
be performed in one step: multiple increments and decrements. It is possible
for unary transitions to be able to only make a single increment or decrement,
and for split transitions to make no increments or decrements. It is clear that
this more powerful presentation does not change the power of the model, but it
allows us a slightly more concise reduction from VPCMA.

We now move to give a definition of EBVASS. These were introduced in [17],
and extend BVASS with the ability to split counters in more complex ways when
a split transition is made.

Definition 18 (EBVASS). An extended branching vector addition system
with states (EBVASS) is a tuple (Q, q0, L, k,∆u, ∆s, C) where (Q, q0, L, k,∆u, ∆s)
is a BVASS and C ⊆ {1, . . . , k}3 is the set of constraints.

Each constraint (i, j, k) can fire any number of times when a split transition is
made, and for each time it fires it will decrement the ith counter (pre-splitting),
and then increment the jth counter in the left-hand branch and the kth counter
in the right-hand branch. Formally, this means that runs are again finite labelled
trees, with the rules for single-child nodes as for BVASS, but the following ex-
tended rule for nodes with two children.

– Suppose C = {c1, . . . , cm}. If a node labelled (q, v̄) has two child nodes
then there is a transition (q, ū1, q

′, ū2, q
′′, ū3) ∈ ∆s, n1, . . . , nm ∈ N, and

v̄1, v̄2 ∈ Nk such that v̄ = v̄1 + v̄2 +Σ(ni · ēπ1(ci)), and the left child node is
labelled (q′, v̄1 +Σ(ni · ēπ2(ci))), and the right child node is labelled (q′′, v̄2 +

Σ(ni · ēπ3(ci))), where the vector ēl ∈ Zk is 1 in position l and 0 elsewhere.

Again, a run is accepting just if each leaf node is labelled with a configura-
tion (q, 0̄) where q ∈ L, and the reachability problem asks whether there is an
accepting run with root node labelled (q0, 0̄).

Remark 19. We work with a top-down version of EBVASS, as this formulation
is more convenient for capturing the correspondence with VPCMA. In the lan-
guage of [17, Sec. 5], our definition of runs corresponds to the non-commutative
treatment of constraints.

7.1 From VPCMA to EBVASS

Theorem 20. The emptiness problem for VPCMA is reducible to the reacha-
bility problem for EBVASS.

We first give the central ideas behind the reduction.

– The states of the EBVASS will correspond to pairs of states of the VPCMA.
If a position in the tree has a configuration with state (q, q′) this will mean
that the subtree under this position represents a stack-neutral run of the
VPCMA from state q to q′, i.e. all elements pushed on the stack will subse-
quently be removed.

– The counters in the EBVASS will correspond to pairs of states of the VPCMA.
Each increment of a counter corresponding to the pair (q, q′) in a position
in a tree will (roughly) mean that there is a data value d with f(d) = q that
becomes a data value with f(d) = q′ within that subtree (and this needs to
be borne out within the subtree).

– No-op moves in the VPCMA will be modelled by unary transitions in the
EBVASS, adjusting the current state and counters appropriately.

– Push and pop moves will be modelled by split-transitions, with a single
split-transition representing both the push and the pop move. The left-hand
branch will correspond to the part of the run between the push and pop
moves, whilst the right-hand branch corresponds to the moves after. Con-
straints allow data values to be split into what happens to them within the
branch and what happens to them after.

We now give a formal account of the reduction. W.l.o.g. (Proposition 9)
we work with weak VPCMA. Suppose A = 〈Q,Σ, Γ,∆, q0, {qf} 〉 is a weak
VPCMA6. We shall construct an EBVASS EA such that its reachability problem
is a yes-instance iff L(A) 6= ∅ as follows.

We let the set of states of EA be P = Q×Q, the initial state (q0, qf), the set
of leaf states L = {(q, q) : q ∈ Q}. We set the number of counters k = |Q⊥ ×Q|,
with a counter corresponding to each pair (q, q′) ∈ Q⊥ ×Q. For each such pair,
we use the notation cq,q′ for the counter corresponding to that pair, and ēq,q′ for
the vector in Zk with a 1 in position cq,q′ and 0 elsewhere. The set of constraints
contains (cq,q′′ , cq,q′ , cq′,q′′) for each q, q′, q′′ ∈ Q⊥.

The transition relation for EA is given as follows:

– For each transition (q, s, a, q′) ∈ ∆, where a ∈ Σnoop, we have:

(no-op)
(q, p), v̄ + ēs,s′

(q′, p), v̄ + ēq′,s′

– For each pair of transitions (q1, s, a, γ, q2) and (q3, s
′, b, γ, q4) where a ∈ Σpush

and b ∈ Σpop, we have:

(push-pop)
(q1, p), v̄1 + v̄2 + ēs,s′′

(q2, q3), v̄1 + ēq2,s′ (q4, p), v̄2 + ēq4,s′′

(Note that the above is a slight abuse of notation: split rules cannot also
include increments7. However, it is straightforward to implement the above
using unary transitions before and after the split, though to do this additional
states must be introduced to keep track - we leave this out for clarity.)

– For every x ∈ Q×Q and q ∈ Q we have the rule

(decrement)
x, v̄ + ēq,q

x, v̄

(This rule allows counters corresponding to data values which have “reached
their required destination” to be decremented.)

6 We assume the set of globally accepting states to be a singleton merely for conve-
nience - it is trivial to adjust.

7 Actually there is another abuse of notation: the v̄1 and v̄2 may be altered by the
constraints yet that is not mentioned in the rule.

– For every x ∈ Q×Q and q ∈ Q:

(increment)
x, v̄

x, v̄ + ē⊥,q

(This rule makes it possible to add a new class along with its evolution
profile, from ⊥ to some state q.)

One can show that L(A) 6= ∅ iff there is a run of EA reaching the target config-
urations.

7.2 From EBVASS to SVPCMA

Here we show that VPCMA emptiness is at least as hard as the reachability
problem for EBVASS. W.l.o.g. (Proposition 12) we do this by reducing EBVASS
reachability to SVPCMA emptiness. The key idea is that words over a pushdown
alphabet can be viewed as trees by viewing them as their construction trees when
generated by the grammar:

W ::= ε | anoop ·W | apush ·W · apop ·W

Hence, a push-pop pair of moves correspond to a split-transition of the EBVASS,
with the word occurring between the push and pop-moves corresponding to the
left-hand branch, and the word after the pop-move corresponding to the right-
hand branch. Our reduction argument will represent counter values as the num-
ber of data values with an appropriate class memory function value, and the
EBVASS state can simply be stored as the SVPCMA state. The scoping visi-
bility condition on runs will prevent increments made in the left-hand branch
(from some split) being used in the right-hand branch. The only difficulty in the
reduction is the handling of constraints: but for this we can use the stack again.
After the push-move of a split-transition, we will be able to fire transitions corre-
sponding to the constraints. Given a constraint (i, j, k) the corresponding push
transition will take a data value where the class memory function remembers
it as belonging to counter i, change it to belong to counter j, and put on the
stack the fact that, when popped, it needs to be returned to counter k. Then,
when we come to do the pop-transition corresponding to the split, we must first
perform the pop-transitions corresponding to all the counters that were split by
the constraints.

Remark 21. 1. Class memory functions are normally of the form f : D → Q⊥.
In our encoding we shall use a special set Lab of labels to keep track of local
behaviour and will rely on functions f : D → Lab⊥ instead. Accordingly, our
VPCMA will have a transition relation of the form

∆ ⊆ Q×Lab⊥×(Σpush∪Σpop)×Γ ×Q×Lab ∪ Q×Lab⊥×Σnoop×Q×Lab.

Note that the above can be easily accommodated by the standard definition
by extending the set of states.

2. When we introduced EBVASS, we gave them the power to perform multi-
ple increments and decrements in one transition. While this was useful in
reducing VPCMA to EBVASS, we will now find it useful to simply permit
a single increment or decrement in unary transitions, and decouple incre-
ments/decrements from split transitions.

In our reduction data values will be used to store the counter information. That
is, the value of a counter will be represented by the number of data values that
the class memory function assigns a label corresponding to that counter (we
use the labels 1, . . . , n for the n counters). When a counter is incremented, a
fresh data value is read, and given the appropriate label. When a counter is
decremented, a data value with the label corresponding to that counter has its
label changed to done. The fact that all increments have been decremented by
the end of the run is then checked by the local acceptance condition.

To model constraints, after a push-transition corresponding to a split, we
shall allow several more push-transitions corresponding to firings of the con-
straints. Firing a transition corresponding to a constraint (i, j, k) will take a
data value with current label i, give it label j, and put a letter k on the stack.
Then, when the corresponding pop-move is made, the label will be changed
from done to k. The shape of the parts of the automaton corresponding to a
split transition δ = (q, q′, q′′) is shown below

q δ q′ ...

l1

lm

pre-pop q′′
push

constraint-pushes

ε

ε

ε

constraint-pops

pop

There is a slight subtlety in the above, which is that in an EBVASS all
constraints are fired simultaneously at a split transition, not sequentially. Hence
we should be sure that the same data value cannot be used to fire two constraints
at the same split. Fortunately, this is already prevented, as if two such constraints
were fired, when it came to make the corresponding pop-transitions, the first
would fire correctly, but then the second could not because the data value would
not have the done-label.

Thus, given an EBVASS B = (Q, q0, L, n,∆u, ∆s, C), we construct a SVPCMA
AB as follows:

– The set of states of AB is Q]∆s] {pre-pop}, where q0 is initial;
– Lab = {1, . . . , n} ∪ {done, split} and Γ = Q] {1, . . . , k};
– Σ = (∆s] C) + {split-pop, constraint-pop}+ (∆u] {ε});

– The set of globally accepting states is L;
– The set of locally accepting labels is {done}; and
– The transition relation is constructed as follows:
• for each (unary) increment transition δ ∈ ∆u of the form q

+ei−−→ q′ we
have the transition (q,⊥, δ, q′, i);

• for each (unary) decrement transition δ ∈ ∆u of the form q
−ei−−→ q′ we

have the transition (q, i, δ, q′, done);
• for each split transition δ ∈ ∆s of the form q → q′ + q′′ we have the

push-transition (q,⊥, δ, q′′, δ, split), and the silent transition δ
ε−→ q′;

• for each δ ∈ ∆s and constraint (i, j, k) ∈ C we have the push-transition
(δ, i, (i, j, k), k, δ, j);
• for each i ∈ {1, . . . , n} we have the pop-transition (pre-pop, done,
constraint-pop, i, pre-pop, i);

• for each l ∈ L we have the silent transition l
ε−→ pre-pop;

• finally, for each q ∈ Q we have the pop-transition (pre-pop, split,
split-pop, q, q, done).

Theorem 22. The reachability problem for EBVASS is reducible to the empti-
ness problem for SVPCMA.

8 Undecidability for unit → unit → (unit → unit) → unit

Here we show, by reduction from reachability in reset VASS [5], that obser-
vational equivalence in finitary RML is undecidable for closed terms of type
unit → unit → (unit → unit) → unit. Observe that the arena used for modelling
closed terms of this above has the following move structure: q0 ` a0 ` q1 ` a1 `
q2 ` a2 ` q3 ` a3 and q3 ` q4 ` a4. Next we discuss how plays over the arena
can be used to simulate reset VASS.

– The simulation will begin with q0 a0 q1 a1 q2 a2 q3 q4 . This yields a
play with pending questions q3, q4, which will block the formation of complete
plays until the two questions are answered. We will take advantage of these
questions at the very end of the simulation to check whether the simulation
has reached an accepting state (if so, they will be answered).

– After the initialising segment discussed above, we shall have k segments

q1 a1 , where k is the number of counters. Each segment q1 a1 is used to
represent a single counter and its identity as well as status (active or reset)
will be stored in a local variable.

– Counter increments for counter j will be modelled with q2 a2 q3 q4 , where
q2 is justified by the occurrence of a1 corresponding to the jth counter. Each
such segment will be equipped with a local variable that records the fact
that the segment stores a singleton value of the relevant counter. The q3q4

moves are intended to contribute pending questions to the play (to create
stack structure) and guarantee that a complete play can be formed only after
the questions have been answered. In the final stage of the simulation, we

shall use the need to answer these questions to check whether all increments
have been matched by decrements (unless the counter has been reset in the
meantime).

– Decrements will be represented by q3 a3 , where q3 is justified by a2 from a
segment corresponding to an (unreset) increment of the same counter. The
local variable recording the singleton value will then be modified to reflect
the fact that the value has been spent.

– Resets will be simulated by q2 a2 , where q2 is justified by q1a1 correspond-
ing to the relevant counter. Its status will be updated to inactive and the
q1a1 segment will not be used by the translation any more. However, in order
to allow for further operations on the same counter, we shall create a new

q1 a1 segment, which will be used as a target when simulating subsequent
decrements.

– Zero testing, to be performed at the very end, will be triggered by O playing
a4 in response to the most recent q4 used for modelling increments. If the
corresponding q3q4 segment corresponds to a counter value that has been
reset or decremented then a3 will be played (otherwise the simulation will
break - P will not respond). Finally, if all q3q4 corresponding to increments
have been answered in this way, the first q3q4 segment will become pending.
If O then plays a4 then P will reply with a3 iff the simulation has reached a
final state.

Our main result is that, for any reset VASS, it is possible to build RML terms
whose game semantics represents the reset VASS in the sense sketched above.
This leads to:

Theorem 23. Given a reset VASS A = (Q, k,∆i∪∆d∪∆0, q0) and target state
qf ∈ Q, there are RML-terms ` M,M ′ : unit→ unit→ (unit→ unit)→ unit
such that M ∼= M ′ iff there is a run of A reaching configuration (qf , 0̄).

As before, the only difference between M and M ′ is the place where final-state
detection takes place: M will then terminate, wheereas M ′ will diverge.

Conclusion and further directions

For all types, we have a result giving the decidability status of a finitary RML
fragment containing closed terms of that type, with the exception of the types
in RMLEBVASS, for which we know observational equivalence is equivalent to
EBVASS reachability. Clearly the open question of the decidability of EBVASS
reachability, which seems interesting for its own sake, is especially important to
us. More broadly, we do not yet have a complete classification of which types
on the LHS of the turnstile give undecidability or decidability, nor a complete
picture of which combinations of LHS and RHS types remain decidable. Settling
these remaining questions would be a natural next step.

Acknowledgments. We are grateful to the anonymous reviewers for numerous
constructive suggestions and to Ranko Lazić for discussions on VASS.

References

1. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Inf.
Comput., 163(2):409–470, 2000.

2. S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions. Electr. Notes Theor. Comput.
Sci., 3:2–14, 1996.

3. S. Abramsky and G. McCusker. Call-by-value games. In CSL, volume 1414 of
Lecture Notes in Computer Science, pages 1–17. Springer, 1997.

4. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC, pages 202–
211. ACM, 2004.

5. T. Araki and T. Kasami. Some decision problems related to the reachability prob-
lem for Petri nets. Theor. Comput. Sci., 3(1):85–104, 1976.

6. H. Björklund and T. Schwentick. On notions of regularity for data languages. In
FCT, volume 4639 of Lecture Notes in Computer Science, pages 88–99. Springer,
2007.

7. H. Björklund and T. Schwentick. On notions of regularity for data languages.
Theor. Comput. Sci., 411(4-5):702–715, 2010.

8. C. Cotton-Barratt. Using Class Memory Automata in Algorithmic Game Seman-
tics. PhD thesis, University of Oxford, 2016. Submitted.

9. C. Cotton-Barratt, D. Hopkins, A. S. Murawski, and C.-H. L. Ong. Fragments of
ML decidable by nested data class memory automata. In FoSSaCS, volume 9034
of Lecture Notes in Computer Science, pages 249–263. Springer, 2015.

10. C. Cotton-Barratt, A. S. Murawski, and C.-H. L. Ong. Weak and nested class
memory automata. In LATA, volume 8977 of Lecture Notes in Computer Science,
pages 188–199. Springer, 2015.

11. P. de Groote, B. Guillaume, and S. Salvati. Vector addition tree automata. In
LICS, pages 64–73. IEEE Computer Society, 2004.

12. B. Godlin and O. Strichman. Regression verification. In DAC, pages 466–471.
ACM, 2009.

13. K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value computation.
Theor. Comput. Sci., 221(1-2):393–456, 1999.

14. D. Hopkins. Game Semantics Based Equivalence Checking of Higher-Order Pro-
grams. PhD thesis, Department of Computer Science, University of Oxford, 2012.

15. D. Hopkins, A. S. Murawski, and C.-H. L. Ong. A fragment of ML decidable
by visibly pushdown automata. In ICALP (2), volume 6756 of Lecture Notes in
Computer Science, pages 149–161. Springer, 2011.

16. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, and III. Inf.
Comput., 163(2):285–408, 2000.

17. F. Jacquemard, L. Segoufin, and J. Dimino. FO2(<, +1, ˜) on data trees, data tree
automata and branching vector addition systems. Logical Methods in Computer
Science, 12(2), 2016.

18. R. Lazic and A. S. Murawski. Contextual approximation and higher-order pro-
cedures. In Proceedings of FOSSACS’16, volume 9634 of LNCS, pages 162–179.
Springer, 2016.

19. R. Lazic and S. Schmitz. Nonelementary complexities for branching VASS, MELL,
and extensions. ACM Trans. Comput. Log., 16(3):20:1–20:30, 2015.

20. A. S. Murawski. Functions with local state: regularity and undecidability. Theo-
retical Computer Science, 338(1/3):315–349, 2005.

21. A. S. Murawski, C.-H. L. Ong, and I. Walukiewicz. Idealized Algol with ground
recursion, and DPDA equivalence. In ICALP, volume 3580 of Lecture Notes in
Computer Science, pages 917–929. Springer, 2005.

22. A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. Game semantic analysis of
equivalence in IMJ. In Proceedings of ATVA, volume 9364 of LNCS, pages 411–
428. Springer, 2015.

23. A. S. Murawski and N. Tzevelekos. Full abstraction for Reduced ML. In FOSSACS,
volume 5504 of Lecture Notes in Computer Science, pages 32–47. Springer, 2009.

24. A. S. Murawski and N. Tzevelekos. Algorithmic nominal game semantics. In ESOP,
volume 6602 of Lecture Notes in Computer Science, pages 419–438. Springer, 2011.

25. A. S. Murawski and N. Tzevelekos. Algorithmic games for full ground references.
In ICALP (2), volume 7392 of Lecture Notes in Computer Science, pages 312–324.
Springer, 2012.

26. A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state.
In Higher order operational techniques in semantics, pages 227–273. Cambridge
University Press, 1998.

27. J. C. Reynolds. The essence of algol. In Proceedings of the International Sym-
posium on Algorithmic Languages. Elsevier Science Inc., 1981.

	ML and Extended Branching VASS

